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Abstract 

In the case of a multi-bladed rotor the lift 
deficiency function is replaced by a lift deficiency 
matrix (LDM). The elements of the LDM describe 
inter-blade aerodynamic influences. In the present 
paper the influence of various parameters on the 
elements of the LDM is investigated. These 
parameters include: The ratio between the frequency 
of perturbations and the rotor angular speed, the 
number of blades, various physical effects, thrust 
coefficient and details of the modeling. It is shown 
that inter-blade influences are strong and using an 
equivalent single blade representation instead of an 
accurate multi-blade modeling, may lead to errors. 

List of Symbols 

c(r) The chord of cross-section r. 
CT The thrust coefficient of the rotor. 
{D, (r,)}, {D,(r,)} -Vectors defmed by Eqs. (3) (4). 

D,(m,r,), D,(m,r,) - The perturbations in the 
normal flow acceleration and velocity, as seen 
by observers at the mid and three-quarters 
chordwise points, respectively, at the repre
sentative cross-section of blade m. 

[IN,] A unit matrix of order Nb. 

k Frequency ratio, defmed by Eq. (I). 
[L0 (r, k)] -The Lift Deficiency Matrix (LDM). 

L0 (r,, k, m, n) -The elements of the Lift Deficiency 
Matrix. 

L(m,r,) - The complex amplitude of the pertur
bation in the lift force per unit blade length, 
at the cross-section r, of blade m. 

m,n Indices ofthe blades' numbers. 
Nb The number of blades. 
R The radius of the rotor. 
r, The radial distance of the representative 

cross-section. 

• p The air mass density. 
x Nondimensional half chord at the repre-

sentative cross-section, see Eq. (6). 
cr The rotor solidity. 
Q Rotor angular speed. 
ro The frequency of the harmonic pertur

bations in the rotating system. 

1. Introduction 

The lift deficiency function is a very important 
and useful tool in the unsteady aerodynamic analysis 
of oscillating fixed and rotary wings. This function 
defmes the influence of unsteady effects on the 
magnitude and phase-lag of the lift force. 

The lift deficiency function was frrst defmed for 
fixed wings and later on adapted for the more compli
cated case of rotary wings. Loewy (Ref. 1) calculated 
the lift deficiency function of a hovering rotor using a 
two-dimensional approximate model that takes into 
account only shed vortices. His model included the 
effects of the: number of blades, ratio of oscillatory 
frequency to the angular rotor speed and the inflow 
ratio. Loewy presented plots of the lift deficiency 
function and showed that the ratio of oscillatory 
frequency to the angular rotor speed has a large 
influence. 

Miller (Ref. 2) calculated the oscillatory com
ponents of the loads that act on the rotor blades, for 
harmonics of the rotor frequency. He presented a 
three-dimensional lifting-line approximate model that 
took into account trailing and shed vortices. His 
results indicate that including the influence of trailing 
vortices may be important. 

Dinyavari and Friedmann (Refs. 3,4) used a two
dimensional staggered cascade theory in order to cal
culate the lift deficiency function of a rotor. It was 
found that the cascade wake model predicts somewhat 
larger unsteady aerodynamic effects at integer fre
quency ratios, than Loewy's theory. 

Milliken and DuffY (Ref. 5) calculated the lift 
deficiency functions for rotors using the pulse transfer 
technique, that uses discrete vortex filament modeling 
to represent the time history of the shed vorticity in 
the wake. The lift response was determined and fast 
Fourier Transform (FFT) was used to invert the pulse 
response and obtain the frequency response. 

Peters and He (Ref. 6) presented a theory of un
steady aerodynamics for a lifting rotor in hover and 
forward flight. The theory implicitly includes both 
dynamic-inflow theory and near wake approximation 
to the Theodorsen function. The authors calculated 
the lift deficiency function for different cases and 
compared it with the results of other theories. 

