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Abstract

This paper is concerned with the formulation of ADS-33 Mission Task Elements (MTEs) as tra-
jectory optimization problems, and describes efficient numerical solution procedures for this class
of problems. MTEs are maneuvers specifically designed to quantify the Handling Qualities of
rotorcraft vehicles. Here we show that MTEs, being characterized by a mission target which must
be accomplished while satisfying a set of constraints, can be readily described in a precise math-
ematical sense by defining equivalent constrained optimal control problems, whose solution yields
the best possible performance of a given helicopter in performing a given MTE. The capabilities of
the proposed methodology are demonstrated with the help of representative numerical simulations.

1 INTRODUCTION

This paper is concerned with the application of trajectory optimization procedures to the simu-
lation of ADS-33 Mission Task Elements (MTEs) [1] using flight mechanics models of rotorcraft
vehicles. Flight mechanics models are typically used for the characterization of equilibria, the
so-called trim states, and for dynamic response simulations, i.e. the evaluation of the vehicle
state time histories for given initial conditions and given control inputs. For such purposes, sev-
eral general codes are available and widely used by industry, as for example CAMRAD/JA [2],
EUROPA [3], FLIGHTLAB [4], GenHel [5], etc.

In this paper a more general and complex simulation scenario is considered. The term trajec-
tory optimization refers to the process of computing the optimal control inputs and the resulting
response of a model of a vehicle, a rotorcraft in the present case, which minimize a cost function
(or maximize an index of performance) while satisfying given constraints (which specify, for ex-
ample, the vehicle flight envelope boundaries, and/or safety and procedural requirements for a
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maneuver of interest). We remark that this problem differs significantly from the usual and more
common problem of forward simulation starting from given initial conditions under the action of
control inputs, both in the case when the control time histories are given a priori or when they
are computed by a flight control system or tracking controller. In fact, in order to use a typical
forward simulation code, one has to specify a time history of control inputs, or a trajectory or
sequence of trim conditions that the vehicle should track. In a trajectory optimization problem
none of these two pieces of information, controls or trajectory, are known; in fact, both control
inputs and trajectory are unknown and must be computed by solving an appropriate optimal
control problem.

Many problems in vehicle dynamics can be studied with the help of trajectory optimization.
In the area of rotorcraft flight mechanics, we mention here continued and rejected take-off pro-
cedures following an engine failure (Category A certification [6]), optimal auto-rotation, landing
procedures after tail-rotor loss, approach and departure from flight decks, and of course the
definition of ADS-33 MTEs [1], which are the subject of the present work.

Trajectory optimization codes implement appropriate numerical methods which, interacting
with forward simulators, augment their capabilities in order to compute the controls which fly the
vehicle model in an optimal and constraint-satisfycing way. Computer implementations of trajec-
tory optimization procedures for rotorcraft flight mechanics vehicle models have been previously
described by Okuno and Kawachi [7], Carlson and Zhao [8], and Bottasso et al. [9, 10, 11]. The
extension of such procedures to handle fine-scale aero-servo-elastic comprehensive vehicle models
have been first described by Bottasso et al. [12, 13, 11].

In the present work, we use the Trajectory Optimization Program (TOP), developed at the
Department of Aerospace Engineering of the Politecnico di Milano. TOP has been designed to
solve efficiently trajectory optimization problems for rotorcraft vehicles, and has some unique
features, including multiple solution algorithms which are tuned and optimized to the level of
complexity of the vehicle model. In this paper, we use flight mechanics models of low/moderate
complexity, for which the preferred solution algorithm in TOP is a method termed Direct Tran-
scription.

The paper is organized according to the following plan. At first an introduction to the ADS-
33 MTEs is presented. Some basic elements on optimization and, specifically, the formulation of
maneuvers as optimal control problems are given next. The paper continues discussing the Direct
Transcription method used in this work for numerically solving trajectory optimization problems.
Finally, we demonstrate the simulation of a selection of ADS-33 MTEs using the TOP software.

