
ERF91-74

SEVENTEENTII EUROPEAN ROTORCRAFT FORUM

Paper No. 91 - 74

CREATION OF A LIVING SPECIFICATION FOR AN EXPERIMENTAL
HELICOPTER ACTIVE FLIGHT CONTROL SYSTEM THROUGH

INCREMENTAL SIMULATION.

G.D. PADFIELD* & R.BRADLEY**

*DEFENCE RESEARCH AGENCY (AEROSPACE DIVISION)
RAE BEDFORD, U.K.

&

**DEPARTMENT OF AEROSPACE ENGINEERING
UNIVERSITY OF GLASGOW

GLASGOW, U.K.

SEPTEMBER 24-26, 1991

Berlin, Gennany.

Deutsche Gesellschaft fur Luft- und Raumfahrt e.V (DGLR)
Godesberger Allee 70, 5300 Bonn 2, Gennany.

ERF91-74

· CREATION OF A LNING SPECIFICATION FOR AN EXPERIMENTAL
HELICOPTER ACTIVE FLIGHT CONTROL SYSTEM TIIROUGH

INCREMENT AL SIMULATION.

G.D. PADFIELD• & R.BRADLEY••

•DEFENCE RESEARCH AGENCY (AEROSPACE DMSION)
RAE BEDFORD, U.K.

&

••DEPAR1MENT OF AEROSPACE ENGINEERING
UNNERSITY OF GLASGOW

GLASGOW, U.K.

SUMMARY

In the field of helicopter flight control and handling qualities, the
potential benefits offered by Active Control Technology are
considerable. To support the development of appropriate handling
criteria and carefree manoeuvring features, the UK Royal Aerospace
Establishment has been engaged in the development of an ACT
system for a research Lynx. As currently envisaged the system
includes full authority fly by wire actuation and fail-operate/ fail
safe hardware architecture. The impact of the required functionality
on the system requirements dictated a need for a precise yet versatile
specification of the system, and Jackson System Development (JSD)
was selected as a design method since it provides a formal modelling
of the pilot interface, and also operates at a sufficient level of detail
necessary to ensure completeness and resolution of ambiguities.
The tools which support JSD include automatic code generation,
were further developed to accommodate changes to system
architecture in an efficient manner. The code produced provides a
direct simulation of the design and results in a Jiving specification
available for validation and behavioural investigations of the written
specification .

1. INTRODUCTION

In-flight simulation provides the ultimate validation test of a new
flight control concept. The realism of flight test·overcomes the
deficiences of ground based simulation associated with cue fidelity
and modelling inaccuracies. On the other hand, cost and safety
issues constrain what is achievable in experimental flight test. A
balance between ground and flight test is required to mature a
control concept fully. In the field of helicopter flight control and
handling qualities, the potential benefits offered by Active Control
Technology (ACT) are considerable [I] and results derived from
ground and in-flight simulation in Europe and North America have
demonstrated benefits at moderate performance levels. Future
military rotorcraft will need to operate at considerably higher
performance and in tougher environments than currently achievable.
To support the development of appropriate handling criteria, carefree
manoeuvring features, and the associated technologies in controls
and displays , a number of research laboratories are exploring the
options for enhanced in-flight facilities. In the UK, at the Royal
Aerospace Establishment, attention has been focussed on studies
into the development of an ACT system for a research Lynx [2,3).
Features of the system as currently envisaged include full authority
fly by wire (FBW) actuation, safety pilot with back-driven controls,
fail-operate/ fail-safe (FOFS) hardware architecture coupled to a
range of novel sensors and pilot inceptors providing inputs to the
control laws. The FOFS architecture is proposed to enable safe
experimental flight in the nap of earth and at the edges of the
performance envelope. The impact of this functionality on the
system redundancy requirements is considerable. RAE identified a
need for a precise, yet versatile, specification of the system required
to perform these functions - a specification developed through a
formal design method and validated by simulation.

The specification needed to address functionality (for both normal
and failed states), operation and performance of the integrated
system, together with interfaces, constraints and testing
requirements. The specification also needed to be fit for establishing
realist-ic development costs and timescales. The approach taken has
crystalised into two phases. Firstly, the development of a textual

· 91-74.1

description of the system with accompanying illustrations. During
this activity, a number of different methods were applied by
different team members in an attempt to formalise the requirements,
to tackle design issues and to provide a format compatible with the
later stages of the system life cycle. The Jackson System
Development (JSD) methodology was selected for several reasons:

(a) The JSD modelling produces a formal specification of all the
pilot/system interactions and so forces the engineer to consider
system behaviour from a constructionaVdesign rather than
hierarchical description viewpoint.

(b) The JSD network provides a complete description of all the
external system interfaces required, plus a systematic
partitioning of the system functionality.

(c) Ambiguities in the textual material are naturally identified.

(d) Tools were available to support the method including
automatic code generation.

A most important feature of the specification is that it is an
executable version of the functional behaviour of the system. Ada
code is automatically generated from the specification and, when
combined with a simulation of the flight model and various
peripheral devices, becomes a 'living' specification of the system
behaviour.

The second class of requirement involves the investigation of
options for the exact nature of the final system implementation. This
research is intimately connected with the number and types of
processing element, and the form of fault monitoring and reporting.
To this end a new language has been invented which allows
description of hardware layouts and the provision of fault tolerance.
The description language is supported by data entry and code
generation tools that allow machine manipulation of the description
and realistion of the specified system using Ada. This facility
enables the investigation of various hardware architectures,
providing the vital realism required to back up more conceptual
research.

The RAE ACT Lynx project is currently 'on hold' due to UK
funding limitations; the sophistication and complexity arising from
the FOFS requirement has a significant cost penalty. The exercise of
developing a living specification is continuing howeverllll~~E._e key
experiences are shared with the broader helicopter community in this
paper, which draws on aspects of the system functionality to
illustrate the JSD approach of modelling and network analysis.
Section 2 covers the evolution of the ACT Lynx requirements
leading to the need for a prototype simulation. Section 3 deals with
the development and use of the Ada simulation, illustrating its
investigative potential and Section 4 discusses the way forward for
the specification and the project as a whole.

