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SUMMARY 

In the field of helicopter flight control and handling qualities, the 
potential benefits offered by Active Control Technology are 
considerable. To support the development of appropriate handling 
criteria and carefree manoeuvring features, the UK Royal Aerospace 
Establishment has been engaged in the development of an ACT 
system for a research Lynx. As currently envisaged the system 
includes full authority fly by wire actuation and fail-operate/ fail
safe hardware architecture. The impact of the required functionality 
on the system requirements dictated a need for a precise yet versatile 
specification of the system, and Jackson System Development (JSD) 
was selected as a design method since it provides a formal modelling 
of the pilot interface, and also operates at a sufficient level of detail 
necessary to ensure completeness and resolution of ambiguities. 
The tools which support JSD include automatic code generation, 
were further developed to accommodate changes to system 
architecture in an efficient manner. The code produced provides a 
direct simulation of the design and results in a Jiving specification 
available for validation and behavioural investigations of the written 
specification . 

1. INTRODUCTION 

In-flight simulation provides the ultimate validation test of a new 
flight control concept. The realism of flight test·overcomes the 
deficiences of ground based simulation associated with cue fidelity 
and modelling inaccuracies. On the other hand, cost and safety 
issues constrain what is achievable in experimental flight test. A 
balance between ground and flight test is required to mature a 
control concept fully. In the field of helicopter flight control and 
handling qualities, the potential benefits offered by Active Control 
Technology (ACT) are considerable [I] and results derived from 
ground and in-flight simulation in Europe and North America have 
demonstrated benefits at moderate performance levels. Future 
military rotorcraft will need to operate at considerably higher 
performance and in tougher environments than currently achievable. 
To support the development of appropriate handling criteria, carefree 
manoeuvring features, and the associated technologies in controls 
and displays , a number of research laboratories are exploring the 
options for enhanced in-flight facilities. In the UK, at the Royal 
Aerospace Establishment, attention has been focussed on studies 
into the development of an ACT system for a research Lynx [2,3). 
Features of the system as currently envisaged include full authority 
fly by wire (FBW) actuation, safety pilot with back-driven controls, 
fail-operate/ fail-safe (FOFS) hardware architecture coupled to a 
range of novel sensors and pilot inceptors providing inputs to the 
control laws. The FOFS architecture is proposed to enable safe 
experimental flight in the nap of earth and at the edges of the 
performance envelope. The impact of this functionality on the 
system redundancy requirements is considerable. RAE identified a 
need for a precise, yet versatile, specification of the system required 
to perform these functions - a specification developed through a 
formal design method and validated by simulation. 

The specification needed to address functionality (for both normal 
and failed states), operation and performance of the integrated 
system, together with interfaces, constraints and testing 
requirements. The specification also needed to be fit for establishing 
realist-ic development costs and timescales. The approach taken has 
crystalised into two phases. Firstly, the development of a textual 

· 91-74.1 

description of the system with accompanying illustrations. During 
this activity, a number of different methods were applied by 
different team members in an attempt to formalise the requirements, 
to tackle design issues and to provide a format compatible with the 
later stages of the system life cycle. The Jackson System 
Development (JSD) methodology was selected for several reasons: 

(a) The JSD modelling produces a formal specification of all the 
pilot/system interactions and so forces the engineer to consider 
system behaviour from a constructionaVdesign rather than 
hierarchical description viewpoint. 

(b) The JSD network provides a complete description of all the 
external system interfaces required, plus a systematic 
partitioning of the system functionality. 

(c) Ambiguities in the textual material are naturally identified. 

(d) Tools were available to support the method including 
automatic code generation. 

A most important feature of the specification is that it is an 
executable version of the functional behaviour of the system. Ada 
code is automatically generated from the specification and, when 
combined with a simulation of the flight model and various 
peripheral devices, becomes a 'living' specification of the system 
behaviour. 

The second class of requirement involves the investigation of 
options for the exact nature of the final system implementation. This 
research is intimately connected with the number and types of 
processing element, and the form of fault monitoring and reporting. 
To this end a new language has been invented which allows 
description of hardware layouts and the provision of fault tolerance. 
The description language is supported by data entry and code 
generation tools that allow machine manipulation of the description 
and realistion of the specified system using Ada. This facility 
enables the investigation of various hardware architectures, 
providing the vital realism required to back up more conceptual 
research. 

The RAE ACT Lynx project is currently 'on hold' due to UK 
funding limitations; the sophistication and complexity arising from 
the FOFS requirement has a significant cost penalty. The exercise of 
developing a living specification is continuing howeverllll~~E._e key 
experiences are shared with the broader helicopter community in this 
paper, which draws on aspects of the system functionality to 
illustrate the JSD approach of modelling and network analysis. 
Section 2 covers the evolution of the ACT Lynx requirements 
leading to the need for a prototype simulation. Section 3 deals with 
the development and use of the Ada simulation, illustrating its 
investigative potential and Section 4 discusses the way forward for 
the specification and the project as a whole. 

2. EVOLUTION OF THE SPECIFICATION 

2.1 Background 

In a series of technical memoranda and reports [2,3,5,6] RAE 
developed the rationale for a programme of research based on an 
ACT helicopter. Further studies have demonstrated the practical 



feasibility of modifying the RAE AH7 Lynx ZD 559 into a full 
authority ACT vehicle for such a purpose; encouraged by the 
feasibility of this approach, RAE embarked on the preparation of a 
specification for the airborne component of the ACT Lynx system. 
Figure 1 illustrates one possible design concept: The experimental 
pilot's conventional control system is replaced with an ACT 
system. The elementary modules of the new system are described 
more fully below, in section 2.3, but, in essence, a flight control 
computer connects a new set of inccptors and sensors to a group of 
parallel actuators driving the original actuation system. This 
approach, whereby the existing actuators arc retained and the new 
parallel actuators backdrive the mechanical runs to the safety pilot's 
controls has been employed successfully in previous experimental 
ACT helicopters. An alterr.3tivc configuration where the 
revcrsionary system is a core C1v-by-wire system is also under 
investigation. The work rcponed in this paper is to a large extent 
generic in relation to architectural layout, although examples given 
will refer to the conventional situation. 

From the outset RAE were determined that the specification should 
be the basis of a well managed procurement exercise, and as such, 
should solve all of the significant design issues of the system. 
Potential suppliers would then be able to assess accurately the costs 
of supplying the various components of the system, since the 
possibility of being involved in expensive open ended design work 
would be eliminated. Also, by solving the outstanding design 
problems ab initio, RAE would be sure that the system could 
actually be supplied in accordance with the specification. 

2.2 Adoption of Jackson Techniques 

With the objective of producing a complete, unambiguous 
specification it was decided to employ, as far as possible, the 
techniques of Software Engineering. The disciplines of these 
techniques would ensure a rigorous development of the design, and 
the associated CASE tools would assist in maintaining the precision 
and integrity of the specification. For the digital part of the total 
system, the methods could be applied directly but for other parts, 
which could include analogue, mech!Ulical, hydraulic and even 
human components, it was not immediately clear how the software 
techniques could be adapted. Moreover, it was desirable that, at the 
specification stage, there should be some freedom as to the type of 
implementation. 