During the last few years a new unsteady aero
dynamic model of a hovering rotor, or a rotor in axial 
flight, was developed in the Technion (Refs. 7-10). 
This model, named TEMURA (TEchnion Model of 
Unsteady Rotor Aerodynamics), includes the in
fluences of trailing, shed and bound vortices, together 
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with geometric effects. This model has been very 
successful in matching various experimental results 
and explaining various phenomena (Refs. 10-13). 

It was pointed out in (Refs. 7-10) that in the 
general case of rotary wings, the lift deficiency 
function should be replaced by a Lift Deficiency 
Matrix (LDM). This is a square matrix of order Nb, 
where Nb is the number of blades. The elements of 
this matrix are functions of the rotor geometry, mode 
of operation and the frequency of the blades' 
oscillations. The elements of this matrix present the 
unsteady aerodynamic influence of each blade on 
itself or on the other blades of the same rotor. 

In the present paper the LDM of a hovering rotor 
will be investigated. The influence of the various 
effects, various parameters and details of the 
modeling, on the elements of the LDM will be studied 
and discussed. 

2. Theoretical Background 

The unsteady aerodynamic model is described in 
detail in Refs. 8-10 and 14. Here only a brief descrip
tion, that is necessary for the completeness of the 
paper, will be presented. 

The rotor includes Nb identical high aspect ratio 
blades that are uniformly spread over the disk. It is 
assumed that the lead-lag motions are small enough 
that variations in the angular spacing between various 
blades can be neglected. The rotor rotates with a con
stant angular speed Q. 

The model deals with perturbations in the blades' 
motion about a basic state of hovering. The behavior 
of all the blades in the basic state is identical and time 
independent, for an observer rotating with the rotor. It 
is assumed that the circulation is constant along the 
blade. Thus the wake behind each blade, in the basic 
state, is comprised of two trailing vortex filaments: a 
tip vortex and a root vortex. Since in reality the wake 
behind every blade rolls up into a concentrated root 
and tip vortices, this presentation of the wake is good 
in general. Any geometry of the root and tip vortices 
in the basic state can be taken into account, including 
contraction and changes in the axial velocity along 
the filaments. 

TEMURA (TEchnion Model of Unsteady Rotor 
Aerodynamics) deals with the unsteady aerodynamic 
loads that act on the blades as a result of small pertur
bations in their motion (about the basic state). As is 
common in most unsteady aerodynamic models, 
harmonic perturbations are considered, having a 
frequency ro in the rotating frame of reference. The 
unsteady aerodynamic phenomena are largely 
influenced by the frequency ratio k: 

k=ro/Q (1) 

The perturbations in the motions of the blades 
result in the following aerodynamic perturbations: 

a) Perturbations in the aerodynamic loads that act on 
the blades that present perturbations in the 
circulations of the bouud vortices. 

b) Perturbations in the intensity of the circulation of 
the trailing vortices that are superimposed on the 
circulation of the trailing vortices in the basic 
state. 

c) Shed vortices that form helical surfaces of vortices 
below the rotor plane. 
A representative cross-section for each blade is 

defmed. It is located at a radial distance r,. Usually 
the three-quarters cross-section is chosen as the repre
sentative one, namely r, = 0.75 R, where R is the 
rotor radius. 

Since a linear model is considered, all the pertur
bations have the same frequency ro. It is convenient to 
describe all the perturbation amplitudes as complex 
numbers. The complex amplitude of each perturbation 
represents magnitude and phase angle shift. 

L(m, r,) is the complex amplitude of the pertur
bation in the lift force per unit length, at the cross-

section r, of the mth blade. [(r,) is a vector of order 
Nb that describes the perturbations of the lift forces at 
the cross-sections r, of all the blades: 

(E<r,l) =[Eo,r,), .. ,E(m,r,l, .. ,E(Nb,r,JT (2) 

The perturbation in the motion of cross-section r, 
of blade m, is defmed by the following two variables: 
a) A perturbation in the normal component of the in

coming velocity as seen by an observer at the 
three-quarters chord point of cross-section r, of 
bladem, denoted D,(m,r,). 

b) A perturbation in the normal component of the 
acceleration of the incoming flow, as seen by an 
observer at the mid-point of cross-section r, of 
blade m, denoted D, (m,r,). 
The above two contributions include the influence 

of perturbations in the motion of the blade, as well as 
the influence of geometric effects (perturbations in 
the wake geometry). 