2. EVOLUTION OF THE SPECIFICATION

2.1 Background

In a series of technical memoranda and reports [2,3,5,6] RAE
developed the rationale for a programme of research based on an
ACT helicopter. Further studies have demonstrated the practical

feasibility of modifying the RAE AH7 Lynx ZD 559 into a full
authority ACT vehicle for such a purpose; encouraged by the
feasibility of this approach, RAE embarked on the preparation of a
specification for the airborne component of the ACT Lynx system.
Figure 1 illustrates one possible design concept: The experimental
pilot's conventional control system is replaced with an ACT
system. The elementary modules of the new system are described
more fully below, in section 2.3, but, in essence, a flight control
computer connects a new set of inccptors and sensors to a group of
parallel actuators driving the original actuation system. This
approach, whereby the existing actuators arc retained and the new
parallel actuators backdrive the mechanical runs to the safety pilot's
controls has been employed successfully in previous experimental
ACT helicopters. An alterr.3tivc configuration where the
revcrsionary system is a core C1v-by-wire system is also under
investigation. The work rcponed in this paper is to a large extent
generic in relation to architectural layout, although examples given
will refer to the conventional situation.

From the outset RAE were determined that the specification should
be the basis of a well managed procurement exercise, and as such,
should solve all of the significant design issues of the system.
Potential suppliers would then be able to assess accurately the costs
of supplying the various components of the system, since the
possibility of being involved in expensive open ended design work
would be eliminated. Also, by solving the outstanding design
problems ab initio, RAE would be sure that the system could
actually be supplied in accordance with the specification.

2.2 Adoption of Jackson Techniques

With the objective of producing a complete, unambiguous
specification it was decided to employ, as far as possible, the
techniques of Software Engineering. The disciplines of these
techniques would ensure a rigorous development of the design, and
the associated CASE tools would assist in maintaining the precision
and integrity of the specification. For the digital part of the total
system, the methods could be applied directly but for other parts,
which could include analogue, mech!Ulical, hydraulic and even
human components, it was not immediately clear how the software
techniques could be adapted. Moreover, it was desirable that, at the
specification stage, there should be some freedom as to the type of
implementation.

Jackson System Development (JSD) , (7,8) was stipulated as the
preferred methodology, but proved, at least initially, to be difficult
to embrace in this novel, more general, context. While the
difficulties relating to the use of JSD were being resolved, there
was a partial application of De Marco [9) methods; consequently,
when the first version (Issue 2.0 (10)) of the specification was
circulated among suppliers, in addition to the conventional structure
of paragraphs of text supplemented by a set of technical illustrations
and diagrams, it contained a group of data flow diagrams and data
compositions relating to a De Marco style enhancement to the text.

As a matter of deliberate policy the design team at RAE took Issue
2.0 and subjected it to careful scrutiny in order to identify those
areas where it could be significantly improved. In particular, the
possibility of using JSD was re-examined since, in the context of the
ACT Lynx application, a methodology biased towards system
development was considered to be more appropriate than a
decompositional, hierarchical, descriptive technique. A strength of
the Jackson method is that it spans the full range of activity from
system definition to production of code [11], so that at one end it is
concerned with modelling correctly, for example, the actions of the
pilot when he uses the Pilots Control Panel (shown in Fig 2 and
discussed fully in later sections) and, at the other end, contains the
level of detailed specification necessary to generate code. Such a
level of detail ensures that the design problems of the specification
have been addressed even if the software is not actually produced,
but in this application a further step has been taken and code
produced to implement a simulation of the specified system oflssue
2.0 (section 4). These two areas had not been given sufficient
emphasis in the earlier version, and the discipline of JSD would
force attention to them.

2.3 Specification structure.

The specification structure describes the system in terms of its
major functional elements. This decomposition was the only one that
was imposed on the system a priori and reflected a separation which
was unavoidably incurred by the nature of the project. Such a
subdivision does not preclude further subdivisions should they

evolve from the design process. The outcome is shown in Figure 3,
where the square and rectangular components arc those relevant to
the specification exercise. The bold rectangles are referred to as
processing elements embodied in a Flight Control Computers (FCC)
although such terminology was not used in the specification.

The elements of the system arc described in the order of the primary
flow of the signal information illustrated by the arrows in Figure 3.

(i) Sensor Element (SE), This leading element contains the aircraft
motion sensors - attitude, heading and rate gyros and
accelerometers, and also the air data units for obtaining velocity
components, pressure and temperarure information.

(ii) Crew Station Element (CSE). The other leading element
incorporates the conventional controls for the safety pilot and a
versatile side arm controller facility for the experimental or
evaluation pilot. For convenience these inceptor components
were rrouped together as an Inceptor Element (IE). The CSE
also contains the various interfaces for the pilot to engage,
operate and be cued by the ACT system (Figure 2) as follows:

(a) Pilots Control Panel (PCP) - used by the Evaluation Pilot for
engagement and disengagement and also for conducting the
system-test sequence. Engage and Disengage operations would
normally be performed using switches on the pilot's controls.

(b) Repeater Panel (RP) - provides a copy of the displays forth,:
Safety Pilot.

(c) Menu Panel (MP) - provides other ACT interactions, such as
selecting one of the available control laws and sets of parameter
values. The same panel provides the interface for injecting
preprogrammed disturbances into the system, as part of a flight
test facility used, for example, in the validation of the helicopter
mathematical models and in demonstrating compliance with
handling qualities requirements of new control laws.

(d) Mode Select Panel (MSP) • available for in-flight selection
of control modes, for example, height-hold and speed-hold.

Clearly the CSE would be expected to feature significantly in
any JSD modelling exercise, with the pilot assuming a number
of different roles as he interacts with different components of the
system. Some of the related modelling issues are discussed in
section 2.5, below.

(iii) Control Law Input Support Element (CLISE). This element has
the main purpose of processing and managing the information
from the Crew Station and Sensor Elements. It also contains the
function for scheduling of a comprehensive system test.

(iv) Control Law Element (CLE). This element is supplied with
inceptor, sensor, mode selection and related information by the
CLISE. The CLE is the raison d'etre of the ACT Lynx since i
hosts the experimental control laws which are to be evaluated. It
is this element that the user of the ACT Lynx, the handing
qualities engineer or flight dynamicist, will interact with.
Carefully verified and validated control law software [4) will be
plugged into and unplugged from this clement. Typically six
control laws will be selectable by the experimental pilot with an
additional choice of up to six sets of parameters within each law.
The demands produced by the CLE for each of the four axes
may be separated into low and high frequency demands, if
required, which are destined for the parallel and series actuators
respectively (an option being currently evaluated). The
separation algorithm is part of the user supplied CLE software.
Alternatively this function could be achieved in software and a
combined signal fed to full authority actuators.

(v) Control Law Output Support Element (CLOSE). The element
following the CLE interfaces the demands produced to the
remainder of the system. It also provides a 5electable limiter on
the demands produced by the control law as additional protection
against immature software.