Jackson System Development (JSD) , (7,8) was stipulated as the 
preferred methodology, but proved, at least initially, to be difficult 
to embrace in this novel, more general, context. While the 
difficulties relating to the use of JSD were being resolved, there 
was a partial application of De Marco [9) methods; consequently, 
when the first version (Issue 2.0 (10)) of the specification was 
circulated among suppliers, in addition to the conventional structure 
of paragraphs of text supplemented by a set of technical illustrations 
and diagrams, it contained a group of data flow diagrams and data 
compositions relating to a De Marco style enhancement to the text. 

As a matter of deliberate policy the design team at RAE took Issue 
2.0 and subjected it to careful scrutiny in order to identify those 
areas where it could be significantly improved. In particular, the 
possibility of using JSD was re-examined since, in the context of the 
ACT Lynx application, a methodology biased towards system 
development was considered to be more appropriate than a 
decompositional, hierarchical, descriptive technique. A strength of 
the Jackson method is that it spans the full range of activity from 
system definition to production of code [ 11 ], so that at one end it is 
concerned with modelling correctly, for example, the actions of the 
pilot when he uses the Pilots Control Panel (shown in Fig 2 and 
discussed fully in later sections) and, at the other end, contains the 
level of detailed specification necessary to generate code. Such a 
level of detail ensures that the design problems of the specification 
have been addressed even if the software is not actually produced, 
but in this application a further step has been taken and code 
produced to implement a simulation of the specified system oflssue 
2.0 (section 4). These two areas had not been given sufficient 
emphasis in the earlier version, and the discipline of JSD would 
force attention to them. 

2.3 Specification structure. 

The specification structure describes the system in terms of its 
major functional elements. This decomposition was the only one that 
was imposed on the system a priori and reflected a separation which 
was unavoidably incurred by the nature of the project. Such a 
subdivision does not preclude further subdivisions should they 

evolve from the design process. The outcome is shown in Figure 3, 
where the square and rectangular components arc those relevant to 
the specification exercise. The bold rectangles are referred to as 
processing elements embodied in a Flight Control Computers (FCC) 
although such terminology was not used in the specification. 

The elements of the system arc described in the order of the primary 
flow of the signal information illustrated by the arrows in Figure 3. 

(i) Sensor Element (SE), This leading element contains the aircraft 
motion sensors - attitude, heading and rate gyros and 
accelerometers, and also the air data units for obtaining velocity 
components, pressure and temperarure information. 

(ii) Crew Station Element (CSE). The other leading element 
incorporates the conventional controls for the safety pilot and a 
versatile side arm controller facility for the experimental or 
evaluation pilot. For convenience these inceptor components 
were rrouped together as an Inceptor Element (IE). The CSE 
also contains the various interfaces for the pilot to engage, 
operate and be cued by the ACT system (Figure 2) as follows: 

(a) Pilots Control Panel (PCP) - used by the Evaluation Pilot for 
engagement and disengagement and also for conducting the 
system-test sequence. Engage and Disengage operations would 
normally be performed using switches on the pilot's controls. 

(b) Repeater Panel (RP) - provides a copy of the displays forth,: 
Safety Pilot. 

(c) Menu Panel (MP) - provides other ACT interactions, such as 
selecting one of the available control laws and sets of parameter 
values. The same panel provides the interface for injecting 
preprogrammed disturbances into the system, as part of a flight
test facility used, for example, in the validation of the helicopter 
mathematical models and in demonstrating compliance with 
handling qualities requirements of new control laws. 

(d) Mode Select Panel (MSP) • available for in-flight selection 
of control modes, for example, height-hold and speed-hold. 

Clearly the CSE would be expected to feature significantly in 
any JSD modelling exercise, with the pilot assuming a number 
of different roles as he interacts with different components of the 
system. Some of the related modelling issues are discussed in 
section 2.5, below. 

(iii) Control Law Input Support Element (CLISE). This element has 
the main purpose of processing and managing the information 
from the Crew Station and Sensor Elements. It also contains the 
function for scheduling of a comprehensive system test. 

(iv) Control Law Element (CLE). This element is supplied with 
inceptor, sensor, mode selection and related information by the 
CLISE. The CLE is the raison d'etre of the ACT Lynx since i 
hosts the experimental control laws which are to be evaluated. It 
is this element that the user of the ACT Lynx, the handing 
qualities engineer or flight dynamicist, will interact with. 
Carefully verified and validated control law software [4) will be 
plugged into and unplugged from this clement. Typically six 
control laws will be selectable by the experimental pilot with an 
additional choice of up to six sets of parameters within each law. 
The demands produced by the CLE for each of the four axes 
may be separated into low and high frequency demands, if 
required, which are destined for the parallel and series actuators 
respectively (an option being currently evaluated). The 
separation algorithm is part of the user supplied CLE software. 
Alternatively this function could be achieved in software and a 
combined signal fed to full authority actuators. 

(v) Control Law Output Support Element (CLOSE). The element 
following the CLE interfaces the demands produced to the 
remainder of the system. It also provides a 5electable limiter on 
the demands produced by the control law as additional protection 
against immature software. 

(vi) Actuator Drive and Monitoring Element (ADME). The final 
element to provide processing takes the demands from the 
CLOSE and produces d9ve signals for the parallel actuators 
resident in the Actuator Element, and the series actuators in the 
Primary Flight Control Units (PFCU). The ADME also managr 
the engagement of the ACT system through the energising of tY.. 
parallel actuators, and supplies a normal autostabilisation 
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function when the ACT system is not engaged. · 

(vii) Actuator Element. The parallel actuator system is last in the 
sequence. The parallel actuators are connected to the 
conventional control runs from the safety pilot; when the 
actuators are engaged (hydraulically powered), the controls are 
back driven to provide the safety pilot with essential control 
position cues and to aid in recoveries, and forward driven to 
the existing Lynx PFCUs. 

(viii) External System Support Element (ESSE). In support of this 
network of elements is an element which essentially provides a 
catchment for all of the significant data in the system. It 
interfaces with the standard on-board data acquisition system 
MODAS I 12] and also with the experimental displays such as 
helmet mounted or head down displays. A record of an system 
related events such as engagement, disengagement, and 
diagnostic messages is retained in a System Journal. 

