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Abstract 

 
With the number of helicopter flights going up, also the need increases to monitor their trajectories in a 3 D 
space. For instance, in case of a disaster, where helicopters can bring in first responders, medical aid and 
food, and evacuate the injured, a rapid deployable air traffic control is a desirable matter. As an alternative to 
radar, a network of wireless distributed Acoustic Multi Mission Sensors (AMMSs) can be used to detect, 
locate and track helicopters. 
 
Traditionally, arrays of sound pressure transducers have been used to obtain acoustic directional information, 
estimating the direction of arrival of a sound wave using relative phase differences, which requires spatial 
coherence. But apart from the fact that such an array obtains a difficult to handle size when trying to cover 
low frequencies, they need to exchange broad band signals in order to estimate the direction of the sound. It 
makes unfeasible to use arrays of sound pressure transducers to locate helicopters in long range and low 
frequency applications, as helicopter localization. 
 
An Acoustic Multi Mission Sensor (AMMS) consists of a sensor unit (based upon two orthogonally placed 
acoustic particle velocity sensors and a collocated sound pressure transducer) that are connected to a Digital 
Signal Processor (DSP) and covered under a wind and rain resistant open foam wind cap. The 30 cm 
diameter device weighs around 2 kg and consumes around 2 W electrical power. Since wireless networks 
cannot handle raw data due bandwidth constrains, some kind of measurement model, source model and/or 
data compression is needed, i.e. the most important features of the acoustic signature of the detected 
sources must somehow be sent through the network in order to locate and track multiple sources. 
 
Acoustic Multi Mission Sensors can provide a better and simpler measurement or source model than 
microphone arrays because the AMMS can measure the effective direction of the significant components of 
the sound at a single point. The distributed (pre)processing of the signals using the on-board DSP has quite 
some benefits.  
 
In this paper a centralized algorithm is presented and tested by using realistic simulations. The signals are  
generated based on real GPS measurements and real acoustic measurements of two helicopters flying, 
recorded by a network of AMMSs. The goal of the measurements is to characterize and create a model of the 
noise of the bearing estimation that can be applied to the simulations. A realistic scenario which assumes that 
the number of acoustic sources is unknown and time-varying is considered for this research. Each Acoustic 
Multi Mission Sensor sends the source(s) or measurement model(s) parameters to a central node or main 
station. The main station or central node runs a centralized algorithm that combines all measurement or 
source models from all the AMMSs in the network in order to detect, locate and track the acoustic sources in 
the neighbourhood of the network. Since real sources in motion cannot move randomly with a random speed, 
some previous knowledge about the motion of the source can be used for tracking. The performance of the 
proposed system is studied under both single source and multisource scenarios using simulated signals 
based on real measurements. The results show that the proposed system can locate and track more than 
one source simultaneously.   
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1. INTRODUCTION  

Acoustic source detection, localization and tracking 
in noisy environments are important and increasing 
in interest topics in signal processing and have many 
applications nowadays. 

Traditionally, arrays of sound pressure transducers, 
as the one shown in Fig.1, have been used to obtain 
acoustic directional information, estimating the 
direction of arrival of a sound wave using relative 
phase differences

2,3,4
. On the one hand, such an 

array requires spatial coherence between 
microphones for all the frequency range of interest. 
However, it is well known that microphone array 
approach requires to increase the distance between 
transducers to cover low frequencies, getting a 
difficult to handle size and at the same time reducing 
the spatial coherence between them

5
, mainly 

affecting high frequencies
7
. On the other hand, they 

need to exchange broad band signals in order to 
estimate the direction of the sound, which can be a 
challenging task if the distances between 
transducers increases to cover the low frequency 
range. All these features makes unfeasible to use 
arrays of sound pressure transducers to locate 
sound sources for long range and low frequency 
applications, as needed to perform helicopter 
localization and tracking. Moreover, different kind of 
flying vehicles have different spectral signatures and 
potentially disjoint frequency ranges (helicopters, 
planes, jets, UAVs, multicopters,...), it is difficult to 
get a microphone array geometry that works 
reasonably well for all the potential targets with an 
easy to handle size and a reasonable number of 
transducers. If the microphone array has a high 
density of transducers it becomes acoustically 
significant biasing the characterization of the sound 
field and also the estimation of the Direction Of 
Arrival (DOA). 

