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Abstract

Current interest in improving numerical predictions of he-
licopter rotor vibration and acoustic signature has driven a
requirement to model blade aerodynamic loadings to ex-
tremely high resolution. The problem is complicated by
the complexity of the flow in the rotor wake and the diffi-
culty in conserving vortical structures in the wake for long
enough so that all important vibration- or noise-producing
blade vortex interactions are represented properly. The
Vorticity Transport Model, developed by Brown, is capa-
ble of preserving vortical structures over sufficiently long
timescales, but, up to now, has been prohibitively expen-
sive when run at the resolutions required for accurate vi-
bration or acoustic prediction. In this paper we present
a new computational grid system which, through the use
of adaptive cell management and nested grids, allows sig-
nificant increases in grid resolution with minimal impact
on computational cost. The new grid system is effec-
tively boundary-free, thus eliminating the need for numer-
ical boundary conditions. In addition, the velocity field
is optimally evaluated on the new grid using an extremely
efficient technique based on the Cartesian Fast Multipole
Method. The implementation of both the grid system and
the velocity calculation within a new version of the Vortic-
ity Transport Model is described. The performance of the
new model is validated against experimental data and some
properties of the model, when used to predict rotor loads to
a resolution that approaches that required for calculations
of rotor vibration or acoustic signature, are illustrated.
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ak : kth Taylor coefficient of Kδ
A : Rotor area
bk : kth Taylor coefficient of φδ
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Fk : kth derivative of the velocity field
k : term of multipole series
K : Biot-Savart Kernel
Kδ : regularised Biot-Savart Kernel
mk : kth moment of vorticity
N : number of grid cells
Nc : number of cells within a cluster
p : order of multipole expansion
R : rotor radius
S : vorticity source
v : flow velocity
vb : flow velocity relative to blade
β : blade flapping angle

β � β0 � β1s sinψ � β1c cosψ
β0 : rotor coning angle
β1s : rotor lateral tilt angle
β1c : rotor longitudinal tilt angle
δ : kernel smoothing parameter
∆ : cell edge-length
θ : blade feathering angle

θ � θ0 � θ1s sinψ � θ1c cosψ
θ0 : collective pitch control angle
θ1s : longitudinal cyclic pitch control angle
θ1c : lateral cyclic pitch control angle
µ : rotor forward speed scaled by ΩR
σ : rotor solidity
φδ : regularised Newtonian potential
ω : vorticity, ∇ � v
ωb : bound vorticity
Ω : rotor rotational speed dψ � dt

Introduction

This paper outlines the development of a new rotor wake
modelling tool based on the existing Vorticity Transport
Model (VTM) of Brown (Ref. 1). The VTM is a CFD-
based free wake model that has been used in a number of
applications, including flight mechanics (Ref. 2), analysis
of the vortex ring state (Ref. 3), and the modelling of air-
craft wake encounters (Ref. 4). The new version of the
VTM described within this paper has been developed to
address some of the specific numerical issues posed by the
prediction of rotor vibration and acoustic signature.

The results of the 1996 dynamics workshop, as re-
ported by Hansford and Vorwald (Ref. 5), exposed a clear,
industry-wide difficulty in predicting accurately the vibra-
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tion levels generated by helicopter rotors. Hansford and
Vorwald concluded that the use of free wake models to pre-
dict the aerodynamic environment of the helicopter could
“greatly enhance vibration correlation” and, indeed, that
introduction of this level of aerodynamic modelling into
aeroelastic codes would be essential if the perceived diffi-
culties in vibration prediction were to be overcome.

The potential of free wake models lies in their ability to
predict the aerodynamic environment of the rotor in such a
way that the evolution of the flow field of the rotor is un-
constrained by any preconceptions regarding the geometry
of the rotor wake. The improvement in physical fidelity
that such approaches offer over simpler modelling tech-
niques should translate into an improved prediction of the
aerodynamic loading on the blades, particularly in terms
of the locations and strengths of the blade vortex interac-
tions that are key to the accurate prediction of rotor vi-
bration. Nonetheless, the rotor wake is a highly complex
vorticity distribution and the potential improvement that
any free wake model can offer is limited by the finest spa-
tial resolution that it can provide of the vortical structures
present within the rotor wake. Since the smallest features
in the blade loading distribution are on the scale of individ-
ual blade vortex interactions, it can be argued that a fully
convergent numerical representation of the wake will re-
quire sufficient resolution to capture the internal structure
of vortex cores and sheets. In his discussion of the current
challenges in rotorcraft aerodynamics, Caradonna (Ref. 6)
points out the significant computational cost and grid-size
problems associated with achieving such high resolutions
within CFD-type models. The realisation of CFD-based
free wake models that can achieve such resolutions is still
some distance in the future. It will be essential, however,
that the number of computational cells used by these tech-
niques be minimised and that the numerical approach not
place excessive demands upon grid resolution solely for
the purpose of limiting numerical diffusion of vorticity.