(vi) Actuator Drive and Monitoring Element (ADME). The final
element to provide processing takes the demands from the
CLOSE and produces d9ve signals for the parallel actuators
resident in the Actuator Element, and the series actuators in the
Primary Flight Control Units (PFCU). The ADME also managr
the engagement of the ACT system through the energising of tY..
parallel actuators, and supplies a normal autostabilisation

91-74.2

function when the ACT system is not engaged. ·

(vii) Actuator Element. The parallel actuator system is last in the
sequence. The parallel actuators are connected to the
conventional control runs from the safety pilot; when the
actuators are engaged (hydraulically powered), the controls are
back driven to provide the safety pilot with essential control
position cues and to aid in recoveries, and forward driven to
the existing Lynx PFCUs.

(viii) External System Support Element (ESSE). In support of this
network of elements is an element which essentially provides a
catchment for all of the significant data in the system. It
interfaces with the standard on-board data acquisition system
MODAS I 12] and also with the experimental displays such as
helmet mounted or head down displays. A record of an system
related events such as engagement, disengagement, and
diagnostic messages is retained in a System Journal.

2.4 Element descriptions.

Issue 3.0 of the specification I 14] contains a detailed description of
each of the elements identified above. As far as possible, the
recommendations of the STARTS (13] guide have been fonowed in
the preparation of the specification. Each element is described in
detail under the headings Type, Function, Operation, Performance,
Inputs & outputs, Interfaces, Testing, and Failure reporting &
recovery. Where a particular element is composed of replicated
units, so that several units together comprise an element, the
replication of units in the element is stated and the unit itself is
described under the same headings. For example, the CLISE is a
triplex element composed of three identical CLISUs (Control Law
Input Support Units). In detail the descriptions are:

TYPE - Some indication is given here of whether implementation is
anticipated as an analogue, digital, mechanical, hydraulic, electro
mechanical or human process. The suggested implementation is not
intended to exclude alternatives if a supplier possesses a particular
specialism or preferred approach. The view was taken, after some
deliberation, that it was better to make specific recommendations
rather than to leave the 'type' issue open. A general anowance could
then be made for variations that nevertheless complied with the
functional aspects of the specification.

FUNCTION - Under this heading is a complete statement of the
tasks of the unit , that ;s,a statement of what job the unit has to do.
For example, one of the tasks of the CLU (a unit of the CLISE) is
inceptor management; the entry reads: 'The inceptor displacements
and inceptor switch positions shall be processed to provide
consolidated signals for the associated Control Law Unit (CLU)"

OPERATION - This sub-section is concerned with how the unit will
achieve its functions. This is done by detailed description, in text, of
the processing required for each function. For the CLISE example
above, the fun details of the processing of the triplex signals would
be supplied, including the consolidation algorithms for fault
tolerance. The narrative under this heading is used to build the JSD
Specification: the full JSD·is not held within the text of Issue 3.0,
but sufficient initial design work was undertaken to be confident that
a JSD specification could be derived from the narrative.

PERFORMANCE - This deals with how much and how well
issues, including a statement of the times within which the tasks
must be completed and, where appropriate, the accuracy that must
be achieved. For example, a certain part of the system test must be
performed within a stipulated time. The sampling rates for the unit
would be specified here. One important defined constraint is that the
total system transport delay should be 25 ms.

INPUTS & OUTPUTS - This contains a list of an signals received
by the unit and those transmitted by it. It includes the source of a
received signal and the destination of a transmitted one. This
information is also presented in diagrammatic form, Figure 4, for
example, where the connections to neighbouring units are clearly
visible (The network notation is discussed in section 3). There is,
of course, a need to maintain consistency here, since for each in,put
listed there must be a corresponding output on some other unit.
Such consistency is easily maintained by a CASE tool such as
Jackson Work Bench (JWB) (15}.

INTERFACES ··A list of the units and their types, both internal and
external. to which the subject unit is connected. The purpose of
this information is to identify the interfacing requirements between

units - analogue to digital, for example.

TESTING • A statement of how the function, operation and
performance of the unit is verified. In particular this may be done at
a system test invoked prior to take off, or by the inbuilt monitoring.

FAILURE REPORTING AND RECOVERY· A statement of how
errors, produced by a fault and having· been detected, are reported
within the system. Usuany they are reported to the pilot via the
Menu Panel, and sent to the system journal part of the ESSE.
Cautions and Warnings may also be raised through the Central
Warning System. In addition, a statement of the recovery of the
system may be required; often the recovery is by returning to
Standby via a controlled disengage - as would be the case when one
of the monitoring tolerances within the system has been exceeded.

2.5 A living specification

Once Issue 3.0 of the airborne system specification was complete, it
was decided to progress to a run JSD specification in order to
identify and eliminate any residual ambiguity; vagueness or plain
error. The run JSD would then be available to use as an adjunct to
the written specification. It would give a precise description of the
interfaces between the components of the system and between the
system and any external devices, to the benefit of prospective
suppliers.

A further decision was made to use the JSD to generate a simulation
of the ACT system, to produce, in effect, a living specification
which could be used to exercise and examine the specification
dynamically. The novel features involved in this step are described
in detail in section 3, but the six aims of the simulation in relation to
authenticating and potentially enhancing the specification were:

(i) Control and human operation of the system. Pilot acceptance of
the procedures for operating the system, for example, the arm/
engage/ disengage sequence can be evaluated through hands on
experience. Also suppliers can directly examine the nature of the
interface between their equipment and the rest of the system.

(ii) Synchronised control information. The techniques for managing
and synchronising control information within an asynchronous
or loosely synchronous system can be verified.

(iii) Establishing tolerances. An asynchronous system generally
must anow some tolerance in the monitoring of the infonnation
from replicated units. Suitable tolerances can be verified or even
derived.

(iv) Computational load. The processor power and memory
requirements of the system can be more confidently deduced
from a simulation than a paper specification. Alternative
implementations may be evaluated for processing efficiency.

(v) Fault management. The mechanisms for reconfiguration, and
the issuing of caution and warning signals may be verified.
directly.

(vi) Design Evolution. Alternative designs for the components of the
system can be evaluated directly .

Before progressing from this discussion on the evolution of the
specification to considering the development of the simulation in
detail, there are two topics worthy of a special note.