2 ADS-33 MISSION TASK ELEMENTS

The ADS-33 specification [1] defines a series of MTEs, which are precisely defined flight test
maneuvers whose primary goals are the quantification of a rotorcraft ability to perform certain
critical tasks and to provide a basis for an overall assessment of the specific level of Handling
Qualities (HQ). Each MTE should be assessed by at least three pilots, who assign a subjective rate
according to the Cooper-Harper-Rating Scale [1] through the definition of numerical values for
Desired and Adequate performance. To allow for different standards of precision, the performance
standards for each task are listed separately for different rotorcraft categories and for both Good
Visual Environment (GVE) and Degraded Visual Conditions (DVE).
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Analytical (i.e. non-piloted) simulations can be useful for predicting the ability of a rotorcraft
to perform each MTE, identify potential adverse effects (e.g. high rotor and transmission loads),
and determine whether the flight control laws are satisfactory. Extensive analytical simulations
of MTEs can be performed inexpensively and with no risk. Therefore, they can complement
piloted simulations and flight tests, and they can also be used during design to predict the HQ
of a vehicle before a prototype is available.

Goal of this paper is to show that a general MTE simulation environment can be readily
developed using trajectory optimization. In fact, the ADS-33 specification does not assign a-priori
reference trajectories for the various MTEs, so that the classical inverse approach, consisting in
finding the control time histories which fly the vehicle along a given trajectory, can not be easily
used. Since a reference trajectory is not given, but rather each maneuver is defined by certain
criteria and constraints, a more general simulation framework must be adopted.

Using the trajectory optimization approach, one has to translate the specification of each MTE
into an appropriate optimal control problem. Path and flight envelope limits may be imposed
by prescribing suitable constraints on the vehicle states and control inputs. Furthermore, the
aggressiveness of the maneuver can be properly tuned by the specification of an appropriate cost
function. A practical approach is to define the cost as the sum of two terms which are represented
by an aggressiveness parameter (e.g., the maneuver duration as in the present work) and by a term
which accounts for the piloting “effort” (e.g., the integral of the control rates, as in this paper).
By weighting the relative importance of these two antithetic terms, it is possible to increase the
maneuver aggressiveness until one or more flight envelope limits (i.e. actuator saturation, load
factor, etc.) are reached. More details about this point and specifically about the choice of the
merit function are discussed in §5.1.

3 FORMULATION OF MANEUVERS AS OPTIMAL CONTROL PROBLEMS

A maneuver can be defined as a finite-time transition between two trim conditions [14]∗. Clearly,
given a starting trim and an arrival trim, there is an infinite number of ways to transition
between the two. A way to remove this arbitrariness is to formulate a maneuver as an optimal
control problem [10, 12, 11], where one minimizes a cost (time, altitude loss, control activity, fuel
consumption, etc.) which in general is some given function of the vehicle states and control inputs.
The solution of the optimization problem must satisfy the dynamic and kinematic equations of the
vehicle, the initial and final conditions corresponding to the start and arrival trims, and all other
equality and inequality constraints which need to be met in order to satisfy given performance
and procedural requirements.

Consider a flight mechanics vehicle model M, which includes structural and aerodynamic
models of the vehicle components, possibly (but not necessarily) using a multibody approach [15].
The dynamics of model M can in general be described in terms of a set of non-linear differential
∗ Although this is the only rigorous definition of a maneuver, in the context of the present work it will be more

useful to use the term maneuver more loosely, and in general we can consider also the case of terminal conditions
which are not trimmed.
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algebraic equations written as

fSD(ẋSD,xSD,λ, xA, u) = 0, (1a)
c(xSD) = 0, (1b)

MẋA + LxA − τ (xSD, u) = 0, (1c)

where xSD are the structural dynamics states (including states which describe rigid and possi-
bly flexible rotor(s), fuselage, engine, etc.), λ are constraint-enforcing Lagrange multipliers in a
multibody vehicle model, xA are aerodynamic states (e.g. dynamic inflow variables), and u is
the control input vector. Equations (1a) group together the equations of dynamic equilibrium
and the kinematic equations. Equations (1b) represent mechanical joint constraint equations in
a multibody vehicle model, while Eqs. (1c) are the aerodynamic state equations. Finally, the
notation ˙(·) = d(·)/dt indicates a derivative with respect to time t.

