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ABSTRACT 
 

The basis for Condition Based Maintenance Plus 

(CBM+) is to allow timely maintenance of complex 

machinery using technologies for diagnosis and 

prognosis of faults based on real-time machinery 

conditions.  CBM+ increases mission availability and 

opportunistic maintenance.  It decreases maintenance 

actions and provides a better logistic footprint. We 

describe a CBM+ system for real-time condition-

based analysis for helicopters.  The system described 

here provides diagnostic and prognostic feedback 

indicative of helicopter‟s health status and provides 

indication of the remaining useful life of the 

components it is monitoring.   

  

1. INTRODUCTION 
 

The fundamental challenge in CBM+ for 

helicopters is that they are not stationary since they 

operate over a large number of regimes or operating 

conditions.  They also operate under constantly 

changing environmental settings and have to be 

maintained on an opportunistic basis.  These 

variations increase the complexity of determining the 

system‟s behavior, detecting component degradation 

and predicting remaining useful life for the 

components being monitored.  In the CBM+ system 

described in this paper, an open architecture is used.  

It is modular in nature to allow distributed design, 

development and maintenance of individual modules 

and to allow collaboration with other systems.  The 

modules have well defined interfaces and 

functionalities. Algorithms are updated over time to 

optimize detection and prediction of faults.  

 

2. OVERVIEW 
 

Current maintenance systems for helicopters are 

reactive, scheduled or opportunistic, i.e., a 

maintenance action is taken either when a fault 

occurs, on a predetermined schedule or to take 

advantage of the resources, efforts and time already 

dedicated to the maintenance of another part in the 

system.  Maintenance activities themselves can 

introduce a risk of malfunction, so it is better to 

perform them only when needed, as much as 

possible.  Also, scheduled maintenance actions taken 

prematurely often result in underutilization of 

resources.  Hence, both reactive and scheduled 

maintenance strategies can contribute to an excessive 

logistics support burden and high operation and 

support (O&S) costs.   

 

The system described in this paper aims to reduce 

O&S cost by reducing reactive and scheduled 

maintenance by accurately assessing helicopter 

health and predicting failure of critical helicopter 

components based on actual usage in operation 

environments.  The CBM+ system for helicopter 

health management described here integrates a set of 

diagnostic, prognostic and health assessment 

technologies to achieve its mission.  By knowing 

what components are in need of maintenance and 

how soon that is required, maintenance actions can 

be planned in advance based on the remaining useful 

life of components. 

  

The system gathers signals from a large number 

of sensors positioned and adapted for measuring a 

helicopter‟s health condition.  The input signals are 

conditioned and normalized using signal processing 

techniques to create features.  A collection of 

condition indicators are derived by pre-processing the 

inputs and derived features using pattern recognition, 

data correlation and data mining techniques to 

determine an optimal subset of signals that best 

reflects the health of the helicopter.  A Self 

Organizing Map (SOM) is also used for signal 

conditioning.  It helps remove noise from the signals 

and also reduces higher dimensional inputs to a lower 

dimension in real time, to determine the operating 

regime of the helicopter, for use in subsequent 

processing. 

 

The processed input is then provided to a Fuzzy 

Adaptive Resonance Theory (Fuzzy ART) neural 

network.  The Fuzzy ART neural network receives 

the condition indicators as inputs and is able to detect 

and classify the current operation state of the 

helicopter as one of the previously known states.  The 

operational health of the helicopter based on the 

current operating state is provided as an output of the 

Fuzzy ART neural network.  Thus, the neural 

network serves as the prime detector of helicopter‟s 

current health status. 

 

A Bayesian Intelligent Network is adapted to 

receive a helicopter‟s state of health (summarized 

and optimized) from the Fuzzy ART neural network 

  



 

Figure 1. Architecture of the Health Monitoring System for Helicopters

and to reference usage and failure history in order to 

refine an estimate of the remaining useful life of the 

various components.  It uses Bayesian decision 

theory to calculate the a posteriori probabilities of the 

need for engine maintenance based upon the current 

input and the current state.  These predictions are 

more finely tuned to identify various subsystems and 

components of the helicopter that are likely to require 

service in a predetermined time frame by predicting 

the remaining useful life of the components. 

 

3. ON-SYSTEM CBM+ ARCHITECTURE 
 

The use of the „plus‟ term in the CBM name adds 

functionality and helps define an enterprise-level 

CBM system architecture [1-4].  This architecture has 

two main components: the on-system and the off-

system components, that work together to make a 

complete CBM+ system. 