 

Figure 1. Microphone array example 

In contrast, an Acoustic Vector Sensor (AVS) 
employs a sound pressure microphone and three 
orthogonally collocated particle velocity sensors, 
being capable of providing 2-D (azimuth and 
elevation) DOA information. The AVS behaviour, 
whose directivity diagram is shown in Fig. 2, is 
independent of frequency content of the source 
signal, which enhances its usage in wideband 
acoustic signal processing applications, including 
acoustic source detection

10
, localization

9
 and 

tracking
12,13,15

, battlefield
8
, room acoustics

11
 and 

underwater communications
14

. The frequency-
independent behaviour of the AVS makes it suitable 
for helicopter localization under long range 
conditions, because the attenuation of the sound in 
the atmosphere is way lower for low frequencies, for 
which microphone arrays tend to fail when trying to 
obtain directional information of the sound. 

Figure 2. Directivity diagram of                                                   
an acoustic particle velocity sensor 

In aviation, acoustic measurements are expensive 
because it is very difficult to create “laboratory 
conditions” for flying aircrafts. Therefore, simulations 
and real measurements under un-controlled 
conditions must be used to develop and test the 
system. 

This paper describes the status of the development 
of a wireless distributed network of AVSs that is able 
to measure and track the position of more than one 
aircraft simultaneously. The aircraft can be a 
propeller driven aircraft or a rotary wing aircraft 
including helicopters, planes and fixed wing UAVs. 
The rest of the article is organized as follows: The 
Acoustic MultiMision Sensor (AMMS), which is the 
key part of the proposed system, is introduced in the 
next section together with a brief explanation of the 
algorithms that are used in every sensor of the 
network. The central node or main station, which 
uses a random finite set framework and runs a 
centralized localization algorithm per source, is 
described in section 3. The simulations and the 
results are presented and discussed in section 4. 



41
st
 European Rotorcraft Forum 2015 

The conclusions of this research and suggestions for 
future work are presented in section 5. 

2. ACOUSTIC MULTIMISION SENSOR (AMMS) 

The Acoustic MultiMision Sensor is the basis of the 
proposed system. An AMMS consists of a sensor 
unit (based upon two orthogonally placed acoustic 
particle velocity sensors and a collocated sound 
pressure transducer) that are connected to a Digital 
Signal Processor (DSP), that is capable of 
processing the raw data for detecting, classifying and 
separating various sound sources. The AMMS 
readings are stored into a SD card with a maximum 
of 36 hours of continuous data, which is useful to 
process the data during the development stage. 

The sensor and the electronics are covered by a 
wind and rain resistant open foam wind cap. The 30 
cm diameter device weighs around 2 kg, consumes 
around 2 W electrical power and can be controlled 
remotely. The AMMS is powered by a battery and 
can be operational over a week approximately. 

An AMMS is shown in Fig. 3. The AMMS is placed 
on a tripod which is oriented. As can be seen, an 
antenna is also connected to the battery box, which 
is used to send the source or measurement model(s) 
to the main station and makes it possible to 
communicate with the AMMS wirelessly to a 
computer to e.g. switch it on/off or to be able to 
monitor its status. Note that due bandwidth 
constrains it is not possible to download the acoustic 
recordings wirelessly. 
 

 

Figure 3. An Acoustic Multi Mission Sensor (AMMS)                             
with an antenna, a tripod and a battery 

Since the goal of this research is to present and test 
the centralized network algorithm, no effort is done in 
this paper to explain in detail or test the algorithms at 
single sensor level. Only a brief explanation and 
some results are presented in the next subsection.  

2.1. AMMS measurement model 

The measurement model used here for the AMMS is 
the one presented by Hawkes et al.

9
. A single source 

located at position xs ϵℝ3 that radiates bandlimited 
spherical waves into an isotropic field is assumed. 