2.6 The Supervisor as a modelling issue.

One area which, from the beginning, was subject to intense scrutiny
was the control or overall supervision of the ACT system, including
engagement and disengagement. Clearly this is a critical area where
it is essential to get the specification and implementation correct. An
example of an early model is shown in the flow chart in Figure 5,
where the System Test, initiated by the pilot, if successful, is
followed by a repetition of the arm, engage, disengage sequence of
actions. While useful for conveying the general idea of the pilot's
interaction in this area, it was not sufficiently precise to base
software directly upon. For example, it is possible according to the
specification, to return to Standby through a disengage action
without an engagement of the system. This path is not shown in the
flow chart. To express the requirements in a precise manner finite
state machines (FSM) were mooted and proved a very u,.:ful

Q 1. "J 1

· approach. That shown in Figure 6 included the additional
· transitions to Standby omitted from the flowchart, but suffered from

a shared disadvantage in not exposing that the system test, itself,
included arm, engage, disengage sequences. FSMs have the
advantage that they are readily transformed into software so they
were seriously considered as a basis for a 'supervisor' process,
which would have overall control and only pennit defined
transitions of the system to occur. The problems experienced with
this approach were twofold. First, incorporating all of the possible
states and transitions afforded by the pilot resulted in a very complex
FSM, which was difficult to interpret and militated against a correct
implementation. Secondly, the engage or disengage actions made
within system test, gave different states from those occurring after a
successful system test. Consequently, and very importantly, the
system test did not exercise that part of the controlling software
which would ultimately be used.

These problems were resolved in the final JSD modelling, part of
which is shown in structure diagram form in Figure 7, where the
system test and engage models are separately treated but have
appropriate interlocks. In the structure diagram notation, which is
described more fully in section 3, the leaves of the tree structure are
actions (similar to transitions of the FSM) and in Figure 7 there is a

• repetition, denoted by the'*' symbol, of the alternatives, denoted by
the 'o' symbol, of a normal engagement cycle or an early disengage.
The Arm,Armed, Engage sequence can be quitted, denoted by the
'!' symbol, at any stage to continue with an early disengage. The
system test process is a simple cycle of alternatives of a successful
or unsuccessful test.

The example above has been discussed, for clarity, in a simplified
context, omitting such complications as control law selection and
disturbance injection, but the same principles apply. The use ofJSD
in this area has helped to achieve a satisfactory modelling and,
further, the model can be directly implemented as a process, upon
which the whole of the software can begin to be constructed. It is
also interesting to note that the separation away from a monolithic
supervisor was also guided by the need for maintaining optimum
integrity. The various roles of the pilot are modelled separately with
appropriate interlocks preventing inappropriate actions, for example,
a change of control law when the ACT system is engaged.

2. 7 Fault tolerance and redundancy management

A second topic of fundamental concern within the function and
operation sections of the unit descriptions consideration is the
redundancy management and fault monitoring issues of the
multiplex elements. The main criterion for tolerance is that the
system should be first fail operative, and the identification of a fault
should alert the evaluation or safety pilot, through the Pilot's
Control Panel or the Repeater Panel respectively, to return control
to the safety pilot and conventional inceptors, by a controlled
disengagement of the ACT System. Faults in a unit are detected by
downstream comparison of its outputs with those of its siblings
(associated units or lanes within the element - its partners within the
redundancy). This recognition is dealt with in three ways:

(i) The consolidation of the redundant signals must not be affected
by one signal being in error. There are two types of information
to consider here. The first type is 'analogue' or continuous type
of data where the median select is used for triplex architectures,
the second type is discrete data where a majority vote is
employed; both of these are passive fault masking operations
used to collect valid data for subsequent processing.

(ii) The error must be recognised and signalled to the system and the
pilot via the appropriate panel lamp - this is the monitoring
aspect. The event must also be logged in the system journal.

(iii)There must be a reconfiguration triggered by the signalling of the
error in order to isolate the faulty unit. The isolation is done by
ignoring all of the outputs of the faulty unit.

A dual-duplex arrangement operates in a different manner, where
each pair of units carries a validity signal and outputs the validity
status alongside the functional data. The downstream units can then
mask the faulty unit by a tolerant behaviour or reconfiguration. The
ACT System has in its initial form, a dual duplex ADME, originally
to be compatible with the dual hydraulics of the existing Lynx
actuation system, and the single fault tolerance arises from the
disconnection of a faulty pair of units from the drive to the actuator;
tht: performance of the drive being such that it can tolerate such a
reduction of input.· The processing elements, CLISE, CLE and

CLOSE, are triplex, but have no cross connections at their mutual
interfaces .(There is a modicum of sibling monitoring in the
consolidation of discrete data.) Consquently they effectively form a
single triplex module. The SE and the CSE are essentially triplex
with a full number of cross connections to the CLISE.

2. 8 The adequacy of the Issue 3 Specification.

The ACT System elements and the functions they perform were
conceived and assembled from the combined engineering experience
of the project team. This included first hand experience with design
of conventional control systems and direct exposure to the helicopter
digital flight control system programmes in foreign Industry and
Government research laboratories. The FOFS requirement for ACT
Lynx combined with the need for significant flexibility in operation
created new problems however. The completeness and validity of
the upgraded Issue 3 ACT Lynx specification had to be questioned.
Were the performance figures achievable in practice? Would there
be smooth operation through! the PCP? Would the redundancy
managment logic work? In many projects it is apparent that
answers to these kind of questions are deferred until deep into the
detached design phase, often when the customer is no longer closely
involved. RAE needed to increase confidence and reduce the risk
associated with these questions; it was decided to embark on the
development of a fully operational prototype simulation. An
incremental approach naturally complemented the JSD methodology.

3. INCREMENT AL DEVELOPMENT OF AN ADA
SIMULATION

3.1 Overview.

The development of a full JSD specification, and its implementation
as a simulation of the ACT system required a number of adaptations
and extensions to conventional JSD. There was, for example, the
question of the treatment the non-digital aspects of the specification
and, in addition, the need for a method of specifying triplex, and
dual-duplex architectures in an efficient manner. Further, the CASE
tools supporting JSD needed to be enhanced to support any
extensions to the method. Finally, the simulation was to be
·implemented in defined stages so that lessons learned during the
review of each stage can be included into subsequent stages in a
disciplined manner. A consequence of the incremental approach was
that the appropriate incremental stages had to be defined initially in
outline but could, at a later stage, be altered in order to respond to
revised, or corrected, requirements. All of these concerns are
addressed in this remainder of this section after a brief introduction
to the notation and concepts of conventional JSD for computer
systems.

3.2 Jackson System Development

Jackson System Development is a method of analysing a written
specification for a computer system to produce a formally
executable specification. The method was jointly developed by
Michael Jackson and John Cameron in the early 1980s [7 ,8]. It
consists of three stages: model, network and implementation. There
is considerable emphasis placed on the modelling stage in order to
establish, unequivocally, the information available from the outside
world.