2.4 Element descriptions. 

Issue 3.0 of the specification I 14] contains a detailed description of 
each of the elements identified above. As far as possible, the 
recommendations of the STARTS (13] guide have been fonowed in 
the preparation of the specification. Each element is described in 
detail under the headings Type, Function, Operation, Performance, 
Inputs & outputs, Interfaces, Testing, and Failure reporting & 
recovery. Where a particular element is composed of replicated 
units, so that several units together comprise an element, the 
replication of units in the element is stated and the unit itself is 
described under the same headings. For example, the CLISE is a 
triplex element composed of three identical CLISUs ( Control Law 
Input Support Units). In detail the descriptions are: 

TYPE - Some indication is given here of whether implementation is 
anticipated as an analogue, digital, mechanical, hydraulic, electro
mechanical or human process. The suggested implementation is not 
intended to exclude alternatives if a supplier possesses a particular 
specialism or preferred approach. The view was taken, after some 
deliberation, that it was better to make specific recommendations 
rather than to leave the 'type' issue open. A general anowance could 
then be made for variations that nevertheless complied with the 
functional aspects of the specification. 

FUNCTION - Under this heading is a complete statement of the 
tasks of the unit , that ;s,a statement of what job the unit has to do. 
For example, one of the tasks of the CLU (a unit of the CLISE) is 
inceptor management; the entry reads: 'The inceptor displacements 
and inceptor switch positions shall be processed to provide 
consolidated signals for the associated Control Law Unit (CLU)" 

OPERATION - This sub-section is concerned with how the unit will 
achieve its functions. This is done by detailed description, in text, of 
the processing required for each function. For the CLISE example 
above, the fun details of the processing of the triplex signals would 
be supplied, including the consolidation algorithms for fault 
tolerance. The narrative under this heading is used to build the JSD 
Specification: the full JSD·is not held within the text of Issue 3.0, 
but sufficient initial design work was undertaken to be confident that 
a JSD specification could be derived from the narrative. 

PERFORMANCE - This deals with how much and how well 
issues, including a statement of the times within which the tasks 
must be completed and, where appropriate, the accuracy that must 
be achieved. For example, a certain part of the system test must be 
performed within a stipulated time. The sampling rates for the unit 
would be specified here. One important defined constraint is that the 
total system transport delay should be 25 ms. 

INPUTS & OUTPUTS - This contains a list of an signals received 
by the unit and those transmitted by it. It includes the source of a 
received signal and the destination of a transmitted one. This 
information is also presented in diagrammatic form, Figure 4, for 
example, where the connections to neighbouring units are clearly 
visible (The network notation is discussed in section 3). There is, 
of course, a need to maintain consistency here, since for each in,put 
listed there must be a corresponding output on some other unit. 
Such consistency is easily maintained by a CASE tool such as 
Jackson Work Bench (JWB) (15}. 

INTERFACES ··A list of the units and their types, both internal and 
external. to which the subject unit is connected. The purpose of 
this information is to identify the interfacing requirements between 

units - analogue to digital, for example. 

TESTING • A statement of how the function, operation and 
performance of the unit is verified. In particular this may be done at 
a system test invoked prior to take off, or by the inbuilt monitoring. 

FAILURE REPORTING AND RECOVERY· A statement of how 
errors, produced by a fault and having· been detected, are reported 
within the system. Usuany they are reported to the pilot via the 
Menu Panel, and sent to the system journal part of the ESSE. 
Cautions and Warnings may also be raised through the Central 
Warning System. In addition, a statement of the recovery of the 
system may be required; often the recovery is by returning to 
Standby via a controlled disengage - as would be the case when one 
of the monitoring tolerances within the system has been exceeded. 

2.5 A living specification 

Once Issue 3.0 of the airborne system specification was complete, it 
was decided to progress to a run JSD specification in order to 
identify and eliminate any residual ambiguity; vagueness or plain 
error. The run JSD would then be available to use as an adjunct to 
the written specification. It would give a precise description of the 
interfaces between the components of the system and between the 
system and any external devices, to the benefit of prospective 
suppliers. 

A further decision was made to use the JSD to generate a simulation 
of the ACT system, to produce, in effect, a living specification 
which could be used to exercise and examine the specification 
dynamically. The novel features involved in this step are described 
in detail in section 3, but the six aims of the simulation in relation to 
authenticating and potentially enhancing the specification were: 

(i) Control and human operation of the system. Pilot acceptance of 
the procedures for operating the system, for example, the arm/ 
engage/ disengage sequence can be evaluated through hands on 
experience. Also suppliers can directly examine the nature of the 
interface between their equipment and the rest of the system. 

(ii) Synchronised control information. The techniques for managing 
and synchronising control information within an asynchronous 
or loosely synchronous system can be verified. 

(iii) Establishing tolerances. An asynchronous system generally 
must anow some tolerance in the monitoring of the infonnation 
from replicated units. Suitable tolerances can be verified or even 
derived. 

(iv) Computational load. The processor power and memory 
requirements of the system can be more confidently deduced 
from a simulation than a paper specification. Alternative 
implementations may be evaluated for processing efficiency. 

(v) Fault management. The mechanisms for reconfiguration, and 
the issuing of caution and warning signals may be verified. 
directly. 

(vi) Design Evolution. Alternative designs for the components of the 
system can be evaluated directly . 

Before progressing from this discussion on the evolution of the 
specification to considering the development of the simulation in 
detail, there are two topics worthy of a special note. 

2.6 The Supervisor as a modelling issue. 

One area which, from the beginning, was subject to intense scrutiny 
was the control or overall supervision of the ACT system, including 
engagement and disengagement. Clearly this is a critical area where 
it is essential to get the specification and implementation correct. An 
example of an early model is shown in the flow chart in Figure 5, 
where the System Test, initiated by the pilot, if successful, is 
followed by a repetition of the arm, engage, disengage sequence of 
actions. While useful for conveying the general idea of the pilot's 
interaction in this area, it was not sufficiently precise to base 
software directly upon. For example, it is possible according to the 
specification, to return to Standby through a disengage action 
without an engagement of the system. This path is not shown in the 
flow chart. To express the requirements in a precise manner finite 
state machines (FSM) were mooted and proved a very u,.:ful 
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· approach. That shown in Figure 6 included the additional 
· transitions to Standby omitted from the flowchart, but suffered from 

a shared disadvantage in not exposing that the system test, itself, 
included arm, engage, disengage sequences. FSMs have the 
advantage that they are readily transformed into software so they 
were seriously considered as a basis for a 'supervisor' process, 
which would have overall control and only pennit defined 
transitions of the system to occur. The problems experienced with 
this approach were twofold. First, incorporating all of the possible 
states and transitions afforded by the pilot resulted in a very complex 
FSM, which was difficult to interpret and militated against a correct 
implementation. Secondly, the engage or disengage actions made 
within system test, gave different states from those occurring after a 
successful system test. Consequently, and very importantly, the 
system test did not exercise that part of the controlling software 
which would ultimately be used. 

These problems were resolved in the final JSD modelling, part of 
which is shown in structure diagram form in Figure 7, where the 
system test and engage models are separately treated but have 
appropriate interlocks. In the structure diagram notation, which is 
described more fully in section 3, the leaves of the tree structure are 
actions (similar to transitions of the FSM) and in Figure 7 there is a 

• repetition, denoted by the'*' symbol, of the alternatives, denoted by 
the 'o' symbol, of a normal engagement cycle or an early disengage. 
The Arm,Armed, Engage sequence can be quitted, denoted by the 
'!' symbol, at any stage to continue with an early disengage. The 
system test process is a simple cycle of alternatives of a successful 
or unsuccessful test. 