We also assume that a network of Ns  AMMSs is 

deployed on the ground, being pi , i=1,…, Ns, the 

position of the sensors. Assuming far field for the 
whole frequency range of interest (plane wave front), 
we can relate the acoustic particle velocity and the 
acoustic pressure of the direct sound at any point of 

the space, r, by using the Euler’s formula. 
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Thus, the DOA measurement model for every    
single source can be modelled as a unit vector, u, 
pointing from the sensor to the source position by 
normalizing the particle velocity vector multiplying it 
by )(- c0 . 

2.2. Detecting and modelling helicopter signals 

With the aim of detecting and tracking the acoustic 
sources at single sensor level, a sinusoidal model is 
used to characterize the acoustic signature of the 
targets. The acoustic signature of the helicopter is 
assumed to be composed by tones being usually 
harmonic or quasi-harmonic (see Fig. 4). Thus, a 
model for the acoustic signature of the helicopter 
could be written as shown in Eq. 3, 
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where )(ti , )(ti and )(ti  are the arbitrary 

amplitudes, frequencies and phases of the i-th 
sinusoidal component respectively

16
. By using this 

model the source parameters are estimated for 
every tonal component whose level is above some 
threshold. After that the peak to peak matching 
algorithm is used to track the sinusoidal 
components, as explained in 

16
.   



41
st
 European Rotorcraft Forum 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Spectrogram of the signals for two AMMS measuring a helicopter and results of the peak to 
peak matching algorithm  (circles correspond to tracked tones and the and colors to tracked sources) 

Figure 5. Time frequency Angle Spectrogram of the signals for two AMMS measuring a helicopter 
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In order to improve the tracking capabilities of the 
algorithm the DOA is used as an extra feature to 
match and also to combine tones into a source 
model. This way the source model(s) are detected, 
generated and tracked at single sensor level.  

Fig. 4 and Fig. 5 show as an example a 30 seconds 
spectrogram and the corresponding time-frequency-
angle spectrogram (respectively) for the signals 
recorded by two of the sensors in the network. The 
results of the before mentioned algorithm are also 
plotted. The horizontal distance between the 
helicopter and the first AMMS goes from 900m to  
430 m approximately and the helicopter is flying 
towards the AMMS, while for the second AMMS the 
horizontal distance goes from 1.4 Km to 1.7 Km 
approximately. It is interesting to see that the second 
AMMS is detecting two sources, i.e. the helicopter 
and an unknown source in motion that looks like a 
Cessna-type plane (because of the frequency 
content and the Doppler shift), as can be derived by 
observing Fig. 4, where different colours of the 
circles mean different sources. In this case, the DOA 
of the tones is the key to separate the sources and 
to track the tones and the sources. 

Note that due the frequency content of this kind of 
sources at the sensor positions and the long range 
(the atmospheric channel filters out the medium and 
high frequencies), it is not feasible to use a 
conventional microphone array for this application.     

3. WIRELESS NETWORK OF AMMSS 

The proposed wireless networked system is 
presented in Fig. 6. It is composed by one command 

post or central node and Ns sensors (or sensor 

posts). As mentioned above, in this work every 
AMMS is assumed a black box that detects, 
generates and tracks source model(s), sending the 
source model(s) parameters periodically to the 
central node or main station, together with the 
identifier of the source, its position and a time stamp. 
The main station collects the source model(s) 
parameters received from all the sensors within the 
network and combines them in order to locate and 
track the potential targets.  

3.1. Single Source Scenario 

As commented by Cabo et al.
15

, since the estimation 
of the azimuth using and ground based AVS placed 
is independent of the reflective properties of the 
ground

8,9
, a simplified model can be used for the 

single source localization scenario in the 2D space. It 
can be thought as a set of 2D unit vectors pointing 
from every sensor position to the projection of the 
source position onto the horizontal plane, which we 
call xs(t)=[x(t) y(t)]T. Note that for a static source or 
a source that moves relatively slowly in comparison 
with the observation interval of the network        

xs(t)=xs=[x y]
T
 and in absence of noise (e(t)=0), the 

network measurement model is fully described by 
the next system of equations

9
, 

(4)                         sii xup  il  

where li is the norm of the projection of the vector 

from pi to the actual 3D position of the source onto 

the horizontal  plane. However, for most of the flying 
vehicles as helicopters or planes in a real 
application, for which the goal should be to increase 
the distance between sensors or reduce the density 
of sensors as much as possible for a given area, the 
motion of the source during the observation interval 
of the network should not be neglected

15
. 