In contrast to the majority of CFD-based rotor analysis
codes, the VTM represents the flow directly in terms of the
vorticity distribution in the flow field surrounding the ro-
tor. The evolution of the flow field is then modelled via nu-
merical solution of the fluid dynamic equations that govern
vorticity transport in an inviscid, incompressible fluid. The
approach explicitly enforces Helmholz’s law for vorticity
conservation and is capable of preserving vortical struc-
tures in the flow for very long periods of time. Early ver-
sions of the VTM were prohibitively expensive, however,
when run at the resolutions required for accurate predic-
tion of rotor vibration or acoustics. This was because these
versions of the code used a fixed, uniform, cartesian grid
of cells to contain the vorticity surrounding the rotor. This
approach is not the most efficient in terms of cell count
since many cells never contain vorticity during the course
of a calculation. In fact, many cells are present solely to
track possible future evolution of the vorticity field or to
allow enforcement of far-field boundary conditions.

A fixed grid system wastes memory and places an un-
necessarily low limit on the finest practicable resolution
of the rotor flow. A new grid system has been developed

for the VTM that addresses this deficiency. The new grid
system uses adaptive cell generation and grid nesting to
achieve typically an order of magnitude reduction in cell
count compared to earlier versions of the code. A very
efficient use of memory can be achieved by taking advan-
tage of the vorticity-based framework of the VTM, which
requires that cells exist only in regions of space where the
vorticity is non-zero. The new grid system works by cre-
ating and destroying cells on a fixed background stencil so
that the grid follows regions of vorticity within the flow
in a semi-Lagrangian fashion. It should be noted though
that, in the present implementation, individual cells remain
fixed within the frame of reference attached to the rotor hub
(rather than moving physically with the flow in a truly La-
grangian sense) and that the transfer of vorticity from cell
to cell is modelled using an explicitly Eulerian approach.

The relatively unstructured nature of the resulting grid
lends itself particularly well to the use of fast-particle type
algorithms for calculating the velocity field associated with
the vorticity distribution in the flow. In the present imple-
mentation of the VTM, the velocity throughout the grid is
calculated using a technique based on the Cartesian form
of the Fast Multipole Method (FMM). This method is ex-
tremely efficient, and, in conjunction with the new grid
structure, permits a velocity calculation on a grid contain-
ing N computational cells to be performed in just O

�
N �

operations. This should be compared to the O
�
N2 � opera-

tions count of more traditional techniques based on direct
evaluation of the Biot-Savart integral.

Validation of the enhanced VTM code against the well
known experimental data of Harris (Ref. 7) is presented
within this paper, and some of the properties of the code,
when used to predict rotor loads to a resolution that ap-
proaches that required for calculations of rotor vibration or
acoustic signature, are illustrated.

Flow Model

Arguably the most efficient way to model the vorticity-
dominated aerodynamic environment of a helicopter rotor
is to model the rotor wake directly as a time-dependent
vorticity distribution in the region of space surrounding
the rotor. If v is the flow velocity, then the associated
vorticity distribution ω � ∇ � v evolves according to the
unsteady vorticity transport equation

∂
∂t

ω � v � ∇ω � ω � ∇v � S (1)

This equation can be derived from the incompressible
Navier-Stokes equation in the limit of zero viscosity. The
differential form of the Biot-Savart equation then relates
the velocity and vorticity fields throughout the flow:

∇2v � � ∇ � ω (2)

The Vorticity Transport Model (VTM) developed by
Brown (Refs. 1, 2) employs a direct computational so-
lution of Eq. 1 to simulate the evolution of the rotor
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flow field. After enclosing the rotor and its surroundings
within an appropriate grid of computational cells, the vor-
ticity distribution in the flow is advanced through time us-
ing a computational discretisation of Eq. 1, using Toro’s
Weighted Average Flux (WAF) algorithm (Ref. 8) to con-
struct the inter-cell vorticity fluxes.