For the sake of simplicity, in the following we will consider that the Lagrange multipliers λ
and redundant structural dynamics states can always be formally eliminated in favor of a minimal
set of coordinates [16]. The interested reader can refer to Ref. [17] for a description of the solution
of optimal control problems for multibody models in redundant form; while this does not pose
technical difficulties, it requires a heavier notation and complicates the discussion. Therefore, the
governing equations will be assumed to be of the ordinary differential type and will be simply
expressed as

fSD(ẋSD, xSD, xA, u) = 0, (2a)
MẋA + LxA − τ (xSD, u) = 0. (2b)

When using quasi-steady aerodynamics, the aerodynamic model expressed by Eq. (2b) and its
associated aerodynamic states xA are of an algebraic nature. The numerical solution is in that
case performed by eliminating the algebraic aerodynamic variables, usually through a fixed point
iteration. Therefore, even in that case, we can consider an ODE model with no loss of generality.

It will be convenient to use a more synthetical form of the above equations in the following
pages, and hence we will write the vehicle model as

f(ẋ, x, u) = 0, (3a)
y = h(x), (3b)

where x = (xT
SD, xT

A)T is the global state vector and f stacks together Eqs. (2a) and (2b). In
addition, Eq. (3b) defines a vector of outputs y. The outputs will typically represent some global
vehicle states which describe its gross motion, such as position, orientation, linear and angular
velocity of a vehicle-embedded frame with respect to an inertial frame of reference, or other
quantities useful for formulating the maneuver optimal control problem.

Equations (3a) are solved for the forward simulation problem by providing a time history of
control inputs u(t) and initial conditions on the states x(0) = x0. Accordingly, one obtains also
the associated values of the outputs through (3b).

The trajectory optimization problem is defined on the interval Ω = [0, T ], t ∈ Ω, where the
final time T is typically unknown and must be determined as part of the solution to the problem.
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Specific events might be associated with unknown time instants Ti, 0 < Ti < T , as for example
the reaching of specific values of certain states, the jettisoning of part of the cargo, etc. The
present code implementation can handle multiple internal events, but we do not consider this
case in the following for the sake of simplicity, since this does not pose any conceptual difficulty
that is worth addressing in detail.

The maneuver optimization problem consists in finding the control function u(t), and hence
through (3) the associated function x(t) and y(t), which minimize the general cost

J = φ(y, t)
∣∣T
0

+
∫ T

0
L(y,u, u̇, t) dt. (4)

The first term in the previous expression is a boundary term which accounts for values of the
outputs at the initial and/or final instants, while the second term is an integral cost term.

The minimizing solution must satisfy the vehicle equations of motion (3), together with the
boundary (initial and/or terminal) conditions on the states

gbc

(
x(0)

) ∈ [gmin
bc,0, g

max
bc,0 ], (5a)

gbc

(
x(T )

) ∈ [gmin
bc,T , gmax

bc,T ]. (5b)

Notice that the initial and final values of the states x(0) and x(T ) are typically determined
by solving a separate trim problem off-line, whose details depend on the specifics of the vehicle
model being considered. Often, the final conditions are not required to represent a trim state, in
which case the exit conditions can be written in terms of the sole outputs as

gbc

(
y(T )

) ∈ [gmin
bc,T , gmax

bc,T ]. (6)

Other maneuver-defining and/or envelope-protection constraints can be expressed as generic al-
gebraic non-linear constraints of the form

ggen(y,u, t) ∈ [gmin
gen , gmax

gen ], (7)

integral conditions
1
T

∫ T

0
gint(y, u, t) dt ∈ [gmin

int , gmax
int ], (8)

constraints at unknown internal events Ti

gevent(y,u, Ti) ∈ [gmin
event, g

max
event], (9)

or simple bounds

y ∈ [ymin,ymax], (10a)

u ∈ [umin, umax]. (10b)

In summary, the maneuver optimal control problem can be expressed as

min
x,y,u,T

Cost J, Eq. (4), (11a)

s.t.: ODE system (3), (11b)
Constraints (5–10). (11c)
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The indirect approach to the solution of the maneuver optimal control problem (11) amounts
to augmenting the cost (4), by adjoining the governing equations (3) with a set of co-states,
and adjoining all other constraints conditions (5–10) with Lagrange multipliers. By imposing
the stationarity of the augmented cost, one derives a new set of equations with their associated
boundary conditions, which govern the optimal control problem [18]. The resulting boundary
value problem can then be discretized using a suitable numerical method defined on a compu-
tational grid. This transforms the infinite dimensional boundary value problem into a discrete
problem, whose unknowns are the values of the variables (states, co-states, Lagrange multipliers,
controls) on the computational grid.