Let us to define the maximum observation interval of 
a given network, Oi,max, as the difference between the 
maximum and the minimum delay of the sound wave 
going from the source positon to all the sensor 
positions, i.e. the maximum distance between 
sensors in the network, dmax, divided by the speed of 
sound. 

(5)                         
c
max

max,

d
Oi   

Looking at Eq. 5, an assuming a network whose 
maximum observation interval is 3 seconds 
(dmax=3c) we can say that the observation interval is 
never short enough relative to the inverse of the 
speed of most of the flying targets and realistic 
networks of AVSs. For instance, if the source is 
moving at 15 m/s, the inverse of the source’s speed 
is 0.067 s/m, that is 45 times less than Oi,max in this 
case. 

3.1.1. Modelling the motion off the source 

Since the motion of the source within the observation 
interval of the network cannot be neglected for most 
of the potential flying targets, a possible solution to 
the problem explained above is to model the motion 
of the source. 
 
Several motion models have been proposed in the 
literature

17
. One of the most used models is the 

Constant Velocity (CV) model, which can be written 
as shown in Eq. 6, 
 

(6)                         
dt

ns ,
ns ,1ns ,

x
xx

d
T  

where xs,n= xs(n∙ΔT) and ΔT  is the time between two 
consecutive snapshots. Such a CV model has been 
used to model the dynamics of flying vehicles even 
though more complicated models could be used for 
the same purpose

17
. 
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3.1.2. Single source localization algorithm 

Now we consider the problem of how to combine the 
decentralized estimates of the target’s bearings, 
given by the AMMSs, to obtain an estimation of the 
projection of its 3D position in the space onto the 
horizontal plane, in this case, taking into account that 
the source can move during the observation interval 
of the network.  

Let us assume that every sensor periodically 
transmits its local estimate of the azimuth of the 
target to the central node of the network and that the 
central node knows an estimate of the position of all 
the sensors. Then, since in practice both the 
estimation of the position of the sensors and the 
estimation of the DOA performed by the sensors will 
contain errors, the estimation of the source’s motion 
parameters (position and speed) should be done in 
some least squares sense. Thus, the problem here 
is to obtain estimates for the position and the speed 
vector that define a set of points in a straight line that 
best fit the estimates of the DOA given by the 
sensors, taking into account the delays caused by 
the propagation of the sound from the source to all 

the sensors, τi i=1,…,Ns. With the aim of taking into 

account several snapshots, let us define τi,m, 

m=1,…,NT, where NT is the number of snapshots are 

considered at time step n.  

Then, by including the delays, τi,m, in Eq. 6, the CV 
model can be rewritten as follows, 
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where k=[NT-m], m=1,…,NT,  being the delays given 
by Eq. 7. 
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The goal now is to estimate the position and the 
speed vector of the source at time step n by using 
the bearing estimates received from the sensors at 
time steps n-k, m=1,…,NT. With this aim, we propose 
the non-linear least squares (NL-WLS) optimization 
problem given by Eq. 8, 


 


T SN

m

ki

N

i

T

1

,

2

1

)ˆ)(ˆ(ˆ im,s,k-ni,iim,s,k-ni,in
min  arg xupxupθ
θ

 

  (8) 

                                   

















dt

ns,

ns,

n dx
x

θ
 

where the hat over a symbol indicates that it is an 
estimate of the actual quantity.  

 

 

Figure 6. Wireless distributed network of Acoustic MultiMision Sensors 
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3.2. Multiple sources scenario 

The capability of the system for locating multiple 
targets depends on the ability of the AMMS for 
separating and tracking multiple sources

9
. Since the 

AMMS is only looking for tonal or harmonic 
components, most of the interfering broad-banded or 
impulsive sources will not be detected. Therefore, 
broad banded or impulsive acoustic sources can be 
considered as an increase of the background noise 
that temporary masks some of the tonal components 
of the target of interest, as can be seen in Fig. 4 and 
Fig. 5. 