It is convenient to define two vectors, D, ( r, ) and 

D, (r,), that describe the perturbation in the in
coming flow as seen by observers at the cross
sections r, of all the blades: 

{D,(r,)} = [D,(I,r,), .. ,D,(m,r,), .. ,D,(Nb,r,)jT 

(3) 

{D,(r,l} = [D,(I,r.J, .. ,D,(m,r.J, .. ,D,(Nb,r,)r 

(4) 
The relations between the perturbations in the 

cross-sectional lift forces, and the perturbation in the 
motions of the blades relative to the fluid, is given by 
the following equation: 
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p is the air mass density. 

x is a nondimensional half chord of the cross-section 
r" defined as: 

(6) 

c(r) is the chord at cross-section r. 
[L0 (r,,k)] is the lift deficiency matrix (LDM). 

This is a square, complex nondimensional matrix of 
order Nb. Because of simple physical reasoning, that 
is also supported by mathematical derivations, there 
exists a certain circular pattern of the matrix 
[L0 (r,,k)]. Namely, all the elements (m,m+i), for a 

certain constant value of i [0 :5 i :5 (Nb -!)], are 

identical for any m in the range I :5 m :5 N b . If 

(m+i)>Nb, then (m+i) is replaced by 

(m +i-N b). Matrices that exhibit this special 

circular pattern are called circulants. The properties of 
these matrices are described in Ref. 15. The LDM is a 
function of the choice of the representative cross
section, rc, and frequency ratio, k. 

The contributions associated with {D, (r,)} are 

known otherwise as the noncirculatory or added-mass 
contributions. They are usually very small and thus of 
little interest. The contributions associated with 

{ D, (r,)} are the circulatory ones, and are the subject 

matter of this paper. They depend on the LDM. 
In what follows the elements of the matrix 

(L0 (r"k)] will be investigated. These elements are 

denoted L 0 (r" k, m, n), where I :5 m, n :5 N b. Since 
the matrix is a circulant, it is sufficient to consider 
only a single row. In what follows the frrst row will 
be considered. 

3. The Influence of the Number of Blades 

In this section the influence of the number of 
blades on the LDM is investigated. While changing 
the number of blades, the rotor solidity (cr) and the 
thrust coefficient (Cr) will be kept constant, having 
typical values of CT = 0.00510 and cr = 0.0821. 

Three kinds of results will be presented: 
a) A complete model that includes all the unsteady 

effects. 
b) A model that includes perturbations in the bound 

vortices of the other blades and perturbations in all 
the trailing vortices, but does not include the shed 
vortices in the far field. This model will be 
denoted (bound+trail.). 

c) A model that includes perturbations in the bound 
vortices of the other blades and shed vortices, but 

does not include perturbations in the trailing 
vortices. It will be denoted (bound + shed). 
It should be noted that all the three models include 

the near field (see Refs. 8-10 and 14), namely the 
bound vortices of the blade itself and the shed 
vortices near its trailing edge. 

The three kinds of results will help in studying the 
relative influence of perturbations in the trailing or 
shed vortices. It was found that the influence of per
turbations in the bound vortices of the other blades is 
very small and thus will not be studied separately. 

Unless indicated otherwise, r, = 0.75 R, and the 

wake geometry includes contraction and variations in 
the axial induced velocity along the wake as described 
in Ref. 10. 

The real and imaginary parts of the elements of 
the LDM will be shown as functions of the frequency 
ratio k. 

3.1 A single blade (Nb=l) 

The lift deficiency of a single blade is shown in 
Fig. 1. 