3.2.1 Mode1ling. A JSD model is a description of the real world
as it appears to the system. Entities are objects in the real world
which have to be modelled by the system, and of particular interest
in the modelling activity are those entities which perform discrete
actions. For example, a press of the ARM button by the evaluation
pilot is an action which is important to the system. The modelling
stage requires that the actions be allocated to specific entities, and the
main task of the modelling phase is to identify viable entities and
allocate the relevant actions to them. For each entity the time
ordering of the actions must be then be specified and,
conventionally, a tree diagram is used for this purpose. As an
example consider the truncated list of actions from the ACT Lynx
system shown in Figure 8. Some of these are related to the pilot
entity in his role of engaging the ACT System and to express the
time-ordering a tree diagram using (Jackson Structured
Programming) JSP notation is shown in Figure 9. The root is
named after the entity which performs the actions, and the leaves
(the lowest level boxes which are named rather than numbered) hold
the names of the individual actions. The intermediate nodes or boxes
describe the possible types of behaviour: sequence, selection and
iteration, as denoted by the symbol in the top right hand comer of
the box. An asterisk (*) represents iteration, that is, none or more

occurrences; a circle (o) represents selection, that is, a mutually
exclusive choice; an absence of a symbol represents a sequence, that
is the branches of a node occur, as they are read, from left to right.
The numbers in the lowest level boxes refer to changes in the state
of the object (entity) as shown in the table in Figure 9. Thus
Figure 9 expresses a model of the Pilot Engagement entity as a
repetition of occurrences of Engagement Cycles. An Engagement
Cycle can either be a Normal Cycle, composed of a sequence of
Arm, Armed, Engage, Disengage, or alternatively an Early .
Disengage, composed of only part of the normal sequence followed
by a Disengage. The appropriate changes of state are indicated by
the numbered operations for each action, and it can be seen that prior
to any action the engagement state is initialised to DISENGAGED
by operation 13.

In a completed model, the total set of tree diagrams describes all of
the time orderings of the actions plus the changes in system state. In
real-time systems it is often only the controlling activities which
require this type of modelling and much of the real world is
modelled simply by polling sensor information. In the ACT Lynx
application, for example, the Lynx helicopter is modelled
kinematically by polling attitude and rate gyros and accelerometers.
The tree diagrams in these cases are simply iterations of polling
actions.

It is convenient here to look ahead to the implementation stage and
observe that the model structure in Figure 9 can be used as a
program structure for a process to control the engagement of the
ACT system. Once operations have been added to read incoming
action-messages then all that is required is for the operations to be
expressed in the required language. The iterations can be expressed
as loops and the selections as conditional statements with
appropriate conditions. The result is that the tree diagram can be
converted to code mechanically either by hand or, as in this work,
automatically.

3.2.2 Network. Processes derived from the entities defined in the
modelling stage are called model processes. Other processes are
needed to make use of the data stored by the model processes in
order to generate the outputs whicn are to provide the required
functions of the system, and further processes, such as button
pollers, may be neeeded to provide inputs to the model processes.
Communication between processes is either by a datastream, which
is a queue of discrete messages. or by read-only access to another
process's internal data, that is,by an inspection of its state vector.
The specification of these additional processes and the
communications between them is the developer's main task. All of
the processes are described using the JSP tree-diagram notation and
the result is a network of communicating sequential processes. A
diagram of the network conventionally represents processes by
boxes, datastreams by circles and state vector inspections by
diamonds.

These features are illustrated in Figure I O which shows part of the
network diagram associated with the CLE of the ACT Lynx system.
The input datastream to the control_law_algorithm process is the
frame time-grain-marker (cla_tgrn) which sends its outputs (actuator
demands) as a datastream to the disturbance_imposer process. As
can be seen, the control_law_algorithm process has access to the
internal data of several other processes. For example, via the
clise_amse_data state vector inspection, it has access to the Aircraft
Motion Sensing Element data of the clise_amse_data process.
Similarly the process has access to inceptor, mode-select and
engagement status data etc. The engagement status data is obtained
from the Pilot_engagement model process discussed earlier and
described in Figure 9. The double bars across some of the
connections merely denote enhanced multiplicity: for example, there
are more than one inceptor providing positional data to the
control_law_algorithm. An example of a JSP description of a
network process is given in Figure 11, which describes the process
for dealing with the interaction associated with the selection of
control laws. The tree diagram, Figure I !(a), has had appropriate
operations added as leaves to the structure. and the operations are
defined in Figure 11 (b). Some of the operations are concerned with
modifying internal data, such as operations 50-52 and 21-24, with
the latter group maintaining data that will be accessed by another
process (The SV prefix denotes its state vector destination). The
other operations are concerned with communications. The state
vectors of some other processes of the network are inspected by
operations 40 and 41. An input datastream is read by operation 30
and output datastreams are written to by operations I 0-13. The tree
diagram. together with its operations list, is to sufficient to generate
program code from, once approriate conditions have been attached

to the iterations and selections. All that is required is the addition of
a declarative part and a decision about how to implement the
datastream read and write operations for a particular implementation
of the system. This latter aspect is discussed in the next section.

3.2.3 Implementation. The implementation stage is concerned
with matching the network to the target environment. The flexibility
which is available at this stage is a useful property of JSD in that it
enables the specification to be verified prior to it being implemented
on the target hardwar.e. In the network each process executes
concurrently with every other. This is unlikely to be the case in the
target environment where a limited number of processors, often a
single processor, will require that some of the processes are
suspended while others execute. The @ symbol in the READ and
WRITE operations of Figure l l(b) indicate the need for a Macro to
deal with the suspension of the process. The code required is
standard and can be generated automatically. Although the
procedure may appear complex, it is its flexibility that defies a
compact description not its difficulty. In practice there are standard
strategies for implementation [7 ,8]. For example, by using a
scheduler, all of the programs arising from the JSP description can
be converted into subprograms, or procedures, and the datastreams
implemented as procedure-calls. The final result of the
implementation stage is code that will execute on the target
hardware.

3.2.4 Summary. The principal aim of the JSD method is to
create a specification which can be usefully viewed from both above
and below. The modelling stage is an object oriented analysis of the
real world which produces a description which users can readily
grasp, because the result is described in terms of objects familiar to
the user. The tree diagrams of the method also provide important
detail about the model of the real world. The network stage uses
two descriptions: (a) Data flows, which can be presented to the user
to indicate the architecture of the system and (b) Tree digrams
which the analyst can use to express the design of a particular
function. The resulting specification can be viewed by the user from
above because it is in terms of their real world and, simultaneously,
the specification contains enough detail for the implementers below
to perform their task. It is this general property that made JSD
particularly attractive for the ACT Lynx specification, and
encouraged a determined assault on the difficulties associated with
the application ofJSD to the ACT Lynx System.