On the one hand, a single AMMS will not consider 
detected tonal components with a wrong azimuth 
(relative to the tracked sources) to estimate the DOA 
of a tracked source, but it will create a new source. 
The AMMS will not track a source if its acoustic 
signature is not coming from a consistent direction 
within a time interval of several snapshots.  This 
approach notably increases the robustness of the 
system by minimizing the number of false detections, 
and reduces the variance of the DOA estimates. As 
shown in Fig. 4, the AMMS is able to separate 
multiple sources even when one of the components 
of the helicopter noise is completely masked by a 
tonal component of the Cessna-type plane. 
Furthermore it finds the component again after some 
seconds and the tone is properly associated with the 
helicopter acoustic model. 
 
On the other hand, it is well known that an AVSs can 
separate more than one stationary source at a single 
frequency

9
. Furthermore, since the single sensor 

algorithm is looking for flying vehicles in motion and 
the acoustic signatures of that sources are 
completely non stationary, mainly due the Doppler 
shift and the time-varying atmospheric conditions, it 
is almost impossible in practice to have overlap 
between all the components of two sources in 
motion for more than a few seconds (see Fig. 4). 
Non stationarity can be of help for separating more 
sources per frequency if  several snapshots are 
taken into account at single sensor level, by using a 
Blind Source Separation technique

17
. 

 
Therefore, assuming that the number of tonal 
sources in motion is bounded to a realistic number 
and regarding the discussion above, the multisource 
scenario can be solved by combining properly the 
bearing estimates given by the sensors

9
, and every 

source can be located and tracked by applying the 
NL-WLS algorithm presented in the previous 
subsection.    
     
 
 

4. MEASUREMENTS  

A network of 6 AMMS has been deployed close to an 
airbase. Fig. 7 shows the configuration of the 
network and its maximum observation interval, which 
is 3.9 Km. The temperature was around 8 degrees 
during the measurement campaign so the speed of 
sound was c=336.1 m/s 1. Then the maximum 
observation interval for this specific network was 
11.2 seconds. 

Two helicopters were flying during a day and two 
GPS logger were used to estimate their position and 
their speed. One of them is shown in Fig. 8. 
 

 
Figure 8. One of the helicopters used                                 
during the measurement campaign 

 
The sensors recorded all the raw data into their SD 
card. All the data was collected to post-process it 
and to estimate the statistics of the error of the 
azimuth estimates given by the sensors and to know 
how those statistics were affected by the distance, 
i.e. the estimation of the azimuth has been 
compared with the ground truth in order to model the 
noise and apply such a model to the simulations. 
Since one of the helicopters was flying in circles it 
has been possible to get a good estimation of the 
statistics of the noise for different distances, which 
allow us to make quite realistic simulations based on 
measurements.   

  

5. SIMULATIONS AND RESULTS 

As mentioned before, the AMMS is assumed a black 
box that detects and track the harmonic source(s) 
and sends an estimation of the azimuth, the identifier 
of the tracked source and a time stamp of the 
detected source to the central node of the network. 
The main goal of the simulations performed during 
this investigation is to validate the proposed method 
and to compare it with other existent algorithms.  
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5.1. Ideal scenario – absence of noise 

The goal of this simulation is to show the effect of 
the differential delays over all the proposed 
algorithms that assume that the source state 
remains invariant over several snapshots, neglecting 
the observation interval of the network. The 
proposed NL-WLS algorithm, the WLS and the 
RWLS algorithms

9
 are compared using the ground 

truth, calculated during the post-processing stage to 
characterize the noise, as commented in the 
previous subsection. To fairly compare the 
algorithms, for the ideal scenario we only consider 
one snapshot, i.e. the same amount of information 
as the other two algorithms.  