The use of a vorticity-velocity formulation presents a
number of advantages over standard approaches written in
terms of primitive variables. The most important of these
is that Eq. 1 can be implemented in a form that explicitly
enforces Helmholz’s law for vorticity conservation. When
a suitable flux limiting function is used in conjunction with
the WAF algorithm, diffusion of vorticity can then be con-
trolled to the extent that vortical structures in the flow are
preserved - even during very long computations (Ref. 9).

Rotor Model

At present, the rotor system is physically described within
the VTM as a set of rigid blades attached to a hub that re-
mains fixed in its position and orientation within the com-
putational domain. The computational domain is thus as-
sumed to rotate and translate along with the rigid-body mo-
tions of the helicopter’s fuselage. The hub itself is mod-
elled as a collection of discrete hinges along with their as-
sociated springs and dampers. The deformations that the
rotor can undergo are described in terms of set of gener-
alised coordinates. The kinetic energy, potential energy
and energy dissipation associated with the deformation of
the rotor are then used to form the Lagrangian of the sys-
tem. Finally, the dynamics of the rotor system are obtained
at each computational timestep by numerical differentia-
tion of the Lagrangian to yield the appropriate equations
of motion. After converting to a first-order system writ-
ten in terms of the generalised coordinates and their rates
of change, the equations of motion are integrated numeri-
cally to obtain the blade motions. Although not yet imple-
mented, such an approach can, in principle, be extended to
modelling the dynamics of rotors having blades with elas-
tic degrees of freedom.

The aerodynamic behaviour of the rotor blades is
modelled by partitioning each blade into a number of
spanwise panels and applying lifting line aerodynamics to
each panel. The local flow velocity, vb, at a collocation
point located on each panel is calculated as the sum of
the velocity induced by the vorticity in the system, the
free-stream velocity and the structural motion of the blade.
Setting the component of the velocity normal to each
panel equal to zero yields a set of algebraic equations that
can be solved for the strength of the bound vorticity, ωb,
on each panel. Conditioning of the chordwise position
of the collocation points allows the full 360-degree
aerodynamic performance of the blade’s aerofoils to be
captured. To improve the accuracy of the calculation of
the unsteady aerodynamics of the blade, particularly at
very high reduced frequencies, the vorticity generated by
each panel is captured on a high-resolution vortex lattice
extending typically two chord-lengths behind each blade.

The geometry of this lattice is allowed to evolve freely
under the influence of the local flow velocity, and the
vorticity on the lattice is systematically transferred into
the computational grid where it then evolves according
to Eq. 1. This transfer is done by constructing the source
term, S, in Eq. 1 in terms of the shed and trailed vorticity
from the rotor blades as follows:

S � �
d
dt

ωb � vb∇ � ωb (3)

thus coupling the wake evolution into the aerodynamic
loading, and hence the dynamics, of the rotor system.

Grid Formulation

If the flow is given sufficient time to evolve, vorticity will
eventually be required to cross the boundaries of any com-
putational grid that has finite spatial extent. A special fea-
ture of rotor flows is that the vortical structures produced
in the rotor wake are so complex and time-dependent, even
far downstream from the rotor, that the influence on the
rotor of any vorticity lost through the grid boundaries can-
not rigorously be accounted for simply by applying alge-
braic or differential conditions at the grid boundaries. This
is because the long-range interactions that result from the
vorticity-velocity relationship (Eq. 2) strongly couple the
present state of the flow near the rotor to vorticity sourced
into the flow at very much earlier times. Stated in equiv-
alent terms, the evolution of the flow, and hence the blade
loading, is strongly dominated by its own history. Trunca-
tion of the wake without appropriate application of bound-
ary conditions will artificially alter the structure of the
wake, thereby contaminating its future evolution.