The example above has been discussed, for clarity, in a simplified 
context, omitting such complications as control law selection and 
disturbance injection, but the same principles apply. The use ofJSD 
in this area has helped to achieve a satisfactory modelling and, 
further, the model can be directly implemented as a process, upon 
which the whole of the software can begin to be constructed. It is 
also interesting to note that the separation away from a monolithic 
supervisor was also guided by the need for maintaining optimum 
integrity. The various roles of the pilot are modelled separately with 
appropriate interlocks preventing inappropriate actions, for example, 
a change of control law when the ACT system is engaged. 

2. 7 Fault tolerance and redundancy management 

A second topic of fundamental concern within the function and 
operation sections of the unit descriptions consideration is the 
redundancy management and fault monitoring issues of the 
multiplex elements. The main criterion for tolerance is that the 
system should be first fail operative, and the identification of a fault 
should alert the evaluation or safety pilot, through the Pilot's 
Control Panel or the Repeater Panel respectively, to return control 
to the safety pilot and conventional inceptors, by a controlled 
disengagement of the ACT System. Faults in a unit are detected by 
downstream comparison of its outputs with those of its siblings 
(associated units or lanes within the element - its partners within the 
redundancy). This recognition is dealt with in three ways: 

(i) The consolidation of the redundant signals must not be affected 
by one signal being in error. There are two types of information 
to consider here. The first type is 'analogue' or continuous type 
of data where the median select is used for triplex architectures, 
the second type is discrete data where a majority vote is 
employed; both of these are passive fault masking operations 
used to collect valid data for subsequent processing. 

(ii) The error must be recognised and signalled to the system and the 
pilot via the appropriate panel lamp - this is the monitoring 
aspect. The event must also be logged in the system journal. 

(iii)There must be a reconfiguration triggered by the signalling of the 
error in order to isolate the faulty unit. The isolation is done by 
ignoring all of the outputs of the faulty unit. 

A dual-duplex arrangement operates in a different manner, where 
each pair of units carries a validity signal and outputs the validity 
status alongside the functional data. The downstream units can then 
mask the faulty unit by a tolerant behaviour or reconfiguration. The 
ACT System has in its initial form, a dual duplex ADME, originally 
to be compatible with the dual hydraulics of the existing Lynx 
actuation system, and the single fault tolerance arises from the 
disconnection of a faulty pair of units from the drive to the actuator; 
tht: performance of the drive being such that it can tolerate such a 
reduction of input.· The processing elements, CLISE, CLE and 

CLOSE, are triplex, but have no cross connections at their mutual 
interfaces .(There is a modicum of sibling monitoring in the 
consolidation of discrete data.) Consquently they effectively form a 
single triplex module. The SE and the CSE are essentially triplex 
with a full number of cross connections to the CLISE. 

2. 8 The adequacy of the Issue 3 Specification. 

The ACT System elements and the functions they perform were 
conceived and assembled from the combined engineering experience 
of the project team. This included first hand experience with design 
of conventional control systems and direct exposure to the helicopter 
digital flight control system programmes in foreign Industry and 
Government research laboratories. The FOFS requirement for ACT 
Lynx combined with the need for significant flexibility in operation 
created new problems however. The completeness and validity of 
the upgraded Issue 3 ACT Lynx specification had to be questioned. 
Were the performance figures achievable in practice? Would there 
be smooth operation through! the PCP? Would the redundancy 
managment logic work? In many projects it is apparent that 
answers to these kind of questions are deferred until deep into the 
detached design phase, often when the customer is no longer closely 
involved. RAE needed to increase confidence and reduce the risk 
associated with these questions; it was decided to embark on the 
development of a fully operational prototype simulation. An 
incremental approach naturally complemented the JSD methodology. 

3. INCREMENT AL DEVELOPMENT OF AN ADA 
SIMULATION 

3.1 Overview. 

The development of a full JSD specification, and its implementation 
as a simulation of the ACT system required a number of adaptations 
and extensions to conventional JSD. There was, for example, the 
question of the treatment the non-digital aspects of the specification 
and, in addition, the need for a method of specifying triplex, and 
dual-duplex architectures in an efficient manner. Further, the CASE 
tools supporting JSD needed to be enhanced to support any 
extensions to the method. Finally, the simulation was to be 
·implemented in defined stages so that lessons learned during the 
review of each stage can be included into subsequent stages in a 
disciplined manner. A consequence of the incremental approach was 
that the appropriate incremental stages had to be defined initially in 
outline but could, at a later stage, be altered in order to respond to 
revised, or corrected, requirements. All of these concerns are 
addressed in this remainder of this section after a brief introduction 
to the notation and concepts of conventional JSD for computer 
systems. 

3.2 Jackson System Development 

Jackson System Development is a method of analysing a written 
specification for a computer system to produce a formally 
executable specification. The method was jointly developed by 
Michael Jackson and John Cameron in the early 1980s [7 ,8]. It 
consists of three stages: model, network and implementation. There 
is considerable emphasis placed on the modelling stage in order to 
establish, unequivocally, the information available from the outside 
world. 

3.2.1 Mode1ling. A JSD model is a description of the real world 
as it appears to the system. Entities are objects in the real world 
which have to be modelled by the system, and of particular interest 
in the modelling activity are those entities which perform discrete 
actions. For example, a press of the ARM button by the evaluation 
pilot is an action which is important to the system. The modelling 
stage requires that the actions be allocated to specific entities, and the 
main task of the modelling phase is to identify viable entities and 
allocate the relevant actions to them. For each entity the time 
ordering of the actions must be then be specified and, 
conventionally, a tree diagram is used for this purpose. As an 
example consider the truncated list of actions from the ACT Lynx 
system shown in Figure 8. Some of these are related to the pilot 
entity in his role of engaging the ACT System and to express the 
time-ordering a tree diagram using (Jackson Structured 
Programming) JSP notation is shown in Figure 9. The root is 
named after the entity which performs the actions, and the leaves 
(the lowest level boxes which are named rather than numbered) hold 
the names of the individual actions. The intermediate nodes or boxes 
describe the possible types of behaviour: sequence, selection and 
iteration, as denoted by the symbol in the top right hand comer of 
the box. An asterisk (*) represents iteration, that is, none or more 



occurrences; a circle (o) represents selection, that is, a mutually 
exclusive choice; an absence of a symbol represents a sequence, that 
is the branches of a node occur, as they are read, from left to right. 
The numbers in the lowest level boxes refer to changes in the state 
of the object (entity) as shown in the table in Figure 9. Thus 
Figure 9 expresses a model of the Pilot Engagement entity as a 
repetition of occurrences of Engagement Cycles. An Engagement 
Cycle can either be a Normal Cycle, composed of a sequence of 
Arm, Armed, Engage, Disengage, or alternatively an Early . 
Disengage, composed of only part of the normal sequence followed 
by a Disengage. The appropriate changes of state are indicated by 
the numbered operations for each action, and it can be seen that prior 
to any action the engagement state is initialised to DISENGAGED 
by operation 13. 