Fig. 9 and Fig. 10 show two examples of the 
localizing and tracking performance of the algorithms 
for the network shown in Fig. 7 and the same 
network but using 5 AMMSs respectively (AMMS 2 is 
not used). We have observed that the estimation of 
the position given by the WLS and the RWLS 
algorithms is extremely biased when the helicopter 
changes its state fast enough relative to the 
observation interval of the network even in absence 
of noise, as can be seen in Fig. 11 more in detail, 
meaning that the estimators proposed by Hawkes 
and Nehorai

9
 are not suitable to locate flying sources 

in motion. Looking at the tracking capabilities of the 
proposed algorithm (NL-WLS) it is pretty clear that 
the problem is that WLS and RWLS are trying to 
solve a linear approximation of the underlying non-
linear problem, which is not a good approximation for 
most of potential targets in aeroacoustics. However, 
it can be  seen that the proposed algorithm 
approximates the problem much better by modelling 
the motion of the source within the observation 
interval of the network. 

 

 
In order to get an estimation of the Root Mean 
Squared Error (RMSE) relative to the range, a 
reference point should be defined to compute the 
range. Since the error depends on the observation 
interval of the network, and it depends on the 
maximum and the minimum distance to the sensors, 
which are time-varying, the reference point used 
here is also time-varying. We decided to use as a 
reference midpoint of the line segment going from 
the closest sensor to the farthest one, that we call 
Cref. Thus, we can express the localization error in 
terms of the range to a reference point.  

Fig. 12 shows the evolution of the RMSE with the 
time for two circles of the helicopter path flying 
around the airbase. The distance to all the sensors is 
bounded between 200 meters and 6 Km in this case. 
On the one hand, it is shown that the localization 
error given by the WLS and the RWLS algorithms in 
absence of noise is too high. On the other hand, the 
localization performance of the proposed algorithm 
depends on the goodness of the approximation 
given by the CV model. As shown in Fig. 11, when 
the constant velocity vector is not close to be 
constant during the observation interval of the 
network the estimation of the position of the source 
is a bit biased, but the localization is still good.  

The cumulative distribution function of the 
localization error given by the algorithms for this 
specific case is presented in Fig. 13. The NL-WLS 
algorithm clearly outperforms the algorithms 
proposed by Hawkes and Nehorai (2003)

9
 even 

using 1 snapshot. It achieves an accuracy that is 
less than 2% of the range 90% of the time and less 
than 3% around 95% of the time, while the error 
given by the WLS algorithm and the RWLS algorithm 
is 6 and 5 times higher approximately.        

Figure 7. Wireless Network geometry for the measurements and some simulations 
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Figure 9. Tracking example for a network of 6 AMMSs in absence of noise                                                          
(WLS - green circles; RWLS - blue squares; NL-WLS magenta diamonds; GPS – blue crosses).  

Figure 10. Tracking example for a network of 5 AMMSs in absence of noise  for a different circle within the 
fligth path  (WLS - green circles; RWLS - blue squares; NL-WLS magenta diamonds; GPS – blue crosses).  

Figure 12. Evolution of the RMSE with the time for the first helicopter flying in circles around the airbase 
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Figure 11. Tracking example for a network of 6 AMMSs in absence of noise                                                          
(WLS - green circles; RWLS - blue squares; NL-WLS magenta diamonds).  

Figure 13.Cumulative distribution function of the RMSE Figure 11. Evolution of the RMSE with the time    
for the first helicopter flying in circles around the airbase in absence of noise 
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5.2. Including noise 

As mentioned above, with the aim of making realistic 
simulations a statistical model of the error for the 
estimation of the azimuth relative to the range using 
an AMMS has been obtained using real 
measurements of two helicopters flying. Such a 
model has been applied to the simulations. This 
approach has quite some benefits, since it allows us 
to control the amount of noise we are using by 
increasing the variance of the error distribution.  

Fig. 14 shows an example of the localization 
performance of the algorithms using the model 
obtained for the noise. Note that since the 
distribution of the noise for the estimated DOAs 
applied to the signals depends on the distance to 
every sensor, the noise is completely non-stationary, 
because the source is in motion and the distances to 
the sensors are time-varying. For this experiment 
NT=10 snapshots are used to estimate the position 
of the target using the NL-WLS algorithm. The 
sensors send the source model parameters to the 
main station every 1 second. As can be seen, the 
NL-WLS algorithm outperforms WLS and RWLS 
algorithms even in presence of realistic noise. The 
key of its good performance is the fact that it takes 
the motion of the source over several snapshots, 
reducing the influence of the noise in the localization 
accuracy. 