A new grid system that eliminates all physical grid
boundaries, and thus avoids the problems introduced by
truncation of the wake at grid boundaries, has been imple-
mented within the VTM. A process of cell generation and
destruction is used adaptively to encapsulate and track any
regions of flow containing vorticity as follows:

First, an underlying cartesian grid-stencil or framework
is generated, upon which cells can be created and de-
stroyed. The stencil is fixed in the frame of reference of the
rotor hub, and extends to infinity in all directions to encap-
sulate the entire space surrounding the rotor. The stencil
thus provides an infinite number of discrete locations that
can be occupied by cells at any given time. The grid cells
on the stencil are cubic, with edge-length ∆0.

When vorticity is sourced into the grid from the rotor
model, a cell is created at the appropriate point on the
stencil. To allow the vorticity to advect, the immediate
neighbours of the newly created cell must also be cre-
ated, as shown in Fig. 1. Assuming that the velocity field
is known at every cell interface, this grid structure is all
that is required to evolve the flow according to Eq. 1. At
successive timesteps, additional neighbour cells are gen-
erated around all vorticity-containing cells to allow the
new vorticity distribution to evolve. Simultaneously, any

27-3



cells that no longer contain vorticity, or that are not neigh-
bours of vorticity-containing cells, are destroyed. This pro-
cess of cell generation and destruction is repeated at every
timestep to allow the flow to evolve freely whilst minimis-
ing cell count. Since the grid stencil has no boundaries,
the grid is free to expand in space as the wake structure ex-
pands. Thus, the resulting grid structure effectively tracks
vortical regions of flow through time.

The drawback of the system as described is that the com-
puter’s memory limit is soon reached if the number of cells
grows too rapidly. At that point, the model is unable to
accommodate any further growth in the grid, forcing the
simulation to terminate. This problem is overcome by in-
troducing a number of nested grids with varying spatial
resolution.

New cell created as vorticity is

sourced into grid at t=t0

Neighbour cells created

Vorticity distribution evolves over timestep tD

Cells that are no longer neighbours to

vorticity-containing cells are destroyed, and

new neighbour cells are created. t=t + t0 D

Vorticity distribution evolves over timestep tD

Figure 1: Adaptive grid generation and destruction tracks
regions of vorticity.

At the finest level, the rotor is enclosed in a grid with
cells having edge-length ∆0, equal to that of the underly-
ing stencil. At some distance away from the rotor, the grid
is coarsened to a resolution half that of the previous grid.
This process can be repeated as many times as is required
(by creating the cells on grid level i to have side-length
∆i � ∆0 � 2i) to generate a computational domain that sys-
tematically decreases in resolution as the distance from the
rotor is increased. A schematic representation of a compu-
tational domain with such a nested grid structure is shown
in Fig. 2.

Because of the exponential growth in cell size on mov-
ing up through the hierarchy of grids, the use of nesting
slows the growth rate of the grid in terms of cell count. By
sizing and positioning the nested grids appropriately, the
time taken to perform a rotor simulation can be tailored
to avoid exceeding memory limits. Furthermore, this ap-
proach allows the available computational power to be fo-
cused efficiently into the region of flow closely surround-
ing the rotor, whilst still accounting for the influence and
evolution of the far wake. The resulting grid structure in-
trinsically encapsulates the entire wake-history of the rotor
while postponing indefinitely any need to prescribe bound-
ary conditions.

1

3

2

Decreasing

Resolution

Direction

of Flight

Rotor

Figure 2: The rotor is embedded within a nested grid struc-
ture that decreases in resolution with distance from the
hub.

A further benefit of using multiple nested grid levels re-
lates to the maximum stable rate at which the computation
can be advanced on each level of the hierarchy of grids.
For explicit methods, such as the WAF algorithm used to
advance Eq. 1 through time, the Courant-Friedrichs-Lewy
(CFL) condition sets the maximum allowable timestep
based on the local velocity and the local resolution of the
grid. Since the side-length of the cells doubles on mov-
ing from one nested grid level to the next, the flow on grid
level i can usually be evolved using a timestep very close
to 2i times the timestep used for the finest grid level. Com-
putational effort is thus focused where it is most required,
that is, on the flow in the highly resolved regions of the
computational domain closest to the rotor.

Successful implementation of grid nesting requires an
effective procedure for transferring vorticity from the com-
putational cells on one level of the hierarchy to the cells
on the next highest (or next lowest) level. This is done by
overlapping, by two cell-widths as measured on the coarser
grid level, the cells at the interface between adjacent lev-
els of the hierarchy and reconciling the vorticity contained
within the resulting overlap regions at appropriate points
during the course of the calculation. In this way it is pos-
sible to maintain conservation of vorticity and to preserve
(locally) the second-order and monotonic properties of the
WAF procedure at all cell interfaces.