In a completed model, the total set of tree diagrams describes all of 
the time orderings of the actions plus the changes in system state. In 
real-time systems it is often only the controlling activities which 
require this type of modelling and much of the real world is 
modelled simply by polling sensor information. In the ACT Lynx 
application, for example, the Lynx helicopter is modelled 
kinematically by polling attitude and rate gyros and accelerometers. 
The tree diagrams in these cases are simply iterations of polling 
actions. 

It is convenient here to look ahead to the implementation stage and 
observe that the model structure in Figure 9 can be used as a 
program structure for a process to control the engagement of the 
ACT system. Once operations have been added to read incoming 
action-messages then all that is required is for the operations to be 
expressed in the required language. The iterations can be expressed 
as loops and the selections as conditional statements with 
appropriate conditions. The result is that the tree diagram can be 
converted to code mechanically either by hand or, as in this work, 
automatically. 

3.2.2 Network. Processes derived from the entities defined in the 
modelling stage are called model processes. Other processes are 
needed to make use of the data stored by the model processes in 
order to generate the outputs whicn are to provide the required 
functions of the system, and further processes, such as button
pollers, may be neeeded to provide inputs to the model processes. 
Communication between processes is either by a datastream, which 
is a queue of discrete messages. or by read-only access to another 
process's internal data, that is,by an inspection of its state vector. 
The specification of these additional processes and the 
communications between them is the developer's main task. All of 
the processes are described using the JSP tree-diagram notation and 
the result is a network of communicating sequential processes. A 
diagram of the network conventionally represents processes by 
boxes, datastreams by circles and state vector inspections by 
diamonds. 

These features are illustrated in Figure I O which shows part of the 
network diagram associated with the CLE of the ACT Lynx system. 
The input datastream to the control_law_algorithm process is the 
frame time-grain-marker (cla_tgrn) which sends its outputs (actuator 
demands) as a datastream to the disturbance_imposer process. As 
can be seen, the control_law_algorithm process has access to the 
internal data of several other processes. For example, via the 
clise_amse_data state vector inspection, it has access to the Aircraft 
Motion Sensing Element data of the clise_amse_data process. 
Similarly the process has access to inceptor, mode-select and 
engagement status data etc. The engagement status data is obtained 
from the Pilot_engagement model process discussed earlier and 
described in Figure 9. The double bars across some of the 
connections merely denote enhanced multiplicity: for example, there 
are more than one inceptor providing positional data to the 
control_law_algorithm. An example of a JSP description of a 
network process is given in Figure 11, which describes the process 
for dealing with the interaction associated with the selection of 
control laws. The tree diagram, Figure I !(a), has had appropriate 
operations added as leaves to the structure. and the operations are 
defined in Figure 11 (b). Some of the operations are concerned with 
modifying internal data, such as operations 50-52 and 21-24, with 
the latter group maintaining data that will be accessed by another 
process (The SV prefix denotes its state vector destination). The 
other operations are concerned with communications. The state 
vectors of some other processes of the network are inspected by 
operations 40 and 41. An input datastream is read by operation 30 
and output datastreams are written to by operations I 0-13. The tree 
diagram. together with its operations list, is to sufficient to generate 
program code from, once approriate conditions have been attached 

to the iterations and selections. All that is required is the addition of 
a declarative part and a decision about how to implement the 
datastream read and write operations for a particular implementation 
of the system. This latter aspect is discussed in the next section. 

3.2.3 Implementation. The implementation stage is concerned 
with matching the network to the target environment. The flexibility 
which is available at this stage is a useful property of JSD in that it 
enables the specification to be verified prior to it being implemented 
on the target hardwar.e. In the network each process executes 
concurrently with every other. This is unlikely to be the case in the 
target environment where a limited number of processors, often a 
single processor, will require that some of the processes are 
suspended while others execute. The @ symbol in the READ and 
WRITE operations of Figure l l(b) indicate the need for a Macro to 
deal with the suspension of the process. The code required is 
standard and can be generated automatically. Although the 
procedure may appear complex, it is its flexibility that defies a 
compact description not its difficulty. In practice there are standard 
strategies for implementation [7 ,8]. For example, by using a 
scheduler, all of the programs arising from the JSP description can 
be converted into subprograms, or procedures, and the datastreams 
implemented as procedure-calls. The final result of the 
implementation stage is code that will execute on the target 
hardware. 

3.2.4 Summary. The principal aim of the JSD method is to 
create a specification which can be usefully viewed from both above 
and below. The modelling stage is an object oriented analysis of the 
real world which produces a description which users can readily 
grasp, because the result is described in terms of objects familiar to 
the user. The tree diagrams of the method also provide important 
detail about the model of the real world. The network stage uses 
two descriptions: (a) Data flows, which can be presented to the user 
to indicate the architecture of the system and (b) Tree digrams 
which the analyst can use to express the design of a particular 
function. The resulting specification can be viewed by the user from 
above because it is in terms of their real world and, simultaneously, 
the specification contains enough detail for the implementers below 
to perform their task. It is this general property that made JSD 
particularly attractive for the ACT Lynx specification, and 
encouraged a determined assault on the difficulties associated with 
the application ofJSD to the ACT Lynx System. 

3.3 Extensions to the JSD approach. 

As a compositional method, JSD eschews a top-down approach to 
system development. The rationale is argued at length by its 
proponents and a convincing case can be made for it in software 
development; however for more general systems, the physical 
architecture imposes a decomposition by the nature of its elements. 
This is the approach described in section 2: each identifiable element 
can be viewed as an independent system communicating in a limited 
way with other elements. For elements which are composed of 
replicated units each unit is treated as independent. Figure 4 shows 
an example of such a top down view. The datastream into the CLU 
is a frame time-grain-marker, and the only inter-unit connections are 
state vector inspections. Each box represents a unit and JSD is 
applied in a conventional manner to that unit. For those aspects of 
the system which are not expected to be digital, such as the actuator 
element, the same approach is employed except that JSD is applied 
to a specified simulation of the element. Naturally, care has to taken 
to ensure that all of the relevant functional properties of the real 
element are included in the simulation specification with due 
authenticity. The integrity of replacing the real element in a 
specification by a simulation depends not only on authentically 
duplicating its relevant functions but also ensuring that the remainder 
of the system only has access to that data which the real system can 
provide. In the case of the actuator element, for example, the 
actuator positions are not directly available to the ADMUs; one of 
the four simulated position pick-off signals for each control lane 
which must be used. Another example is the engagement state of 
the actuator; signals corresponding to appropriate sensors mounted 
on the actuator must be used to determine whether the actuator is 
hydraulically energised or not. As a consequence the actuator entity· 
must be modelled within the ADMU using JSD principles. The 
need for modelling one element within another is a natural 
consequence of the imposed decomposition into elements. 