It is clear that the implementation of this classical approach requires the manipulation of the
governing Eqs. (3) in order to derive the optimal control equations. This is a non-trivial task for
complex and highly non-linear models, which might necessitate the use of symbolic manipulation
or automatic differentiation tools to be carried out effectively. More importantly, this approach
must be ruled out whenever one does not have access to the analytical expression of Eqs. (3)
or their software implementation, as it is the case whenever the flight simulator is a third-party
black-box code.

To overcome these limitations of the indirect approach, one can use the direct method [19].
In this case, instead of first optimizing and then discretizing, one first discretizes the model
Eqs. (3) through a numerical method. This has the effect of discretizing also the cost function (4)
and the constraints (5–10). This in turn defines a discrete parameter optimization or non-linear
programming (NLP) problem [20], which can be written in general as

min
z

K(z), (12a)

s.t. a(z) = 0, (12b)

b(z) ∈ [bmin, bmax], (12c)

where z is a set of algebraic unknowns, and K is a scalar objective function which represents
an approximation of the cost J of Eq. (11a). The equality constraints (12b) are generated by
the discretization of the equations of motion (11b), while the inequality constraints (12c) by all
maneuver-defining constraints (11c). The specific form of the vector of algebraic unknowns and
of the constraints depends on the method used for performing the discretization.

Necessary conditions for a constrained optimum for problem (12) are obtained, similarly to
the optimal control case, by combining the objective K with the constraints through the use of
Lagrange multipliers, and imposing the stationarity of the augmented objective function. By using
the direct approach, one does not need to manipulate the equations of motion of the vehicle, since
all that is required is the evaluation of the discretized equations on a step or sequence of steps,
and this enables the interfacing to black-box vehicle simulators. For further possible advantages
of the direct method, the interested reader is referred to Ref. [19].

We have found that, for the problems considered here, it is important for robustness to
consider a scaled version of the NLP problem, where the NLP variable z is replaced by a scaled
variable z̄ = diag(wz)z, wz being a vector of scaling coefficients chosen so that the new unknown
is z̄ ≈ O(1). Furthermore, since at convergence many constraints are active (at least all of the
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equality constraints (12b)), we have found that faster convergence of the SQP solver is obtained
by using a slightly looser tolerance for the equality constraint feasibility than for the solution
optimality tolerances. This in fact has the effect of avoiding repeated changes in the active set
when trying to satisfy optimality at the end of the process, which eases the reaching of the exit
condition of the NLP solver with basically no effect on the solution accuracy.

In the next section the direct method considered in this work is described in details; our
numerical approach leads to sparse NLP problems (12), which in the present implementation are
solved using sequential quadratic programming (SQP) [21].

4.1 Direct Transcription

We consider the partition of the time interval Ω as 0 = t0 < t1 < . . . < tN = T , where the generic
time element is Ωn = [tn, tn+1], n = (0, N − 1), of time step size hn = tn+1 − tn. Here and in the
following, quantities associated with the generic element vertex j are indicated using the notation
(·)j , while quantities associated with the generic element k are labeled (·)k. Clearly, hn = hn(T ),
i.e. the time step size is a function of the final time, when T is unknown.

In each time element Ωn, the governing Eqs. (3a) are discretized using a suitable numerical
method. The resulting discrete equations are expressed here as

fh(xn+1,xn, un, hn) = 0, n = (0, N − 1), (13)

where fh is an algorithmic approximation of function f of Eq. (3a), xn, xn+1 are the values of the
state vector at tn and tn+1, respectively, while un represents the value of the control vector within
the step. In general there might be additional internal stages for both the state and the control
variables, depending on the numerical method. For notational simplicity we do not consider that
case here. With respect to this point, note further that in the case of higher order schemes with
internal stages, Eqs. (13) might have been obtained by static elimination of these stages at the
element level.