Figure 1. illustrates the overall architecture of the 

helicopter‟s on-system CBM+ processing.  The on-

system architecture consists of a number of dedicated 

modules that provide a variety of functionalities 

including raw data collection from sensors, data 

characterization, digital signal processing, extraction 

of condition indicators, and support of intelligent 

CBM+ processing.  

3.1.Sensors 

Sensors are mounted strategically on a helicopter 

to monitor the states of structural and mechanical 

components. They are conditioned to provide digital 

values corresponding to analog states of signals they 

are monitoring. Accelerometers are used to monitor 

vibration data.  The sampling rate of such sensors is 

determined by the expected range of vibration 

frequencies that supply indication of faults for the 

monitored component.  Some of the types of sensors 

used to monitor the health of a helicopter are as 

follows: 

 Micro-electro-mechanical systems (MEMS) 

– modern accelerometers that are very small and light 

in size. 

 Charge amplifiers (piezoelectric sensors), 
thermocouples, tachometers, tri-axial wireless 

accelerometer such as G-Link Wireless 

accelerometers. 

 Temperature sensors installed inside bearings 

for monitoring conditions leading up to fault 

initiation 

 Strain in critical components using G-Link 

wireless sensors. 

 

 



3.2.Sensor Fusion & Data Characterization 

Data Characterization is an important step in 

the CBM+ process.  Analog and digital filters have 

been designed that can help attenuate the effect of 

high frequency noise in the measurements.  Basic 

sanity checks and data validation methods must be 

used to ensure the data collected is not grossly faulty.  

These include checking whether the measured data 

and the rate at which it is changing are within 

predefined operational limits. Smart sensors may be 

used to determine whether there is any hardware 

problem in measurement and whether the measured 

data is acceptable.  Also, if sensors that are not 

sampling data at the same frequency need to be 

correlated, data may have to be up-sampled or down-

sampled to correlate them appropriately.   

 

In the CBM+ system, raw sensor data is 

conditioned by a Sensor Fusion module.  This 

module conditions all sensor inputs before they are 

further analyzed by the CBM+ system.  

Functionalities provided by this module are as 

follows: 

 Noise reduction: eliminate noise from the 

signal using wide range of statistical signal 

processing algorithms.  Band pass filters are also 

used where appropriate.  

 Data validation: basic sanity check, handle 

missing data  

 Data normalization: scale data ranges 

between [0..1],  

 Data Correlation: Determine subsets of the 

sensor data that inputs to the six condition 

indicator blocks. 

 

3.3. Condition Indicators (CI) 
  

Sensor data is processed by a collection of 

modules that determine Condition Indicators for six 

subsystems in a helicopter, namely: Vehicle 

Management System (VMS) Control System, 

Electrical System, Drive System, Rotor System, 

Propulsion System and Structural System. Each 

condition indicator subsystem specializes in 

extracting condition indicators corresponding to the 

subsystem in the most effective way using the most 

appropriate processing algorithms. The six modules 

process the sensor data, extract the condition 

indicators and forward them to the subsequent 

modules for further processing. A brief overview of 

each of the condition indicator modules is presented 

here. 

 

3.3.1. VMS Condition Indicators 

The purpose of this module is to efficiently 

monitor a set of condition indicators for the Vehicle 

Management System of the helicopter.  VMS 

components include flight control electronics, pumps, 

bell cranks, actuators, bearings and other components 

that require frequent inspections.  The inclusion of 

VMS Condition Indicators in the CBM+ monitoring 

of the helicopter helps to reduce the frequency and 

complexity of inspections, thereby reducing the cost 

of labor used for inspection for maintenance.  

3.3.2. Electrical Condition Indicators 

This module consists of a set of condition 

indicators for the Electrical System of the helicopter 

reflecting the System‟s health.  Wire harness health 

management includes detection of partially 

connected and/or corroded connectors, and 

intermittent signal conduction associated with the 

breaking or shorting of circuits.  Understanding how 

the flow of electricity changes within wiring harness 

with partially damaged insulation or broken circuit is 

the key to in determining the Electrical Health 

Indicators [5][6].   

3.3.3. Drive Condition Indicators 

The purpose of this module is to provide a set of 

condition indicators for the Drive System of the 

helicopter which primarily includes the helicopter 

gearbox.  Helicopter gearbox frequencies extend over 

a wide range of shaft-vibration frequencies between 

input and output gear mesh frequencies and cover the 

whole audio frequency range.  It is important to 

separate the gear condition indicators from those of 

bearing in order to isolate faults accurately.  