When system elements consist of replicated units, for example 
triplex or dual duplex, it is clearly undesirable to compose a JSD 
network diagram for each unit individually. At best it duplicates 
effort, and at worst introduces errors caused by accid.ental 
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differences in the individual networks. What is needed is to reflect 
the written specification and describe a single unit in detail through a 
network diagram in the nonnal manner, supplemented by a fonnal 
description of the element in tenns of its component units. Such a 
fonnal description is shown in Figure 12 (a) and (b) which depict 
descriptions of units of the Inceptor and Control Law Elements 
respectively as held on the CASE database. After some standard 
infonnation (STD-INFO) consisting of its identifier and optional 
background detail, the MAIN-PART of the description includes a 
number of options such as: 

(a) the type of unit - whether the unit is analogue or digital. 

(b) the number of units - here both are simplex units 
replicated three times. 

(c) Whether the units run synchronously or not. 

There is also the possibility for connections between units of the 
element. To complete the description a list is required of all the JSD 
processes which belong to that unit, and thus need to be replicated; 
the final entry (UNIT-SID) being blank shows that the name of the 
list on the database defaults to the name of the unit. 

A similar fonnat is provided for the description of the connections 
between elements as shown by the example in Figure 12(c). The 
relevant fields are the source, destination and whether the 
connection is unit to unit individually (ONE-TO-ONE) or completely 
cross connected (BROADCAST). The connection description also 
holds some infonnation relating to the fault tolerance implementation 
which is discussed in the following section. 

3.4 Implementation of Fault Tolerance 

Figures 14(a) and 14(b) describe the connections between the 
Inceptor Element and the CLISE, and the fault tolerant software 
sited in the CLISE to handle the data passing between the two units. 
The fault tolerant strategy was based on that described in Reference 
19. The connections between the IE and the CLISE are 
BROADCAST as indicated in Figure 12(c), that is, every IE sends 
to every CLISE.Figure I 2(c) also indicates that each of 
consolidation, downstream monitoring and sibling monitoring are 
enabled. The schematic diagram in Figure 14(b) shows the type of 
fault processing which takes place.Voting is always present where 
there are many sources for the same data. The voted value is 
obtained by either majority vote, or median select depending on the 
type of data. Downstream monitoring implies comparing the values 
coming from each of the data sources with the voted value. If any of 
the sources differs for more than a given number of frames 
(HISTORY-LENGTH in figure 12(c)), then an error is logged and 
the voter ignores all subsequent input from that source. 
Consolidation is perfonned by comparing the historical values from 
each sibling, gathered over previous frames. A consolidater will 
only output a new value if it perceives that all of its siblings agree 
with it. Sibling monitoring implies comparing the voted values 
coming from the siblings of the unit, rather from upstream sources. 
Otherwise the processing is identical, with an error being logged 
when a discrepancy occurs. The sibling which is diagnosed as 
being in error is then ignored by the consolidation process. The 
combination of unit and connection descriptions fully define the 
architecture of the fault tolerance and if a standard strategy is 
adopted for consolidation and voting the appropriate code can be 
generated automatically. 

3.5 Incremental implementation. 

The compositional, or "middle out", nature of the JSD method has 
the property that once a model has been built every new function 
added to it provides a potentially deliverable, working, system. In 
fact, at any stage of the development of the network it can be 
implemented. Incremental development takes advantage of this 
natural property of JSD and phases development of a system over a 
number of increments. The added functionality required from each 
increment is defined initially in outline, and as each increment is 
completed it is reviewed and the contents of future increments re
examined in the light of any modifications or additions that have 
been found to be necessary. The development of a system is thus 
responsive to an evolving specification but at the same time allows 
the project to be managed on the basis of milestones actually 
achieved. 

The ACT Lynx simulation was developed over six increments 
distributed as follows: 

Increment 1: A model of the pilot/ system interaction 
including engagement of the ACT system and inceptor 
movement. The Repeater Panel and a display of the control 
run position. 

Increment 2: A model of the pilot/ system interaction as 
regards System Test, Control Law Selection, Disturbance 
Selection, Mode Selection, Parameter Set Selection. The 
Menu Panel, Mode Control Panel and Pilot's Control Panel. 

Increment 3: A definition of a hardware description language 
for units and connections, and development of associated 
tools. The functionality oflncrements I and 2 based on the 
specified hardware, including fault tolerance. Provision for 
injection of errors. 

Increment 4: Completion of the Control Law Input Support 
Element including the development of a tool for building a 
System Test process from a non-procedural definition. The 
Aircraft Motion Sensor and the Air Data Elements 

Increment 5: Completion of the Control Law Element and 
the Control Law Ouput Support Element. 

Increment 6: Completion of the Actuator Drive and 
Monitoring Element and the Actuator Element. Further 
development of the System Test Builder. 

The simulation also includes a simple model of a Lynx helicopter to 
provide sensor data from the actuator (PFC) displacements. 

From the distribution of material in the six increments it can be seen 
that the primary concern was to establish an acceptable model of the 
pilot's interface. One of the early lessons was that different readers 
of a specification can place different meanings on the same words, 
and the sequencing of the lamps relating to engagement and system 
test on the Repeater Panel needed to be revised. The reference to 
system test in Increment 6 is indicative of the difficulties 
encountered in specifying a comprehensive test. The contribution 
from Increment 4 was not sufficient and more work had to be 
included in the final increment. 

During the development of the simulation no fundamental flaw or 
omission has been discovered in the written specification. 
Nevertheless a wealth of additional detail has been accumulated 
mainly to reinforce inadequate descriptions or to compensate for 
minor omissions. The most significant inadequacy was the omission 
of a description about how to apply the consolidation algorithm of 
Reference 19 to replicated units in a fault tolerant manner. 

3.6 Implementation of the simulation. 

3.6.1 Ada as the implementation language. The selection 
of Ada as the implementation language was detennined by the 
following considerations: 

(i) DoD Language. Ada is a DoD mandated language, and is also 
"highly recommended" by the British MOD, which has provided 
a large, guaranteed market for Ada compilers ensuring a great 
deal of investment from compiler vendors. This fact coupled 
with the extensive validation tests required by the DoD has 
resulted in a number of very high quality compilers being 
available. 

(ii) Language features. As has been discussed below, packages and 
tasks have been very important in implementing this system. In 
addition the comprehensive data typing provided through Ada 
has enabled a more precise specification to be constructed with a 
resulting increase in quality. 