The real part is larger than the imaginary one, 
therefore it will practically defme the amplitude of the 
lift perturbation. The real part has maxima at approxi
mately k=n+0.5, where n is any integer number. At 
k=0.5 the maximum value is larger than 1.3. As k is 
increased the maxima values decrease as well as the 
sharpness of this maxima. Also as k increases the 
maxima occur at k values that are higher than (n+0.5) 
and the differences increase with k. It can be shown 
that near k values of (n+0.5) the vorticity structure at 
the wake layers below the blade is opposite in phase 
to the vorticity structure just behind the blade. Thus 
while the vortices behind the blade tend to reduce the 
magnitude of variations in the lift, namely give ampli
tude values lower than unit, the vortices in the wake 
layers below the rotor tend to increase the variations 
of these forces. It turns out that the resultant influence 
of the layers below the rotor is stronger than the in
fluence of the vortices just behind the blade, therefore 
the perturbations in the lift force are increased, 
namely the lift deficiency amplitudes are larger than 
unit. 

There are minima of the real part near integer 
values of k. As k increases the trends concerning the 
minima are similar to those concerning the maxima, 
that were indicated above. It can be shown that near 
integer values of k the vorticity structure at the wake 
layers below the blade is identical to that of the wake 
just behind the blade. Thus the trend of reducing the 
perturbations in the aerodynamic loads is increased 
and therefore minima are obtained. 

The imaginary part exhibits relatively sharp 
variations near the maxima of the real part, with 
slightly less sharp variations near its minima. The 
imaginary part oscillates at the same frequency as the 
real part, namely a period (when k is considered) of I. 
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Fig. !. The Lift Deficiency in the case of a single blade. 

At low values of k the imaginary part exhibits 
absolute values that exceed 0.5. The absolute values 
of the imaginary part decrease rapidly ask increases. 

For large values ofk the real part converges to 0.5 
while the imaginary part obtains small negative 
values, identical trend appears in the case of the 
classical lift deficiency function of Theodorsen. This 
indicates that at high frequency ratios, as expected 
from physical reasoning, the near wake starts to 
dominate the phenomenon. 

The pertnrbations in the circulation of the trailing 
vortices have the largest influence. When shed 
vortices in the far field are neglected (bound+trial.) 
the results are very similar to the complete model, 
with significant differences only near the maxima and 
minima of the real and imaginary parts (the differ-
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ences in the case of the minima of the real part are 
relatively small). 

If the influence of pertnrbations in the circulations 
of the trailing vortices is neglected and only the 
influence of shed vortices is considered, the results 
show large differences in comparison with the 
complete model. 

3.2 A two bladed rotor (N.=2) 

There are two elements in each row of the LDM, 
that are presented in Fig. 2. The influence of a blade 
on itself will be considered first, namely 
L0 (0.75 R, k,l,l). Then the influence of a blade on 

its neighbor will be studied, namely 
L0 (0.75 R, k,l,2) . 
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Fig. 2. The Lift Deficiency Matrix in the case of a two bladed rotor. 
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L0 (0.75 R,k,l,l) exhibits a drastic difference 
when compared with the same term of a single-bladed 
rotor, Fig. 1. There is a reduction in the magnitude of 
the real and imaginruy parts. The real part remains the 
larger one, but it is always smaller than unit. The ima
ginary part is always negative and larger than -0.25, 
except for very small positive values between k=0.6 
and 0.8. The real part exhibits minima near k=n+0.5 
and maxima near integer values of k, exactly opposite 
to the case of a single bladed rotor. While in the case 
of a single bladed rotor the exact location of the 
extremums is shifted to the right as k is increased, in 
the case of a two bladed rotor the shift is to the left. 
Also the imaginruy part of L0 (0.75, k,l,2) shows an 
opposite behavior to that of the imaginary part of the 
same term in the case of a single bladed blade, where 
maxima replace minima and vice versa. 