Velocity Calculation

In the original versions of the VTM, evaluation of the
velocity field throughout the computational domain was
achieved by inverting Eq. 2 using Schumann and Sweet’s
(Ref. 10) Method of Cyclic Reduction after applying ap-
propriate boundary conditions at the edges of the compu-
tational domain. The velocity at each cell within the com-
putational domain is a function of the position and strength
of every other cell containing vorticity within the domain.
This results in a classical N-body interaction problem. For
a computational domain containing N cells, cyclic reduc-
tion reduces the cost of the calculation of the N-body prob-
lem to O

�
N logN � , compared with the O

�
N2 � cost of a
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direct Biot-Savart approach. It is, however, very difficult
to implement cyclic reduction together with appropriate
boundary conditions without contaminating the numerical
solution - especially during calculations involving many
rotor revolutions. Furthermore, the unstructured and dy-
namic nature of the new grid system renders implementa-
tion of cyclic reduction impractical, both in terms of the
application of boundary conditions and in terms of the
computational cost of re-structuring the method after ev-
ery timestep.

Given the structure of the new grid system, large in-
creases in computational efficiency can be achieved by re-
placing the Method of Cyclic Reduction with the Fast Mul-
tipole Method (FMM). The FMM is one of a number of
hierarchical O

�
N � algorithms which have matured greatly

since their first appearance in the mid-1980’s. The earliest
methods of this type, such as those of Appel (Ref. 11) and
Barnes and Hut (Ref. 12), used hierarchical decomposi-
tion of the computational domain to reduce the computa-
tional cost of the problem to O

�
N logN � . These ideas were

extended by Greengard and Rokhlin (Ref. 13) to further
reduce the cost to O

�
N � . Early forms of the FMM were

applied primarily to the study of gravitational and electro-
static fields. It is possible, however, to adapt the method
to analyse any particle-based system where the long-range
interactions can be expressed in terms of an appropriate
Green’s function.

Fast Multipole Velocity Calculation

The FMM, in its Cartesian form, has been implemented
within the latest version of the VTM to evaluate the veloc-
ity field throughout the computational domain. The CPU
time required by the new code (on a Pentium 4 2GHz pro-
cessor with 1Gb of memory) to evaluate the velocity at
all cell interfaces of a computational domain containing N
computational cells is shown in Fig. 3. The figure demon-
strates convergence of the code on the theoretical O

�
N �

cost for N
� 10 � 000.
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Figure 3: Computational cost of the FMM for a grid system
containing N computational cells.

The appropriate Green’s function to be used by the
FMM for inversion of Eq. 2 is the Biot-Savart kernel:

K
�
x � y � � �

1
4π

�
x � y ��
x � y

�
3 (4)

To acknowledge the fact that the computational cells con-
tain a uniform distribution of vorticity rather than a vor-
tex singularity, the Biot-Savart kernel is modified using a
smoothing parameter, δ, to produce a regularised kernel,
more commonly known as the Rosenhead-Moore kernel:

Kδ
�
x � y � � �

1
4π

�
x � y �� �

x � y
�
2 � δ2 � 3 � 2

(5)

The value of δ is chosen such that the maximum velocity
induced by the vorticity within a cell is located on the face
of the cell, as shown in Fig. 4.

-4 -3 -2 -1 0 1 2 3 4

x

Vortex Singularity Rosenhead-Moore Kernel

V(x)

D

Figure 4: Comparison between the velocity field generated
by a vortex singularity and that of a cell containing a uni-
form distribution of vorticity.

Theory

The Fast Multipole algorithm builds on the idea that the
velocity field induced by a number of distant, but closely
grouped, cells of vorticity can be approximated by a
single interaction with a multipole source representing
the vorticity contained within those cells. Fig. 5 shows a
cluster, c, containing Nc cells, each containing vorticity.
The vorticity-weighted centre of the cluster lies at yc and
the centre of each cell lies at y j. The point x is located
outside of c and is a distance R from yc.

The velocity induced at point x by the vorticity within
cluster c can be approximated by

v
�
x � �

Nc

∑
j � 1

Kδ
�
x � y j � � ω j (6)
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x
R

Cluster ‘c’

yc

yj

Figure 5: Evaluation of the velocity field at point x, due to
the vorticity contained with the cluster c.