(iii) Tool Availability. The code generation tool Adacode, described 
below was already available in prototype fonn to serve as a basis 
for the project. · 

3.6.2 Target hardware and implementation strategy. The 
simulation has been implemented to execute on an IBM PC, or 
compatible. Therefore a strategy is needed, as discussed in section 
3.2.2, to map the many processes of the specification onto the single 
processor of the target system. For automatic code generation, a set 
of CASE tools are also needed to implement the chosen strategy. 
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There are many possible mapping schemes between JSD and Ada; 
References 16 and 17 describe two. The mapping used for this 
project is based broadly on that described in Reference 17; it relies 
very heavily on packages. the aim being to produce a set of Ada 
packages where each correspond only to one specification object 
(e.g. process or data stream). This correspondence enhances the 
traceability from the JSD specification to the Ada. The extensions to 
this mapping scheme employed in the ACT application are: 

(a) each unit is mapped onto a task type. Figure 13 shows the 
Ada for the unit described in Figure 12 (b).The replication of 
units within an element is achieved by declaring an array of the 
task type for the unit with a multiplicity equal to the 
REPLICATION factor specified in the UNIT object, which in 
the case of Figure 12(b) is 3. 

(b) the infrastructure which provides the fault tolerance is 
described using a number of generic packages which are 
instantiated based on the information in the connection object. 

An example of the implementation mapping between the 
specification network and a unit is depicted in Figure 12(d) for the 
Control Law Unit. The rectangle at the top corresponds to a task 
type, with the network processes converted via a standard 
transformation strategy into a procedure-calling hierarchy; processes 
nearer the top call those connected directly beneath them Data 
external to the CLU is shown via the disk symbols, with access 
shown. 

3.6.3 Automatic code gencrationCode generation is provided 
by a prototype Ada code generation tool built by LBMS which has 
been significantly enhanced during the life of this project. Figure 15 
illustrates the workings of the tool. It takes the description of the 
system, specified using the Jackson Work Bench (JWB) CASE 
product and generates the complete simulation from it.Data 
Extraction is done using built in facilities of the CASE tool. The 
code templates are combined with the specific parameters extracted 
from JWB by a proprietary tool called JSP-MACRO. The code 
generation approach provides a great deal of flexibility with respect 
to changes in the implementation of the system. Many simple 
changes can be achieved purely by amending the templates. Even 
large changes may only require changes to the data extraction, 
leaving specification of the system unchanged. As well as tools to 
build the whole system. there are others which rebuild the svstem 
regenerating a minimum of Ada based on changes and still others 
which create test harnesses for any sub network of the specification, 
providing a cost-effective way of ensuring quality. 

The use of code generation was a significant contribution to the 
project. Several factors encourage its use in projects of this nature 
including: 

(i) Productivity. The most obvious gain is productivity. The 
statistics concerning the number of lines of code and even 
number of functions (counted using function point analysis 
FPA)) were very high. The figures obtained from the second 
delivered increment were as follows: 

(a) Function Points per man day 2.34 
(b) Source Lines of Code per man day 204 

(ii) Ease of Instrumentation. The requirement for dynamic analysis 
will doubtless change as the simulation is used. Because the 
system is generated using code generation, the instrumentation 
can be changed merely by altering the form of the Ada templates 
and regenerating. 

(iii) Evolutionary Delivery. One of the imponant factors that 
supports evolutionary delivery is for user feedback at the 
specification level to be convened efficiently and accurately into 
implementation changes. With automatic code generation 
directly from the specification this is assured. 
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(iv) Living Specification. One of the major problems of maintaining 
computer systems is that the behaviour of the running system 
can diverge very quickly from the original specification of 
system behaviour, once maintenance and development begin. 
Code generation provides the ability to maintain a "living 
specification", i.e. one where changes to the specification are 
automatically represented in the implemented system. 

This feature is especially important in the case of the ACT 
system because of the potential need to evaluate many hardware 
and error monitoring combinations and even new functions in 
the course of the planned ACT research. 

(v) Re-Implementation. Another important benefit of code 
generation is that, without changing the JSD specification of the 
system, a completely different set of code can be generated. for 
example to fit the system onto real or alternative hardware such 
as transputers. This can sometimes be achieved merely by 
changing the code generation macros, but may require new 
implementation objects if the implementation is-significantly 
different. Therefore the investment in a system specification is 
not compromised when evolving the system towards greater 
realism. 

4. THE WAY FORWARD 

At the time of writing the RAE ACT Lynx project is at a hiatus. 
Estimated procurement costs for the system and its certification are 
high and are likely to require a multi-partner team to be affordable. 
Both UK and International options are being explored but no clear 
way forward curently presents itself. Activities in support of the 
project are continuing at RAE including the study of performance/ 
trade-off issues associated with trials in flight (safety) critical areas. 
The role of the safety pilot is crucial to this work and ground-based 
simulations [ 18] have been conducted - and are planned - to address 
critical functional questions such as optimum location of 
disconnects, backdriving frequencies, mismatch tolerances for 
failure managment, and PCP ergonomics. In parallel with these 
topics, the requirements specification will continue to be developed. 
The current operational form is essentially complete in its 
functionality. Future tasks include: 

(a) Instrumentation of the simulation to evaluate end-to-end and 
internal performance and behaviour. 

(b) Production of a comprehensive user guide to the simulation. 

(c) Comprehensive exercise of the simulation to validate the 
specification across the operating spectrum. 

(d) Upgrading the requirements specification in line with the 
results of (a) - (c). 

(e) Upgrading the requirements specification to include a second 
level of JSD analysis, i.e. network and process diagrams 
together with text. 

(0 Implementation of the Ada simulation in real time with 
representative pilots', engineer's and software development 
stattion. 

Many of these tasks can be embarked upon concurrently and are not 
specific to the implementation in the final system. The results from 
these activities have generic value and can be used to guide and 
support similar projects for example. The current Ada simulation 
has been developed in seven increments and the approach has 
demonstrated the utility of this approach. The simulation has 
'grown' in a controlled manner with each increment offering more 
functionality for review and revision if necessary. The approach has 
had the added advantage of enabling the software engineers to 
develop their understanding of the application incrementally. A top
down appraoch to the design would have required considerably 
reater investment in 'application learning' before any creative work 
could have been staned. It is recognised that there are contentious 
issues in system development and that there are no right or wrong 



approaches. JSD has exposed functional anomolies and forced 
hidden issues into the open through its emphasis on design, 
however. The behaviour of the ACT Lynx system, as currently 
configured, is now well understood - the flight critical nature of the 
application makes this an attractive position to be in. 