In the Direct Transcription case, the NLP problem (12) is defined as follows. First, the NLP
variable is chosen as:

z = (xn=(0,N),u
n=(0,N−1), T )T , (14)

i.e. it is composed of the discrete states and control values on the computational grid, and the
final time. Next, the cost J of Eq. (4) is discretized in terms of z as given by (14), obtaining the
discrete cost K of Eq. (12a). Then, the discretized ODEs within each step, Eqs. (13), become
the set of NLP equality constraints appearing in Eq. (12b). Finally, all other problem constraints
and bounds, Eqs. (5–10), are expressed in terms of the NLP variables z and become the NLP
inequality constraints of Eq. (12b).

The optimality conditions of the resulting discrete NLP problem converge to the optimality
conditions of the optimal control problem (11) as the grid is refined and the number of discrete
optimization variables goes to infinity [22].

The resulting problem is large but very sparse. In TOP, when using the internal flight me-
chanics model, the NLP problem Jacobian is evaluated using automatic differentiation with the
ADOL-C code [23]. In the case of the black-box models (e.g. FLIGHTLAB and EUROPA), the
Jacobian is obtained by sparse finite differencing.
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5 NUMERICAL APPLICATIONS

In this section we present a few numerical applications of the methods described in the previous
pages. Initially we introduce a test case which consists in a simple maneuver, for the purpose
of explaining the MTE simulation approach adopted in the present work. Next, three ADS-33
MTEs are discussed and numerical results are presented.

All examples reported here use a FLIGHTLAB [4] helicopter model of a generic medium-size
multi-engine four-bladed utility vehicle in the 9 ton class. The numerical model is based on
three-dimensional rigid body dynamics, where rotor forces and moments are computed by using
an actuator disk model with uniform inflow. Look-up tables are used for the quasi-steady aerody-
namic coefficients of the vehicle lifting surfaces. A ground effect model is introduced in order to
accurately reproduce the MTE flight tests. The controls are defined as u = (θ0MR , θ0TR , A1, B1)T ,
where θ0MR is the main rotor collective, θ0TR is the tail rotor collective, A1, B1 are the lateral and
longitudinal cyclics, respectively.

For each MTE simulation, we refer to the Cargo/Utility in GVE performance standards as
documented in Ref. [1].

5.1 Simulation Approach

As anticipated in Section 2, the MTE simulations are carried out by imposing the path constraints
as inequality constraints according to Eqs. (5–10), and selecting the maneuver aggressiveness by
the use of a cost function defined as follows:

J = T 2 +
1

ρT

∫ T

0
u̇ · u̇ dt. (15)

The first term accounts for the aggressiveness of the piloting style, in this specific case the square
of the total maneuver duration, while the second one is related to the integral of the control
rates. The parameter ρ can be used to increase the maneuver aggressiveness, by increasing or
decreasing the relative importance of the first and second terms of the cost.

A typical MTE simulation problem consists in evaluating a maneuver while satisfying certain
constraints within a given time. The present approach guarantees that the path constraints are
fulfilled, since these are included in the optimization constraints; furthermore, by tuning the
aggressiveness parameter ρ, one has the ability to regulate the maneuver duration in order to
be in compliance with the maximum time requirement. Clearly, there is a specific limit for the
parameter ρ associated with the vehicle flight envelope constraints; when this limit is reached, the
performance can not be increased further, since this would require violating one or more of the
constraints, and the vehicle considered will have a certain level of Handling Qualities according
to this limit condition.

In order to illustrate this simulation approach, consider the following example, consisting in
a Depart maneuver [1]. The Helicopter is initially in Hover and is supposed to reach a steady
Forward Flight condition at the speed of 50 Knots. The merit function is expressed by Eq. (15)
and maneuvers are evaluated for three increasing values of the weight ρ; the simulations are
performed using a uniform grid composed by 40 time steps. Typically for this kind of analyses
the number of steps is chosen according to a convergence criteria: the grid is refined until the
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difference between two iterates (quantified by a specific measure) is smaller then a fixed tolerance.
In Figure 1 (left), the pitch angle time histories are shown; the figure shows that, as the parameter
ρ increases, the maneuver duration is reduced and the peak value of the pitch angle increases,
since the maneuver is flown more aggressively. Figure 1 (right) reports the longitudinal cyclic.
The different boundary values at t = 0 and t = T are related to the different initial and final trim
condition: Hover and Forward Flight at 50 Knots, respectively.
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(b) Longitudinal cyclic.