Expanding the right hand side in a Taylor series about
the centre of the cluster and truncating the series after the
pth term yields

v
�
x � �

Nc

∑
j � 1

Kδ
�
x � yc �

�
yi

� yc � � � ω j

�
Nc

∑
j � 1

∑
k

1
k!

Dk
yKδ

�
x � yc � �

y j
� yc � k � ω j

�
p

∑
k � 0

ak
�
x � yc � � mk

�
c � (7)

where Dk
y � ∂ � ∂yk1

1 ∂yk2
2 ∂yk3

3 , k! � k1!k2!k3!, xk � xk1
1 xk2

2 xk3
3

for ki
�

0, and the subscripts 1, 2 and 3 refer to the Carte-
sian directions. The multipole tensors ak are functions of
the range of the interaction alone, whereas the moments
of vorticity, mk, describe the local distribution of vorticity
within the cluster c:

ak
�
x � yc � � 1

k!
Dk

yKδ
�
x � yc � (8)

mk
�
c � �

Nc

∑
j � 1

�
y j

� yc � kω j (9)

Differentiation of Eq. 7 allows the velocity field at point
x to be described in terms of p local derivatives:

Fk
�
x � �

p

∑
n � k

�
� 1 � n � 1 n!�

n � k � !
an

�
x � yc � � mn � k

�
c � (10)

where Fk
�
x � � Dk

xv
�
x � .

A final result is required to translate a description of the
local velocity field from one point to some other nearby
point. Eq. 11 translates the centre of the Taylor Series ex-
pansion of the velocity from its original position, xA to a
new location xB:

Fk
�
xB � �

p

∑
n � k

�
xB

� xA � n � k
�
n � k � !

Fn
�
xA � (11)

Tensor Calculation

The tensors, ak, defined in Eq. 8 can be evaluated effi-
ciently using recursion. The following result relies on the
fact that the gradient of the Rosenhead-Moore kernel is
the regularised Newtonian potential

φδ
�
x � y � � 1

4π
1� �

x � y
�
2 � δ2 � 1 � 2

(12)

If the scaled derivatives of the Newtonian potential,

bk
�
x � yc � � 1

k!
Dk

yφδ
�
x � yc � (13)

are defined such that b0 � φδ
�
x � y � and bk � 0 for ki � 0,

then successive values of bk are related by

�
k

�
R2bk

�
�
2

�
k

�
� 1 �

3

∑
i � 1

�
xi

� yi � bk � ei

�
� �

k
�

� 1 �
3

∑
i � 1

bk � 2ei � 0 (14)

where R2 � �
x � y

� 2 � δ2,
�
k

� � k1 � k2 � k3 and ei is the
ith Cartesian basis vector. This result is derived in full by
Lindsay and Krasny (Ref. 14). Once all bk are known, the
tensors ak can be reconstructed as

ak
�
x � yc � � �

3

∑
i � 1

�
ki � 1 � bk � eiei (15)

Implementation

Starting from the underlying grid structure, a level of par-
ent clusters is created by grouping cubes of eight cells to-
gether, as shown in Fig. 6. These clusters are then grouped
in the same way to form the next level of larger parent clus-
ters. This process is repeated until the entire grid is con-
tained within a single root cluster. In three dimensions this
process then yields an octree data structure containing the
cells and their parents at each level.

Figure 6: Octree data structure.

The first stage of the FMM involves an upward sweep
through the tree, calculating the moments of each cluster
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according to Eq. 9. This stage can be accelerated by ex-
pressing the moments of a cluster as a binomial sum of the
moments of its children:

mk
�
τ � � ∑̄

τ

k

∑
n � 0

�
k
n � �

yτ̄ � yτ � k mk � n
�
τ̄ � (16)

where τ and τ̄ refer to the parent and child clusters respect-
fully.