5. CONCLUDING REMARKS 

The handling qualites opportunities offered by active control 
technology for helicopters require considerable research effort using 
both ground and in-flight simulation before the final and complete 
potential is realised. Much work has already been done but the 
peculiar problem areas, such as carefree handling, of high 
performance levels have yet to be explored in-flight. The safety
critical nature of such flight research demands that a fail-operate 
design concept be employed covering both system hardware and 
software. In the UK, the Royal Aerospace Establishment has 
proposed the procurement of an experimental ACT system for its 
research Lynx. This paper describes the development of the 
requirement specification for the airborne system including crew 
station, sensors, processing elements, actuation etc. In its current 
form the requirement is a textual and diagramatic description of the 
system behaviour covering functionality, operation, performance, 
testing and interface requirements. The specification is supported by 
design using the JSD methodology. An outcome of the design work 
is a prototype Ada simulation of the system. Examples of the JSD 
modelling and the mapping into Ada have been described. Initial 
results from exercising the simulation have been presented. 
Although the overall ACT Lynx project is on hold until an affordable 
package is defined, the requirement specification continues to be 
evolve, with an upgrading scheduled to folow irom a 
comprehensive instrumentation and exercise of the simulanon. A 
real time implementation is planned which could form the core 
element ofa ground system to support sofrware development. 
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Action Summary Attributes 
ARM The pilot reque~ts that the system be 

armed. 
ARMED The actuator positions and the 

control law demands are in harmony 
ARM_DEFAULT_MODE The initial arming of a default ID: MODE_ID_TYPE 

control mode. 
CANCEL_SYSTEM A request to cancel the system test. 
_TEST 
CAPTURE This is the signal to mode to go ID: MODE_ID_TYPE 

from ARM to ARM AND IN CAP 
COMPLETED_SYSTEM All tests of the system test have 

TEST been successfuly completed 
CONTINUE_SYSTEM Indication that the current test of the 
_TEST system test has been successfully 

completed. 
DISENGAGE The system has been disengaged. 

This may happen before 
engagement ( 1) by the pilot pressing 
the disengage button or (2) by the 
system failing to get into the 
ARMED or ENGAGED state. 
It may happen whilst ENGAGED 
on receipt of a signal from an 
actuator relaying the fact that it has 
become disengaged 

DOWN_DISTURBANCE The pilot wishes to be offered the 
_REQUEST previous valid disturbance, that is 

the first disturbance with a lower 
index number (ID) 
This is equivalent to the pilot 
presssing the DOWN button 

ENGAGE The pilot requests (successfully) 
that the system be engaged. 

FAIL_ TEST _STAGE The current 'automatic' stage of the 
system test has not been 
successfully completed. 

Figure 8. Typical list of actions. 
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Operations: 
10. SV.SYSTEM_STATE:=ARMING; 

11. SV .SYSTEM_STATE:=ARMED; 
12. SV.SYSTEM_STATE:=ENGAGED; 

r 

Ann 

13. SV.SYSTEM_STATE:=DISENGAGED; 

Figure 9: Pilot Engagement 
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Figure 10 The CLE Control Law 
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(a) CLE Control Law Selector Process 
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Figure 11 

10. @WRITE 1 CL OUTPUTS NEW CURRENT CL 
((ID =>SV.CURRENT_CONTROL_LAW)) -

11. @WRITE 1 CL OUTPUTS NEW OFFERED CL 
((ID=> SV.OFFERED_CONTROL_LAW)) 

12. @WRITE 1 NEW CONTROL LAW NEW CONTROL LAW 
((ID=> SV.OFFERED_CONTROLJ.AW)) -

13. @WRITE 1 NEW LAW NEW CONTROL LAW 
((ID=> SV.OFFERED_CONTROL_LAW)) 

21. SV.OFFERED_CONTROL_LAW := CONTROL_LAW_ID; 

22. SV.CURRENT CONTROL LAW := 
SV.OFFERED_CONTROL_LAW; 

23. SV.OFFERED_CONTROL_LAW := 1; 
24. SV.CURRENT_CONTROL_LAW := 1; 
30. @READ CL_SELECTION_CMDS 

40. GET_SV(CONTROL_LAW_ID, PARAMETER_SET_SU~SET); 

41. GET SV(1,CL PILOT ENG SUBSET); 
50. CONTROL_LAW_ID :: SV.OFFERED_CONTROL_LAW; 

51. CONTROL LAW ID := CYCLIC SUCC(CONTROL LAW ID); 
52. CONTROL=LAW=ID := CYCLIC=PRED(CONTROL.:}AW=ID); 

(b) The CLE Control Law Selector Operations 



UNIT IE 
STD-INFO 

LONGNAME 
REFERENCEIE 
[*]CLASSIFICATION-SET 
[*]SUMMARY 
This um is connected to the 
inceptors of the evaluation 
pilot. . 
[o]NARRATIVE 

NO 
MAIN-PART 

[o]TYPE 
ANALOGUE 

[o)BASE-REDUNDANCY 
SIMPLEX 

REPLICATION 3 
[o]UNIT-L VL-SYNCHRONISATION 

ASYNCHRONOUS 
FRAME-LAG 

[*]INTRA-UNIT-CONNECTIONS 
UNIT-SID 

(a) Unit Description (analogue) 

CONNECTION IE_CLISE 
STD-INFO 

LONGNAME 
REFERENCE IECLIS 
[*]CLASSIFICATION-SET 
[*]SUMMARY 
[o]NARRATIVE 

NO 
MAIN-PART 

SOURCE IE 
DESTINATION CLISE 
[o]DATA-TRANSMISSION 

BROADCAST 
[o]SPEC>INTERFACE 

NO 
[o]CONSOLIDATION 

YES 
HISTORY LENGTH 3 

[o]SIBLING_ERROR_MONITORING 
YES 

HISTORY _LENGTH 3 

(c) Connection Description 

UNIT CLE 

Figure 12 
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STD-INFO 
LONGNAME 
REFERENCE CLE 
[*]CLASSIFICATION-SET 
[*)SUMMARY 
This unit houses the control 
law algorittm and associated 
processing. It is the middle processor 
in a three processor ·1ane·. 
[o]NARRATIVE 

· NO 
MAIN-PART 

[o]TYPE 
DIGITAL 

(o)3ASE-REDUNDANCY 
SIMPLEX 

REPLICATION 3 
(o]UNIT-LVL-SYNCHRONISATION 

ASYNCHRONOUS 
FRAME-LAG 10 

[*]INTRA-UNIT-CONNECTIONS 
UNIT-SID 

(b) Unit Description (digital) 

FREQUENCY 
_SPLITIER 

CLU 

PARAMETER CONTROL 
_SET _LAW 

(d) CLU Implemen~tion Diagram 



with CLE_ID_ TYPE_PACKAGE; 
use CLE_ID_TYPE_PACKAGE; . 
with SYSTEM; 
package CLE TASK TYPE PACK is 

function CURRENT_ID return CLE_ID_TYPE; 
task type CLE_TASK_TYPE is 

pragna PRIORITY (SYSTEM.PRIORITY'FIRST); 
entry INITIALISE(ID: in CLE_ID_TYPE); 
entry ENSURE_INITIALISATION; 
entry FRAME_START(FRAME_NUMBER: in NATURAL); 

end CLE TASK TYPE; 
end CLE_ TASK_ TYPE_PACK; 

INCEPTOR ELEMENT (IE) 

Figure 13. CLE Package Specification 
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(a) IE to CLISE interconnection (b) Schematic Diagram of Fault Processing 

Figure 14 
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Figure 15 Operation of Code Generation Tool 
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