The cumulative distribution function (cdf) of the 
RMSE estimated over 50 MonteCarlo (MC) runs 
using 6.5 minutes of the flight path (helicopter 
making circles around the airbase) is shown in Fig. 
15. As expected, the NL-WLS algorithm has better 
performance when realistic noise is applied to the 
simulation. The results are in good agreement with 
those presented by Cabo et al.

15
 for real 

measurements using 2 RC aircrafts. Therefore, the 
algorithm is expected to work well also with real 
measurements. 

5.3. Two sources scenario 

To simulate the multisource scenario, the noise 
added to the signals has been notably reduced, in 
order to study the performance of the clustering 
algorithm that runs in the central node. During the 
measurement campaign only for a few minutes both 
helicopters were flying at the same time. 
 
Fig. 16 shows the localization and separation 
performance of the system for that time interval. As 
can be see, the localization error increases in 
presence of low noise level in comparison with the 
single source scenario.  It is caused by the fact that 
the clustering algorithm makes some mistakes when 
associating the received DOAs with the tracked 
sources. These association errors reduce the 
performance of the system, as expected, but it is 

unlikely for this specific case to make a mistake for 
more than one DOA at the same time step. 
Therefore, as can be seen in Fig. 16, the localization 
capabilities are still reasonably good. 

In practice, the frequency content of both helicopters 
is not going to be exactly the same at the sensor 
positions, because of the Doppler effect, which 
depends on the state of every helicopter relative to 
all sensor positions, and the time-varying 
propagation condition. Hence, we believe that the 
single sensor algorithm is going to be able to 
separate the tonal components even though 
sometimes overlap between some components of 
the sources will exists. Fig. 17 shows the RMSE 
calculated for both helicopters. It is shown that in 
presence of low level noise the localization error of 
the multisource algorithm is still good, as 
commented above. 
     

6. CONCLUSIONS AND FUTURE WORK 

A wireless network of Acoustic MultiMision Sensors 
have been presented to solve the problem of locating 
and tracking multiple helicopters at the same time. 
The required bandwidth is low enough to make the 
system feasible for large networks with large number 
of sensors, because the potential target are detected 
and separated at single sensor level, i.e. in a 
distributed way. Since the system is focus on 
helicopters at long range, only the low frequency 
range is processed, allowing us to downsample the 
raw data considerably, reducing the processing time. 
Note that the proposed system is only feasible using 
AVSs, because conventional microphone arrays 
cannot get directional information at the frequency 
range of interest (10 – 150 Hz). Note that the low 
frequencies propagate farther away because 
medium-high frequencies are filtered out by the 
atmospheric propagation channel.    

As a part of such a system, a centralized localization 
algorithm, that we call NL-WLS has been proposed 
and tested using simulated data based on real 
measurements of two helicopters flying. The 
proposed algorithm clearly outperforms other 
algorithms proposed in the literature for distributed 
networks of AVSs, even in presence of a 
considerable amount of non-stationary noise. Thus, 
further related work should be oriented to continue 
testing, developing and improving the system for the 
multisource scenario. It would be also interesting to 
try different dynamic models for manoeuvring target 
tracking. Source separation techniques for non-
stationary sources under non-stationary conditions 
should be further investigated, in order to increase 
the number of sources that can be separated. 
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Figure 14. Tracking example for a network of 6 AMMSs in presence of noise                                                             
generated by a model obtained using real measurements of two helicopters flying                                                                                     

(WLS - green circles; RWLS - blue squares; NL-WLS magenta diamonds; GPS – blue crosses).  

Figure 15.Cumulative distribution function of the RMSE Figure 11. Evolution of the RMSE with the time    
for the first helicopter flying in circles around the airbase in presence of realistic non-stationary noise 

  

Figure 15.Separation of two simulated helicopters using the proposed system, real GPS data and a low 
amount of non-stationary noise (NL-WLS H1 magenta diamonds; GPS H1 – blue crosses; NL-WLS H2 

cian squaress; GPS H2 – black cicles) 
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