The second stage of the FMM involves a sweep back
down the tree. This sweep is responsible for generating
and refining the velocity field on each level of the tree. The
velocity field within any arbitrary cell i within the tree can
be considered as the sum of a far-field component and a
near-field component. The near-field contribution to the
velocity in cell i is obtained as the sum of the interactions
with its neighbouring cells, after partitioning these cells
into two separate sets as follows. The interaction set A for
cell i is defined as all of cell i’s nearest neighbours, includ-
ing cell i itself. Interaction set B is defined as the children
of the nearest neighbours of cell i’s parent, excluding the
cells contained within interaction set A. The structure of
the interaction sets is illustrated in Fig. 7. For clarity the
2-dimensional interaction sets for an arbitrary cell i have
been shown, but the diagram extends easily to three di-
mensions.

i

Figure 7: The 2D Interaction Sets for arbitrary cell i. Light
grey cells are members of Set A. Dark grey cells are mem-
bers of Set B.

The velocity induced at the centre of cell i by each
member of its interaction set B is evaluated directly using
Eq. 10. The economy of the FMM comes about because,
instead of directly evaluating the far-field contribution to
the velocity field at the centre of cell i resulting from all
cells outside of interaction set B, the velocity contribution
of these cells is inherited from the parent of cell i by
translating the velocity of the parent cluster to the child
according to Eq. 11. This process of evaluation and
inheritance is performed on all clusters on a given level
before descending to the next level of the tree. Once the
downward sweep through the tree is complete, the ve-
locity at any point within cell i can be evaluated as follows:

v
�
x � �

p

∑
k � 0

�
x � xp � k

k!
Fk

�
xp � (17)

where xp is the centre of cell i’s parent. The only remain-
ing task is then to add on the contributions from the cell’s
nearest neighbours, or, in other words, those contained in
its interaction set B, by direct application of the Biot-Savart
relationship

v
�
x � � ∑

j � A

Kδ
�
x � y j � � ω j (18)

Code Validation

A validation of the new code against the wind tunnel data
produced by Harris (Ref. 7) is presented in Fig. 8. Harris
measured the flapping behaviour of an isolated 4-bladed
rotor over a range of flight speeds. In all of the tests, the
rotor was trimmed to a preset thrust coefficient, the cyclic
control angles were held fixed, and the free response of the
rotor in flap was measured. A comparison of the experi-
mental data and calculated disc tilts produced using both
the new and old versions of the VTM code is shown in
the figure. The error bars represent Harris’ own estimate
of the accuracy of his measurements. All numerical re-
sults were produced using 20 blade aerodynamic colloca-
tion points in a cosine distribution along each blade, and by
resolving the blade radius across 25 computational cells at
the finest grid level. This level of resolution is relatively
coarse, but is completely adequate for predicting the per-
formance of an isolated rotor with simple geometry when
using the VTM. Four levels of grid expansion were used in
the new version of the VTM, with transitions between grid

New VTM Old VTM Harris
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Figure 8: Validation of VTM codes against Harris’ experi-
mental data: Lateral Disc Tilt (top) and Longitudinal Disc
Tilt (bottom).
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Figure 9: Visualisation of the rotor wake of a 4-bladed ro-
tor at µ � 0 � 250. (Vorticity contour set to visualise the tip
vortex structure.)

levels positioned at 2R, 6R and 10R from the rotor hub.
The VTM shows good agreement with Harris’ experi-

mental data for both the lateral and the longitudinal tilt of
the rotor. The predicted values of the lateral disc tilt, al-
though marginally lower than the experimental values, lie
within the experimental error bounds over the full range
of flight speeds. The new version of the VTM produces
somewhat better correlation than the old at low forward
speeds, and this is consistent with experience that calcula-
tions with the old code were more likely to be susceptible
to contamination by boundary conditions at low to transi-
tional advance ratios than at high. The VTM again shows
very good correlation with Harris’ data for the longitudinal
disc tilt. For much the same reasons as for the lateral disc
tilt, the new version of the VTM gives better results at low
speed compared to the older version of the code. The con-
sistent behaviour between the two versions of the code in
slightly over-predicting the longitudinal tilt at high forward
speed (µ � 0 � 20) is indicative of a deficiency in the present
blade aerodynamic model, most likely in its treatment of
the reverse-flow region on the retreating side of the rotor.