The reason for this drastic change in the influence 
of the blade on itself, is the presence of a second 
blade. It should be noted that L0 (r,, k,l,l) represents 
perturbations in the lift of the first blade due to pertur
bations in the normal velocity seen by this blade. Yet 
there is a large influence of the presence of the second 
blade, even if it is "static" and does not ,perform 
perturbations of its own". This behavior is explained 
below. Assume that only the first blade exhibits per
turbations about the basic state. This will result in 
variations in the circulation along the blade and in the 
vorticity distribution over the wake (trailing and shed 
vortices) behind it. These variations (especially in the 
wake) will lead to variations in the velocities that are 
induced along the second blade, and in return varia
tions in the lift force and circulation along the second 
blade. The last variations will result in variations in 
the wake behind the second blade. The wake of the 
second blade is closer to the f'rrst blade than its own 
wake, when both of them pass below it. Thus varia
tions in the vorticity distribution in the wake of the 
second blade have a stronger influence on the f'rrst 
blade, than similar variations in the wake of the f'rrst 
blade itself. This is the reason for the drastic change 
in L0 (0.75 R,k,l,l) as a result of adding another 
blade. 

The above discussion shows that the presence of a 
second blade changes the entire phenomenon. The 
idea of replacing a multi-bladed rotor by an equi
valent single-bladed rotor, when unsteady aero
dynamics is considered, may lead to errors in many 
cases. 

As in the case of a single bladed rotor, a model 
that does not include shed vortices (bound+trail.) 
exhibits a very similar behavior to the complete 
model, with large differences in the values of the real 
and imaginary parts at the maxima or minima. 

The trends shown by the model that does not in
clude trailing vortices (bound+shed) are different 
from those of the complete model (unlike the case of 
a single blade). In general the maxima in the real and 
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imaginary parts are replaced by mm!flla, and vice 
versa. In addition, the average value of the real part in 
this case (bound+shed) is larger than that of the real 
part of the complete model and smaller (more 
negative) when it comes to the imaginary part. 

Now the influence of perturbations in the normal 
velocity seen by the second blade, on the lift force of 
the f'rrst blade, will be investigated, namely the 
element L0 (0.75 R, k,l,2) . 

The real and imaginruy parts of the second 
element of the LDM exhibit oscillations about zero, 
as k varies. The nondimensional period of these 
oscillations equals approximately 2, as compared to I 
in the case of L0 (0.75 R, k,l,l). It can be shown that 
there is a difference of 2 in k between two consequent 
cases where the vorticity distribution in the returning 
wake is identical or opposes the vorticity distribution 
behind the blade itself. 

The amplitudes of the oscillations in the real and 
imaginary parts of L0 (0.75 R, k,l,2) are approxi
mately of the same order-of-magnitude. They 
decrease as k increases and exhibit a phase difference, 
when the variation with k is considered, of approxi
mately a quarter of a period, namely 0.5. The models 
(bound+trail.) and (bound+shed), exhibit a behavior 
that is almost identical to that of the complete model 
concerning the oscillatory variation with k, but differ 
in the amplitude of the oscillations. At low frequency 
ratios, k53, the model without trailing vortices shows 
much smaller amplitudes, while the model without 
shed vortices (bound+trail.) exhibits better agreement 
with the complete model. At higher values ofk the in
complete models agree nicely between themselves, 
but still show lower amplitudes than the complete 
model. 

3.3 A four bladed rotor (N.=4) 

In this case there are four different elements of the 
LDM that are presented in Fig. 3. 

Comparison between L0 (0.75 R, k,l,l) for Nb =2 
and Nb = I shows that the amplitude of the 
oscillations of the real and imaginruy parts decrease 
as Nb is increased. This trend continues for Nb = 4, 
where the real and imaginruy parts show only small 
oscillations about their mean values. The mean value 
of the real part, at a certain high value of k, increases 
as Nb increases (for k=7 it is less than 0.6 for Nb =2, 
and 0.67 for Nb = 4). The same trend appears in the 
imaginary part. 