3.3 Extensions to the JSD approach.

As a compositional method, JSD eschews a top-down approach to
system development. The rationale is argued at length by its
proponents and a convincing case can be made for it in software
development; however for more general systems, the physical
architecture imposes a decomposition by the nature of its elements.
This is the approach described in section 2: each identifiable element
can be viewed as an independent system communicating in a limited
way with other elements. For elements which are composed of
replicated units each unit is treated as independent. Figure 4 shows
an example of such a top down view. The datastream into the CLU
is a frame time-grain-marker, and the only inter-unit connections are
state vector inspections. Each box represents a unit and JSD is
applied in a conventional manner to that unit. For those aspects of
the system which are not expected to be digital, such as the actuator
element, the same approach is employed except that JSD is applied
to a specified simulation of the element. Naturally, care has to taken
to ensure that all of the relevant functional properties of the real
element are included in the simulation specification with due
authenticity. The integrity of replacing the real element in a
specification by a simulation depends not only on authentically
duplicating its relevant functions but also ensuring that the remainder
of the system only has access to that data which the real system can
provide. In the case of the actuator element, for example, the
actuator positions are not directly available to the ADMUs; one of
the four simulated position pick-off signals for each control lane
which must be used. Another example is the engagement state of
the actuator; signals corresponding to appropriate sensors mounted
on the actuator must be used to determine whether the actuator is
hydraulically energised or not. As a consequence the actuator entity·
must be modelled within the ADMU using JSD principles. The
need for modelling one element within another is a natural
consequence of the imposed decomposition into elements.

When system elements consist of replicated units, for example
triplex or dual duplex, it is clearly undesirable to compose a JSD
network diagram for each unit individually. At best it duplicates
effort, and at worst introduces errors caused by accid.ental

91-74.5

differences in the individual networks. What is needed is to reflect
the written specification and describe a single unit in detail through a
network diagram in the nonnal manner, supplemented by a fonnal
description of the element in tenns of its component units. Such a
fonnal description is shown in Figure 12 (a) and (b) which depict
descriptions of units of the Inceptor and Control Law Elements
respectively as held on the CASE database. After some standard
infonnation (STD-INFO) consisting of its identifier and optional
background detail, the MAIN-PART of the description includes a
number of options such as:

(a) the type of unit - whether the unit is analogue or digital.

(b) the number of units - here both are simplex units
replicated three times.

(c) Whether the units run synchronously or not.

There is also the possibility for connections between units of the
element. To complete the description a list is required of all the JSD
processes which belong to that unit, and thus need to be replicated;
the final entry (UNIT-SID) being blank shows that the name of the
list on the database defaults to the name of the unit.

A similar fonnat is provided for the description of the connections
between elements as shown by the example in Figure 12(c). The
relevant fields are the source, destination and whether the
connection is unit to unit individually (ONE-TO-ONE) or completely
cross connected (BROADCAST). The connection description also
holds some infonnation relating to the fault tolerance implementation
which is discussed in the following section.

3.4 Implementation of Fault Tolerance

Figures 14(a) and 14(b) describe the connections between the
Inceptor Element and the CLISE, and the fault tolerant software
sited in the CLISE to handle the data passing between the two units.
The fault tolerant strategy was based on that described in Reference
19. The connections between the IE and the CLISE are
BROADCAST as indicated in Figure 12(c), that is, every IE sends
to every CLISE.Figure I 2(c) also indicates that each of
consolidation, downstream monitoring and sibling monitoring are
enabled. The schematic diagram in Figure 14(b) shows the type of
fault processing which takes place.Voting is always present where
there are many sources for the same data. The voted value is
obtained by either majority vote, or median select depending on the
type of data. Downstream monitoring implies comparing the values
coming from each of the data sources with the voted value. If any of
the sources differs for more than a given number of frames
(HISTORY-LENGTH in figure 12(c)), then an error is logged and
the voter ignores all subsequent input from that source.
Consolidation is perfonned by comparing the historical values from
each sibling, gathered over previous frames. A consolidater will
only output a new value if it perceives that all of its siblings agree
with it. Sibling monitoring implies comparing the voted values
coming from the siblings of the unit, rather from upstream sources.
Otherwise the processing is identical, with an error being logged
when a discrepancy occurs. The sibling which is diagnosed as
being in error is then ignored by the consolidation process. The
combination of unit and connection descriptions fully define the
architecture of the fault tolerance and if a standard strategy is
adopted for consolidation and voting the appropriate code can be
generated automatically.

3.5 Incremental implementation.

The compositional, or "middle out", nature of the JSD method has
the property that once a model has been built every new function
added to it provides a potentially deliverable, working, system. In
fact, at any stage of the development of the network it can be
implemented. Incremental development takes advantage of this
natural property of JSD and phases development of a system over a
number of increments. The added functionality required from each
increment is defined initially in outline, and as each increment is
completed it is reviewed and the contents of future increments re
examined in the light of any modifications or additions that have
been found to be necessary. The development of a system is thus
responsive to an evolving specification but at the same time allows
the project to be managed on the basis of milestones actually
achieved.

The ACT Lynx simulation was developed over six increments
distributed as follows:

Increment 1: A model of the pilot/ system interaction
including engagement of the ACT system and inceptor
movement. The Repeater Panel and a display of the control
run position.

Increment 2: A model of the pilot/ system interaction as
regards System Test, Control Law Selection, Disturbance
Selection, Mode Selection, Parameter Set Selection. The
Menu Panel, Mode Control Panel and Pilot's Control Panel.

Increment 3: A definition of a hardware description language
for units and connections, and development of associated
tools. The functionality oflncrements I and 2 based on the
specified hardware, including fault tolerance. Provision for
injection of errors.

Increment 4: Completion of the Control Law Input Support
Element including the development of a tool for building a
System Test process from a non-procedural definition. The
Aircraft Motion Sensor and the Air Data Elements

Increment 5: Completion of the Control Law Element and
the Control Law Ouput Support Element.

Increment 6: Completion of the Actuator Drive and
Monitoring Element and the Actuator Element. Further
development of the System Test Builder.

The simulation also includes a simple model of a Lynx helicopter to
provide sensor data from the actuator (PFC) displacements.