Code Behaviour

In this section, some examples are presented to illustrate
the behaviour of the enhanced VTM when used to predict
rotor flows to a resolution that approaches that required
for accurate calculation of rotor vibration or acoustic sig-
nature. Figure 9 shows a visualisation of the wake gener-
ated behind a representative four-bladed rotor operating at
CT � σ � 0 � 072 and travelling at an advance ratio µ � 0 � 250.
A surface on which the vorticity in the flow has constant
magnitude has been plotted - the vorticity contour has been
selected to suppress the detail of the inboard wake and to
expose the geometry of the root and tip vortices trailed
from the blades. In this calculation, the finest grid level
gave a resolution of 100 cells along the rotor radius, and 40
aerodynamic collocation points were used in a cosine dis-
tribution along each blade. In contrast, earlier versions of

Figure 10: Azimuthal variation of Blade Loading for 4-
bladed rotor, µ � 0 � 250.

the VTM were limited to a maximum resolution of around
50 cells per rotor radius on a desktop PC with 1 gigabyte of
memory. Three levels of grid expansion were used before
the calculation was terminated, with transitions between
grid levels positioned at 1 � 5R and 3R from the rotor hub.
These transitions are clearly visible in Fig. 9 as two rather
obvious step-changes in the resolution of the tip vortices
downstream of the rotor. To illustrate how the effects of
the early history of the wake can be retained within the
computation using the approach described in this paper, the
calculation was terminated while the vortices shed by the
rotor on start-up were still contained within the third grid
level. Further continuation of the calculation would have
seen further reduction of the resolution of the starting vor-
tices as they were convected into the increasingly coarser
levels of the computational grid further downstream of the
rotor. Nevertheless, their effect on the velocity distribution
at the rotor would still be captured correctly by the Fast
Multipole Method.

Figure 10 shows the azimuthal variation of blade load-
ing associated with the wake structure shown in Fig. 9.
Fine resolution of the vorticity in the wake translates into
a well-defined sequence of ridges in the blade loading that
result from interactions of the blade with the concentrated
vortices shed from both the roots and the tips of the rotor.
At this advance ratio the layout of the blade-vortex interac-
tions on the disc plane is relatively simple since the rate of
self-induced deformation of the wake structure is relatively
insignificant when compared to the rate of convection of
the vorticity into the flow downstream of the rotor. For
comparison, Fig. 11 shows the wake structure generated
by the same rotor when travelling at a somewhat reduced
advance ratio µ � 0 � 150. In this case the enhanced distor-
tion of the tip vortices close to the rotor manifests itself
as the somewhat more subtle distribution of BVI-induced
ridges in the blade loading shown in Fig. 12.

Finally, Fig. 13 shows the same wake structure as in
Fig. 11 but with the vorticity contour selected to expose
the overall morphology of the wake on the most finely re-
solved level of the grid. The evolution of the sheets of
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Figure 11: Visualisation of the rotor wake of a 4-bladed
rotor at µ � 0 � 150. (Vorticity contour set to visualise the
tip vortex structure.)

vorticity shed from the inboard parts of the blades, and
their interactions with the blades and the stronger vortic-
ity trailed from the roots and tips of the blades is captured
fairly convincingly by the model, but some artifacts of the
mesh are visible as a series of parallel striations running
across some of these structures. The effects of these spuri-
ous features of the calculation on the long-term evolution
of the wake have yet to be determined.

Conclusions

A new multi-resolution grid system and velocity calcu-
lation have been incorporated into an existing free wake
model based on a CFD-type solution of the Vorticity Trans-
port Equation. The new grid system brings about reduc-
tions in cell count of typically an order of magnitude com-
pared to the use of a structured, uniform Cartesian mesh
by using adaptive creation and destruction of cells to fol-
low the evolution of the vorticity in the flow. When used
in conjunction with a Fast Multipole velocity calculation,
the new grid system allows the velocity field throughout
a computational domain consisting of N cells to be calcu-
lated with O

�
N � computational cost. These features result

in an extremely efficient use of computer memory, and al-
low computational effort to be focused onto the regions of
the rotor flow that need to be most highly resolved. The
resulting code validates well against existing experimen-
tal data, and yields plausible high-resolution predictions of
unsteady blade loading. The hope is that, with some fur-
ther development, the techniques described in this paper
might provide a feasible route to the accurate prediction of
rotor vibration and acoustic signature.
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Figure 12: Azimuthal variation of Blade Loading for 4-
bladed rotor, µ � 0 � 150.

Figure 13: Visualisation of the rotor wake of a 4-bladed
rotor at µ � 0 � 150. (Vorticity contour set to visualise the
global wake morphology.)
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