Fig. 1: Depart maneuver.

5.2 Lateral Reposition

According to the Lateral Reposition MTE [1], the helicopter, initially in Hover, is supposed to
translate laterally for 400 ft and then recover the initial Hover configuration. The maneuver must
be flown in ground effect since the initial and final positions are characterized by an altitude of
35 ft (the rotor diameter is 30 ft); altitude variations must be within ±10 ft. Referring to Figure 2,
the maximum allowed displacement in the longitudinal direction is ±10 ft, while the maximum
heading misalignment is ±10 deg with respect to the initial direction. The maneuver must be
completed within 18 seconds.

The trajectory constraints are imposed directly through bounds on the position variables and
heading angle

|ψ(t)| < 10deg, |x(t)| < 10 ft, |z(t)| < 10 ft, 0 ≤ y(t) ≤ 400 ft. (16)

It should be noted that the y-overshooting is avoided with this approach.
The minimum time problem, according to the merit function expressed by Eq. (15), was solved

with an appropriate value of the aggressiveness parameter ρ, such that the maneuver duration is
less than the maximum time allowed.
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The numerical solution is obtained on a non-uniform computational grid of 80 time steps; a
chebychev node distribution is introduced in order to improve the accuracy at the boundaries of
the simulation domain.

Figure 3 shows some snapshots of the helicopter during the maneuver. Figure 4 shows the
control time histories (in percentage of the variation range): the longitudinal and lateral cyclic
inputs are characterized by high boundary rates which are accurately captured by the chebychev
node distribution. Figure 5 reports the vehicle attitude time history in terms of its Euler angles.
The maneuver duration is of about 14 s, less then the 18 s prescribed by the normative. Notice
that the heading angle reaches its upper allowed bound during this maneuver; to account for model
approximations, one could consider more conservative constraints than the ones prescribed by
the specification.

y

x

Initial position Final position

Trajectory

Fig. 2: Lateral Reposition. Top view.

Fig. 3: Lateral Reposition. Snapshots.
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0 2 4 6 8 10 12
54

55

56

57

58

59

60

61

62

63

t [s]

B
1 

[%
]

(d) Longitudinal Cyclic.

Fig. 4: Lateral Reposition. Control inputs.
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Fig. 5: Lateral Reposition. Attitude angles.

5.3 Pirouette

The Pirouette MTE is quite a complex maneuver; in fact the helicopter, starting from the Hover
condition, must move along a circumference of radius R = 100 ft pointing its nose towards the
center, and finally reaching the Hover state. As shown in Figure 6, there are constraints on
the radial displacement, which must be less then ∆R ±10 ft, and on the heading misalignment,
∆ψ ±10 deg. Finally the maneuver must be accomplished within 45 s. Also in this case the
maneuver is performed at an altitude of 10 ft (±10 ft) so that ground effects are not negligible.

The typical execution of this maneuver can be divided in three phases. The first part is
characterized by a transition from Hover to a steady turn in lateral flight. The opposite transition
is accomplished at the end of the maneuver when the Hover state must be recovered. The cental
part of the maneuver is characterized by a steady turn with an appropriate angular velocity.
The simulation strategy reflects this subdivision, and it is effectively the result of two optimized
maneuvers with a trim condition interposed between them. The first and last transitions are
formulated in exactly the same manner, except for the boundary conditions which are inverted;
for the internal phase a steady turn in lateral flight at the velocity of 11 Knots is assumed. Each
transition is characterized by a chebychev grid of 50 time elements and, according to the ADS-33
specification, the following additional constraints are enforced at each grid node:

[
r(ti)−R

∆R

]2

≤ 1, i = 0 . . . N, (17a)

[
ψ(ti)− γ(ti)

∆ψ

]2

≤ 1, i = 0 . . . N, (17b)

where γ , tan−1(y/x).
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Fig. 6: Pirouette. Top view.