Advanced synchronous signal processing techniques 

such as wavelet analysis, envelope analysis and time-

frequency analysis are used for fault diagnosis in the 

gearbox [7-10] and are used to generate the Drive 

System‟s Condition Indicators. 

Health and Usage Monitoring Systems (HUMS) 

on board helicopters collect parameters such as 

pressures and temperatures, bearing temperatures, 

wear, and, in some cases, accelerations as well.  

These parameters are also consolidated in the 

Condition Indicators generated by this module.   

3.3.4. Rotor Condition Indicators 

This module generates a set of condition 

indicators for the Rotor System of the helicopter.  

The Rotor Condition Indicator module provides 

information that indicates the state of helicopter 

blade health.  It processes raw data collected from 

suitably placed sensors on rotors and their associated 

dynamic components and generates a vital rotor 

system‟s health condition (e.g., presence of blade 

damage, localize and determine severity of damage).   

 

Maintenance of the dynamic hub components 

(e.g., bearings, cage, rotating components) is difficult 

because the components are hard to access and 



inspect.  Extensive study of helicopter blade health 

has been performed on the impact damage detection 

on helicopter blades using sophisticated algorithms 

based on frequency analysis and system theory.  Such 

methods are applied to generate the Rotor Condition 

Indicators [11, 12].  

 

3.3.5. Propulsion Condition Indicators 

The purpose of this module is to produce a set of 

condition indicators for the Propulsion System of the 

helicopter.  This module processes raw sensor data to 

provide indication of the propulsion system‟s health 

conditions. Historical data on LRU (Line replaceable 

units) replacements and corresponding SRU (Shop 

replacement units) faults identified in the machine 

shops will also be used as input to this module.  In 

order to reduce the variability of power predictions 

and increase efficiency of propulsion, this module 

also analyzes health and torque of the drive shaft.  

Technologies for crack detection in shafts (of rotating 

machinery) and torsional vibration analysis [13] are 

applied to generate propulsion condition indicators.  

CBM+ monitoring of the propulsion engine is an 

important component of this CI module.  Many 

methods for monitoring a rotary engine have been 

developed over the years, and encompass the fusion 

of multiple types of sensor data.  These sensors 

include oil temperature and pressure, fuel flow rate 

sensors, flame detectors, and especially vibration.  

The vibration signal can yield a great amount of 

information about the health of the propulsion 

engine.  Both time domain and frequency domain 

information can be monitored and used by the 

subsequent neural nets in the CBM+ system to create 

indications of engine health [14, 15].   

In the time domain, various measures can be taken 

to provide features for analysis, included root-mean-

square levels, kurtosis, and peak-to-peak levels 

detection.  The information available in the frequency 

domain is generally quite richer, including once-per-

rev turbine shaft vibration and higher-order 

resonances of it, gear mesh frequencies, combustion 

noise, oil swirl, and blade-pass frequencies.  All of 

these components can be monitored for deviation 

from normal performance that would be indicative a 

deteriorating condition. 

3.3.6. Structural Condition Indicators 

The purpose of this module is to generate a set of 

condition indicators for the Structural System of the 

helicopter.  It processes data from sensors placed on 

the structural frame and produces vital condition 

indicators based on complex algorithms [16, 17].  

These condition indicators reflect the structural 

health of a helicopter (e.g., corrosion, fatigue, crack 

detection/progression, stress, temperature, etc.). 

 

Some of the techniques used to determine 

Structural Condition Indicators include: 

 

 Vibration Acoustic Modulation (VAM) 

technique for crack detection in a representative 

wing attachment fitting.  VAM is a nondestructive 

evaluation technique that is highly sensitive to the 

presence of nonlinear stiffness introduced by 

damages and cracks.   

 Impact damage detection on helicopter 

blades using frequency based methods. 

 Thermal and impact damage detection 

algorithms for aircraft components.   

 

3.4. Self Organizing Map (SOM) 

The Self Organizing MAP, or SOM, technology 

[18] is used to discern between different operating 

regimes for a vehicle.  It serves to interpret the 

higher-order sensed environment into a lower-

dimension indication of the current operation for use 

in downstream processing.   