The model that does not include shed vortices 
(bound+trail.) gives results that are very close to the 
complete model. The other model (bound+shed) 
exhibits larger differences. 

The influence of the second blade on the first one, 
L0 (0.75 R, k,l,2), exhibits an oscillatory behavior 
that is somewhat similar to that of the same element 
in the case of a two bladed rotor, but the period of 
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Fig. 3. The Lift Deficiency Matrix in the case of a four bladed rotor. 

oscillation with k increases from 2 in the case of Nb 
=2, to 4 in the case ofNb = 4. Again the amplitudes of 
the real and imaginary parts of the complete model 
are similar, but appear with a phase difference be
tween them (with respect to k) of approximately 1 
(quarter of a period). At low values of k (k:Q) the 
model that does not include shed vortices (bound 
+trail.) shows better agreement with the complete 
model, than the (bound+shed) model. At higher 
values of k the trends change and the model (bound 
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+shed) exhibits better agreement with the complete 
model than the model (bound+trail.). 

The influence of one blade on the other decreases 
as the angular spacing between them increases, this 
can be seen when Lu (0.75 R, k,l,3) and 

L0 (0.75 R, k,l,4) are examined. They oscillate about 
zero, but the period varies from 2 for 
Lu (0.75 R, k,l,3), to 1.5 for Lu (0.75 R,k,l,4). 
There is a phase shift of approximately a quarter of a 
period between the oscillations of the real and 
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Fig. 4. The influence of the thrust coefficient on the Lift Deficiency Matrix (Nb=4). 

imaginary parts. At low values of k the model (bound 
+trail.) exhibits a relatively good agreement with the 
complete model, while there are large differences in 
the case of (bound+shed). At higher values of k both 
models exhibit relatively large differences when 
compared with the complete model. 

4. The Influence of the Thrust Coefficient 

Changing the rotor thrust changes the basic in
duced velocity through the rotor and thus changes the 
wake geometry and in particular the distances be
tween the vortex elements in the wake and the blades. 
Increasing the thrust will increase the basic induced 
velocity and as a result increase the above mentioned 
distances and thus reduce the pertnrbations in the in
duced velocities. Therefore, as a result of increasing 
the thrust the unsteady effects will decrease. An 
opposite trend is expected when the thrust is 
decreased. 

In Fig. 4 the influence of thrust variations on the 
four bladed rotor are presented. In addition to the 
nominal case of CT = 0.00510, two other cases, 
where Cr is equal to 0.00318 and 0.00717, are shown. 

The influence of the thrust variations on 
L0 (0.75R,k,I,I) and L0 (0.75,k,I,2) are practically 
negligible and therefore are not presented. In the case 
of L0 (0.75R,k,l,3) there are variations in the magni
tude of maxima and minima of the real and imaginary 
parts that exceed 20%. As expected there is an in-
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crease in the amplitude of the LDM element when CT 
decreases, and a decrease when CT increases. 

In the case of L0 (0.75R, k,l,4) the influences of 
the thrust variations are larger. The amplitudes of the 
maxima and minima of the real and imaginary parts 
are doubled at low values of k as a result of 
decreasing CT. Moreover, there is also a shift in the 
location of the maxima and minima. 

5. The Influence of the Wake Geometry 

In the above examples the wake geometry was 
identical to the geometry that was described in Ref. 
I 0. In what follows this model is denoted wake model 
no. 3. In order to check the sensitivity of the results to 
the wake geometry, two other models were used: 
a) A cylindrical model where there is no contraction 

and the wake moves downward with the average 
induced velocity at the disc, that is equal to 

)cT12. 

To be denoted wake model uo. I in what follows. 
b) A wake geometry according to Landgrebe (Ref. 

I 6) to be denoted wake model no. 2. 
A comparison hetween the lift deficiency elements 

when using the three wake models, is presented in 
Fig. 5. 