From the distribution of material in the six increments it can be seen
that the primary concern was to establish an acceptable model of the
pilot's interface. One of the early lessons was that different readers
of a specification can place different meanings on the same words,
and the sequencing of the lamps relating to engagement and system
test on the Repeater Panel needed to be revised. The reference to
system test in Increment 6 is indicative of the difficulties
encountered in specifying a comprehensive test. The contribution
from Increment 4 was not sufficient and more work had to be
included in the final increment.

During the development of the simulation no fundamental flaw or
omission has been discovered in the written specification.
Nevertheless a wealth of additional detail has been accumulated
mainly to reinforce inadequate descriptions or to compensate for
minor omissions. The most significant inadequacy was the omission
of a description about how to apply the consolidation algorithm of
Reference 19 to replicated units in a fault tolerant manner.

3.6 Implementation of the simulation.

3.6.1 Ada as the implementation language. The selection
of Ada as the implementation language was detennined by the
following considerations:

(i) DoD Language. Ada is a DoD mandated language, and is also
"highly recommended" by the British MOD, which has provided
a large, guaranteed market for Ada compilers ensuring a great
deal of investment from compiler vendors. This fact coupled
with the extensive validation tests required by the DoD has
resulted in a number of very high quality compilers being
available.

(ii) Language features. As has been discussed below, packages and
tasks have been very important in implementing this system. In
addition the comprehensive data typing provided through Ada
has enabled a more precise specification to be constructed with a
resulting increase in quality.

(iii) Tool Availability. The code generation tool Adacode, described
below was already available in prototype fonn to serve as a basis
for the project. ·

3.6.2 Target hardware and implementation strategy. The
simulation has been implemented to execute on an IBM PC, or
compatible. Therefore a strategy is needed, as discussed in section
3.2.2, to map the many processes of the specification onto the single
processor of the target system. For automatic code generation, a set
of CASE tools are also needed to implement the chosen strategy.

CJ 1-74.6

There are many possible mapping schemes between JSD and Ada;
References 16 and 17 describe two. The mapping used for this
project is based broadly on that described in Reference 17; it relies
very heavily on packages. the aim being to produce a set of Ada
packages where each correspond only to one specification object
(e.g. process or data stream). This correspondence enhances the
traceability from the JSD specification to the Ada. The extensions to
this mapping scheme employed in the ACT application are:

(a) each unit is mapped onto a task type. Figure 13 shows the
Ada for the unit described in Figure 12 (b).The replication of
units within an element is achieved by declaring an array of the
task type for the unit with a multiplicity equal to the
REPLICATION factor specified in the UNIT object, which in
the case of Figure 12(b) is 3.

(b) the infrastructure which provides the fault tolerance is
described using a number of generic packages which are
instantiated based on the information in the connection object.

An example of the implementation mapping between the
specification network and a unit is depicted in Figure 12(d) for the
Control Law Unit. The rectangle at the top corresponds to a task
type, with the network processes converted via a standard
transformation strategy into a procedure-calling hierarchy; processes
nearer the top call those connected directly beneath them Data
external to the CLU is shown via the disk symbols, with access
shown.

3.6.3 Automatic code gencrationCode generation is provided
by a prototype Ada code generation tool built by LBMS which has
been significantly enhanced during the life of this project. Figure 15
illustrates the workings of the tool. It takes the description of the
system, specified using the Jackson Work Bench (JWB) CASE
product and generates the complete simulation from it.Data
Extraction is done using built in facilities of the CASE tool. The
code templates are combined with the specific parameters extracted
from JWB by a proprietary tool called JSP-MACRO. The code
generation approach provides a great deal of flexibility with respect
to changes in the implementation of the system. Many simple
changes can be achieved purely by amending the templates. Even
large changes may only require changes to the data extraction,
leaving specification of the system unchanged. As well as tools to
build the whole system. there are others which rebuild the svstem
regenerating a minimum of Ada based on changes and still others
which create test harnesses for any sub network of the specification,
providing a cost-effective way of ensuring quality.

The use of code generation was a significant contribution to the
project. Several factors encourage its use in projects of this nature
including:

(i) Productivity. The most obvious gain is productivity. The
statistics concerning the number of lines of code and even
number of functions (counted using function point analysis
FPA)) were very high. The figures obtained from the second
delivered increment were as follows:

(a) Function Points per man day 2.34
(b) Source Lines of Code per man day 204

(ii) Ease of Instrumentation. The requirement for dynamic analysis
will doubtless change as the simulation is used. Because the
system is generated using code generation, the instrumentation
can be changed merely by altering the form of the Ada templates
and regenerating.

(iii) Evolutionary Delivery. One of the imponant factors that
supports evolutionary delivery is for user feedback at the
specification level to be convened efficiently and accurately into
implementation changes. With automatic code generation
directly from the specification this is assured.

91-74.7

(iv) Living Specification. One of the major problems of maintaining
computer systems is that the behaviour of the running system
can diverge very quickly from the original specification of
system behaviour, once maintenance and development begin.
Code generation provides the ability to maintain a "living
specification", i.e. one where changes to the specification are
automatically represented in the implemented system.

This feature is especially important in the case of the ACT
system because of the potential need to evaluate many hardware
and error monitoring combinations and even new functions in
the course of the planned ACT research.

(v) Re-Implementation. Another important benefit of code
generation is that, without changing the JSD specification of the
system, a completely different set of code can be generated. for
example to fit the system onto real or alternative hardware such
as transputers. This can sometimes be achieved merely by
changing the code generation macros, but may require new
implementation objects if the implementation is-significantly
different. Therefore the investment in a system specification is
not compromised when evolving the system towards greater
realism.

4. THE WAY FORWARD

At the time of writing the RAE ACT Lynx project is at a hiatus.
Estimated procurement costs for the system and its certification are
high and are likely to require a multi-partner team to be affordable.
Both UK and International options are being explored but no clear
way forward curently presents itself. Activities in support of the
project are continuing at RAE including the study of performance/
trade-off issues associated with trials in flight (safety) critical areas.
The role of the safety pilot is crucial to this work and ground-based
simulations [18] have been conducted - and are planned - to address
critical functional questions such as optimum location of
disconnects, backdriving frequencies, mismatch tolerances for
failure managment, and PCP ergonomics. In parallel with these
topics, the requirements specification will continue to be developed.
The current operational form is essentially complete in its
functionality. Future tasks include:

(a) Instrumentation of the simulation to evaluate end-to-end and
internal performance and behaviour.

(b) Production of a comprehensive user guide to the simulation.

(c) Comprehensive exercise of the simulation to validate the
specification across the operating spectrum.