The basic Self-Organizing Map can be thought of 

as a layer or sheet-like neural-network array, the cells 

(or nodes) of which become specifically tuned to 

various input signal patterns or classes of patterns in 

an orderly fashion. An example of a trained SOM is 

shown in Figure 2. The learning process is 

competitive and unsupervised, meaning that no 

teacher is needed to define the correct output (or 

actually the cell into which the input is mapped) for 

an input.  In the process of training, a SOM discovers 

the number of classes to classify the training pattern, 

unlike other clustering algorithms where the number 

of classes must be defined. 

In the CBM+ System for helicopter, the SOM 

discerns various flight and operating regimes, both 

for the overall vehicle, and for various subsystems 

within the vehicle.  The intent is to provide guidance 

to the different Condition Indication algorithms in the 

system, assuming that there are differences in the 

parameters that are used in different operating 

regimes.  For instance, a neural network that 

monitors shaft vibration might use a different set of 

weights for a highly-loaded ascent, than for idling on 

the ground. 



 

Figure 2. Self Organizing Map with 16 nodes is able to 

determine regimes, where the dark colors indicate the limits of 

each regime detected.  In this figure, five regimes have been 

identified – the three yellow patches and two single nodes. 

 

3.5. NN Fusion and Condition Analyzer 

(NNFCA) 

 
The Condition indicators from six distinct 

domains of a helicopter are provided to the Neural 

Network Fusion and Condition Analyzer (NNFCA). 

The task of the NNFCA is to detect anomalous (or 

faulty) condition data in real time, and to distinguish 

between good and bad operation, supplying 

numerical indication of the goodness or badness 

detected, as seen in Figure 3. 

 

For the NNFCA, a variation of the Fuzzy 

Adaptive Resonance Theory (ART) neural network 

model is used.  The Fuzzy ART neural network, 

originally proposed by Carpenter and Grossberg [19] 

has proven to be a useful tool for pattern recognition. 

NNFCA uses an unsupervised learning mechanism to 

learn regularities in the training data by maximizing 

predictive generalization while minimizing predictive 

error in a real-time setting.  

 
Figure 3. A graphical representation of a “good” state (red) 

and a “bad” state (blue) learned by NNFCA for a two 

dimensional input space is shown in this figure. The topology 

illustrates how the NNFCA classifies intermediate values. 

 

A dedicated NNFCA is used in conjunction with 

each of the Condition Indicator blocks.  Each 

NNFCA learns to correlate the Condition indicators 

to determine fault conditions.  Each NNFCA is 

trained on a sequence of m-dimensional condition 

vectors (from the Condition Indicator boxes) as input 

and it learns to partitions the m-dimensional space to 

indicate good operating condition and faulty 

operating conditions.  The neural network is trained 

on good and faulty data ahead of time.  A 3-D 

example of the trained NNFCA neural net is shown 

in Figure 4.  Once trained, the NNFCA is able to 

correlate conditions to determine the “goodness” of 

the operating condition.  Hence, in real time the 

NNFCA is able to detect when the helicopter‟s 

operating condition (for each of the 6 systems) is 

starting to deteriorate.  

 

Figure 4.  The operating conditions form a multi dimensional 

space (only three dimensions are shown here: Engine Speed, Fuel 

Delivery Pressure, Engine Oil Pressure) in which a vehicle 

operates in.  In this figure, the green dots represent operating 

conditions that the vehicle has traversed without any faults.  

NNFCA learns to identify these “good” operating conditions by 

defining hyper-cubes in the multidimensional space.  During 

deployment, a deviation from favorable operating condition 

would indicate either an error or a novelty situation.  If it is the 

latter, the neural network is retrained to learn the novelty.  The 

retraining would generally take place at an off-system analysis 

site. 

An initialization procedure, prior to deploying the 

system for health management, includes training a 

neural network on favorable and unfavorable 

operational states of the helicopter.  Once trained, it 

is able to detect anomalies in the helicopter‟s 

operation and gauge its operational health.  The 

output from NNFCA‟s state analysis feedback is then 

provided to the Bayesian module. 
3.6. Usage Tallies 

The concept of usage credits is employed here to 

give each monitored component a certain number of 

credits that are expended at different rates during 



operation, depending on the operating regime, to 

provide an indication of when to perform 

maintenance.  When the credits for a given 

component have decreased below a threshold, then it 

is time to schedule maintenance.  This becomes the 

prime indicator of usage that is then used to predict 

maintenance needs.  With this technique, the 

maintenance needs are known slight ahead of when it 

is dues, but not too far ahead that money is lost in 

needless maintenance.  These are also coupled with 

the Bayesian prognostics to give an overall predictive 

mechanism. 