Fig. 7: Pirouette. Snapshots.
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Fig. 9: Pirouette. Controls.
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Furthermore, for the first/last transition we enforce the following equality constraints

[
r(t0/N )−R

∆R

]2

= 0, (18a)

[
ψ(t0/N )− γ(t0/N )

∆ψ

]2

= 0. (18b)

It should be noted that, for the first phase, the final position and heading angle are not imposed
directly, but the constraints of Eqs. (18a) and (18b) require that at the end of the maneuver the
vehicle is located in an unknown point along the reference circumference pointing its nose toward
the center. The opposite approach is used for the last transition where the initial position is
unknown, but constrained in an analogous way.

Figure 7 shows snapshots of the vehicle along its trajectory, while Figures 8 and 9 illustrate,
respectively, the vehicle attitude in terms of its Euler angles and the optimal control inputs. The
presence of the internal steady state condition, interposed between the two dynamic transitions,
appears clearly from these plots. The maneuver duration is in compliance with the ADS-33
specification.

5.4 Slalom

As shown in Figure 10, for the Slalom maneuver the helicopter, starting from a stabilized Forward
Flight and lined up with the centerline of the test course, is supposed to perform a series of turns
and then recover the initial steady configuration. The test course is characterized by a series of
obstacles at 500 ft intervals and alternatively located at ± 50 ft from the centerline; the maximum
allowed lateral error is of 50 ft. The maneuver must be accomplished below the reference altitude
of 100 ft. Furthermore, in this case the maneuver definition does not assign a maximum time,
but rather specifies a minimum speed of at least 60 Knots throughout the slalom.

The simulation is characterized by a uniform grid of 100 steps and three obstacles. In order
to introduce the presence of the obstacles in the simulation, the bounds of Table 1 are enforced
for the ith pylon, where xj and yj represent the position (in the x− y plane) at the jth node.

Lower Upper
x1+i20 i 500 ft i 500 ft
y1+i20 −35 + (−1)i 75 ft +35 + (−1)i 75 ft

Tab. 1: Slalom. Position bounds for the obstacles.

A specific lower bounds is imposed for the flight speed in order to guarantee the satisfaction
of the lower value of 60 Knots imposed by the ADS-33 specification. The minimum time cost
function is used again to reach a proper level of aggressiveness.

Figure 11 reports the computed trajectory, showing snapshots of the vehicle and the three
obstacles. Figure 12 reports the optimal control time histories; the oscillating trend of the longi-
tudinal and lateral cyclics is obviously related to the alternating left and right turns.
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Fig. 11: Slalom. Snapshots.
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6 CONCLUSIONS

In this document we have described a mathematical formulation for the analytical simulation of
the ADS-33 MTEs. The problem is cast within the framework of optimal control theory. Using
this approach, each maneuver is viewed as the solution of an appropriate constrained minimization
problem; by specifying cost function and constraints, one gives a precise mathematical definition
of the maneuver which is then computed by solving the resulting optimal control problem.

Path constraints reported in the ADS-33 specification can be easily introduced in the opti-
mization process by position bounds, as shown for the Lateral Reposition and Slalom maneuvers,
or using ad hoc single constraints, as in the case of the Pirouette. In order to be in compliance
with the maximum time requirement, minimum time maneuvers were considered in this work.
The resulting numerical method is typically quite robust since the two-point boundary value
treatment of the problem can cope naturally with unstable systems such as helicopters; further-
more, the method is not very sensitive to the initial guess, especially if suitable boot-strapping
procedures from crude meshes are used [9]. Using the proposed approach, we have compiled a
complete library of MTE simulations, of which we have reported some representative examples
in the present paper.

Future research for MTEs simulation will address the development of an alternative formu-
lation which allows one to avoid the maneuver aggressiveness tuning phase, so as to be able to
evaluate directly the maximum performance for a given vehicle. A further future effort will be
related to the use of more sophisticated flight mechanics models. Typically, as the model com-
plexity grows, the time step length must accordingly be reduced so that fast dynamic scales in the
solution can be accurately captured. Using the Direct Transcription approach, the NLP problem
dimension increases with the number of time steps, which in turn increases the computational
cost. In this case, a better approach is to solve the problem by using the Multiple Shooting
method, also available in the TOP code [11].
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