In the case of L0 (0.75,k,I,I) the results of wake 
models I and 2 oscillate about the results of model 3. 
The amplitudes of the oscillations decrease as k in
creases. The cylindrical wake (wake I) exhibits larger 
oscillations than Landgrebe's model (wake 2). The 
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Fig. 5. The influence of the wake geometry on the Lift Deficiency Matrix (Nb=4). 

oscillations of wake model 2 are characterized by 
sharp extremums near integer values ofk. 

In the case of the influence of the second blade on 
the first one, L0 (0.75R,k,l,2), wake model 2 agrees 
nicely with wake model 3 at low frequency ratios 
(k<2.5), while wake model 2 exhibits larger differ
ences when compared with model 3. At higher fre
quency ratios the trend reverses, namely models I and 
3 agree nicely, while model 2 exhibits significant 
differences that exceed 30% for the real part at k=5.5. 
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For L0 (0.75R,k,l,3) there is in general a better 
agreement between wake models 2 and 3, than 
between wake model I and the other two, yet there 
are frequency ratios where models I and 3 exhibit 
better agreement. The differences exceed 50% at high 
k values. 

As in the case of the thrust coefficient influences, 
the influence of the fourth blade on the first one, 
L0 (0.75R,k,I,4), is the smallest one, but the most 
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sensitive to variations. There are relatively small 
differences between wake models 2 and 3 except for 
integer values of k where model 2 exhibits the pre
viously mentioned sharp extremums, while there are 
larger differences between these two and the cylin
drical wake model (wake 1). These differences exceed 
100% in amplitude (compared to wake model 3) and 
large shifts in the locations of extremums can be seen. 

6. The Influence of the Location of the 
Representative Cross-Section 

In all the above results the representative cross
section was chosen as 0.75R. In Fig. 6 the elements of 
the LDM of a four-bladed rotor using two other 
locations, r0 ~ 0.7R and r0 ~ 0.8R, are compared 

with the results for r0 ~ 0.75R 
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Fig. 6. The influence of the location of the representative cross-section on the Lift Deficiency Matrix (Nb~4). 
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In the case of L0 (0.75R,k,I,I) and 

L0 (0.75R, k,l,2) the influence of r, is relatively small. 

For L0 (0.75R,k,l,3) there are very small differ

ences between r, = 0.75R and r, = 0.7R, while at 
low k values there are differences in amplitude 
between r, = 0.75R and r, = 0.8R that exceed 35%. 

Similar to the previous results, L0 (0.75R,k,l,4) 
is the most sensitive to r c variations. There are large 
variations in amplitude (that exceed 100%) and also 
large variations in the location of the extremum 
points. 

7. Conclusions 

In the case of a multibladed rotor there are strong 
inter-blade aerodynamic interactions. For unsteady 
aerodynamic analysis these interactions are conve~
iently described by the Lift Deficiency MatriX 
(LDM). An attempt to replace this matrix by a lift 
deficiency function for an "equivalent" rotor havmg a 
single blade, may lead to significant errors and an 
incapability to simulate important phenomena. 

The lift deficiency matrix depends strongly on the 
number of blades and the frequency ratio, namely the 
ratio between the frequency of the perturbation in the 
rota tin a frame of reference and the rotor angular 
speed. 

0

The perturbations in the vorticity distribution 
of the trailing vortices and the shed vorttees behmd 
the blades, have a strong influence on the elements of 
the lift deficiency matrix. At low frequency ratios the 
influences of the perturbations in the trailing vortices 
have much stronger influences, therefore ignoring 
their influence may lead to large errors. 

The wake geometry influences the LDM elements. 
It is important to consider contraction of the wake and 
variations of the axial induced velocity along the 
wake. The thrust coefficient influences the wake 
geometry and thus influences the LDM. 

There is a small sensitivity of the LDM to the 
location of the representative cross-section. It is 
recommended to take the nclassical" value of 
r,=0.75R. 

For four bladed rotors the influence of the fourth 
blade on the first one is the weakest, yet it is the most 
sensitive to variations in the model and the para
meters. 
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