3.7. Bayesian Prognostics 

The Bayesian Prognostics section takes the a 

priori knowledge of mean time between failures, as 

well as conditional probability indications of 

component wear, from the usage tallies, Condition 

Indicators and NNFCA, and couples them into an a 

posteriori probability used in this section to temper 

the outputs of the Usage Tallies to adapt them to the 

currently sensed condition.  The Bayesian 

Prognostics module provides the following: 

 Reduction of inspections and 

preventive maintenance 

 Accurate estimates of remaining 

useful life for components and systems 

 Advanced signals of impending 

failure with sufficient fidelity to allow 

scheduling of maintenance 

 

Based on the prognostics provided by this 

module, operators can make informed, risk-based 

decisions on the operational status of their rotorcraft. 

 

3.8. On-System Data Store 

Novel operating conditions and failure conditions 

not seen before will most likely generate anomaly 

data.   All anomaly data encountered by the Sensors 

(and subsequent modules) in the System will be 

stored in an On-System Data base.  Periodically, this 

data will be pushed on to an Off-System Data Base 

for further analysis.  The new data will be used to re-

train the Neural Network and Bayesian models. 

4. OFF-SYSTEM CBM+ 

The Off-System CBM+ components, shown in 

Fig. 5, provide a data warehouse, a data mining and 

analysis capability, and a capability to update the 

condition monitoring algorithms and advanced 

prognostic health indicators that will run on the On-

System hardware.  The CBM+ Off-System 

communications could also be linked to a National-

level Strategic Data warehouse [20]. 

Specific application tools such as Enterprise 

Logistics IT, prognostic algorithms, data mining and 

the like would comprise the Off-System Architecture 

layer.  Data mining and Business Intelligence Tools 

would identify trends, improve and refine 

Maintenance, Diagnostic, and Prognostic capabilities. 

 

 

CBM+

Data Warehouse

Off-System

National-level

Strategic

Data warehouse

Ethernet

Data Marts

Business Intelligence Tools 

to identify trends, improve and refine 

Maintenance, Diagnostic, and 

Prognostic  capabilities.

 Figure 5. Off-System CBM+ Architecture. 



Processing at the Off-system level is intended to 

provide a processing and data storage capability. 

Data is moved from the On-system components to 

the Off system environment using established data 

communication networks Data compression 

algorithms would be used to decrease the network 

loading required to move large data sets.   

Normal operating equipment will not need to have 

data sent back to the Off-System location, but when 

anomalies are detected, or a piece of equipment is 

determined to be failing but the condition was not 

indicated, then the set of data recorded for that piece 

of equipment in its degraded or failing state would be 

sent to the Off-System site for analysis to develop an 

algorithm that would detect the failure in the future.  

This updated algorithm, perhaps consisting of neural 

network parameters, or other controls for the On-

System hardware, would then be distributed to all 

On-System monitors for the affected equipment 

model.   

The Off-System architecture requires the use of 

carefully designed database schemas in order to 

coordinate large datasets of recorded machinery 

operation, enabling the precise application of the 

analysis and condition indication algorithms. 

5. CONCLUSIONS 

This paper describes a Condition Based 

Maintenance Plus system for a helicopter that 

integrates a set of diagnostic, prognostic and system 

health assessment technologies to reduce inspection 

and scheduled maintenance, extend life of 

components between overhaul and predict failure 

with sufficient fidelity to allow maintenance before 

the system fails.  The on-system architecture 

leverages current state of art in CBM technologies in 

six distinct domains in a helicopter system.  The goal 

of this project was to create a CBM+ system to most 

effectively perform diagnosis and prognosis on a 

helicopter system, based upon the combined 

knowledge and research of various CBM+ efforts 

integrated in an open-system architecture. 

Operational availability is increased, since the 

aircraft is not taken out of service for maintenance 

before service is actually needed, and also there is 

less of a chance of unforeseen and unplanned needs 

for service since the monitoring algorithms should 

detect the changing readiness state of the aircraft, and 

thus elicit a service request before failures that would 

otherwise not have been detectable occur. Supply 

chain efficiency is both enabled and required by the 

adoption of a CBM+ maintenance system.  Efficiency 

is increased since only the parts that are in need of 

service are actually worked on.  Efficiency is 

required, since when a part is detected to be needing 

maintenance, it is actually in need of maintenance, 

and the aircraft may likely be grounded if the service 

parts are not received in an appropriate amount of 

time. 
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