(d) Upgrading the requirements specification in line with the
results of (a) - (c).

(e) Upgrading the requirements specification to include a second
level of JSD analysis, i.e. network and process diagrams
together with text.

(0 Implementation of the Ada simulation in real time with
representative pilots', engineer's and software development
stattion.

Many of these tasks can be embarked upon concurrently and are not
specific to the implementation in the final system. The results from
these activities have generic value and can be used to guide and
support similar projects for example. The current Ada simulation
has been developed in seven increments and the approach has
demonstrated the utility of this approach. The simulation has
'grown' in a controlled manner with each increment offering more
functionality for review and revision if necessary. The approach has
had the added advantage of enabling the software engineers to
develop their understanding of the application incrementally. A top
down appraoch to the design would have required considerably
reater investment in 'application learning' before any creative work
could have been staned. It is recognised that there are contentious
issues in system development and that there are no right or wrong

approaches. JSD has exposed functional anomolies and forced
hidden issues into the open through its emphasis on design,
however. The behaviour of the ACT Lynx system, as currently
configured, is now well understood - the flight critical nature of the
application makes this an attractive position to be in.

5. CONCLUDING REMARKS

The handling qualites opportunities offered by active control
technology for helicopters require considerable research effort using
both ground and in-flight simulation before the final and complete
potential is realised. Much work has already been done but the
peculiar problem areas, such as carefree handling, of high
performance levels have yet to be explored in-flight. The safety
critical nature of such flight research demands that a fail-operate
design concept be employed covering both system hardware and
software. In the UK, the Royal Aerospace Establishment has
proposed the procurement of an experimental ACT system for its
research Lynx. This paper describes the development of the
requirement specification for the airborne system including crew
station, sensors, processing elements, actuation etc. In its current
form the requirement is a textual and diagramatic description of the
system behaviour covering functionality, operation, performance,
testing and interface requirements. The specification is supported by
design using the JSD methodology. An outcome of the design work
is a prototype Ada simulation of the system. Examples of the JSD
modelling and the mapping into Ada have been described. Initial
results from exercising the simulation have been presented.
Although the overall ACT Lynx project is on hold until an affordable
package is defined, the requirement specification continues to be
evolve, with an upgrading scheduled to folow irom a
comprehensive instrumentation and exercise of the simulanon. A
real time implementation is planned which could form the core
element ofa ground system to support sofrware development.

6. REFERENCES

Padfield G D, (Editor), Helicopter handling qualities and
control: Proceedings of the R.Ae.Soc Conference, London,
1988.

2. Winter J S, Padfield GD. A discussion paper on an ACT
flight research programme using the RAE Bedford Lynx.
RAE Tech Mem FS(B) 523, 1984.

3. Padfield GD., Winter JS, Proposed programme of ACT
research on the RAE Bedford Lynx. RAE Tech Mem FS(B)
599, 1985.

4. Tomlinson B N, Padfield GD, and Smith PR. Computer·
Aided control law research from concept to flight test.
AGARD CP 473, 'Computer Aided System Design and
Simulation', 1990.

5. Winter J S, Padfield G D, and Buckingham S L. The
evolution of active control systems for helicopters;
conceptual simulation to preliminary design. Proceedings of
the AGARD FMP Symposium on ACS; Toronto, 1984.

6. Thomson K. The results of the WHL feasibility study in
support of the RAE Bedford flight controls research
programme: Systems Technology Note STN 19/84 Westland
Helicopters, 1984.

7. Jackson M. System Development. Prentice Hall, 1983.

8. Cameron J R. JSP & JSD: The Jackson approach to system
development. IEEE Computer Society Press, 1983.

9. De Marco T. Structured analysis and system specification.
New York:Yourdon Press,1978.

10. Wright BP, RAE ACT Lynx -Airborne system requirement
specification, Issue 2. WHI,, Flight Control Department
Note FCDN 8&/05, 1988.

11. Birrel N D, Ould M A, A practical handbook for software
development. Cambridge University Press, 1985.

12. Jewel C. MODAS analysis system system overview.
Prosig Computer Consultants. 1986.

13.

14.

DTI/NCC. STARTS Purchasers' Handbook: "Procuring
software-based systems" NCC Publications. Second
Edition, 1989.

RAE ACT Lynx Airborne system requirements specification
Issue 3.A, RAE 1989.

15. LBMS Pk, Jackson Work Bench U_ser Guide (In
preparation), 1991.

16. Cameron J R, Mapping JSD Specifications into Ada.
Proceedings of the 6th Ada (UK) Conference. 1987.

17. Lawton J R & France N. The Transformations of JSD
Specifications in Ada. Ada User, Jan 1988.

18. Kimberely A & Charlton M. ACT Lynx Safety Pilot
Simulation - Trial Rwtaway.

RAE FM Working Paper(89) 031, June 1989.

19. Silva A. Mode synchronisation algorithm for asynchronous
autopilot. Paper No. 38, Fourteenth European Rotorcraft Forum,
Milan, 1988.

7. ACKNOWLEDGEMENTS.

The authors would like to acknowledge the contributions of
Westland Helicopters Ltd and Theta Analysis and Systems Ltd to the
work described in this paper.

Copyright © HMSO 1991

91-74.8

• Full Allthority
• Parallel !Series Frequency Split

11111

o.

Aircrew Interface

• Safety Pilot with Backdriven Controls
• Sidestick Controls
• HU/HD Displays

•Triplex
Power Sup_plies

• Triplex
• Fly-by- lire

SrnsQcs

Flight Control Computer
3

Figure J. ACT Lynx System Elements

91- 74.9

J

gggo g go
I 2 3 CLl I 2 ADMU
POWER UP POWER UP

jsTARTl!coNTjliujnsijcANcELI 0
TESTING

SYSTEM TEST 0
STANDBY

!ARM I 0
ARMED

{£>ISENGAG~ 0
ENGAGED

!CANCEL! 0 0 j I LAMP TEST I
CAUTION WARNING

Pilots Control Panel

Cl[]
~

0 0 lmcQ I CL ADM
STANDBYO·

POWER UP

OOO
ARMING ARMED ENGAGED

00
CAUTION WARNING

Repeater Panel

11 __ ___,

2 1 ~-----'
31..._ __ ___,

DL] in'-------'

rnl
!ACTIVE I
!PASSIVE I

I START I
I RESET I

2Alr-------,

~ 2B.__ ____ __,

Menu Panel

l 2 3 4 5 6 7 8 9 10

DDDDDDDDDD
scANQ

ARMO
000000000
000000000

IN/CAPO O O O O O O O O 0

Mode Control Panel

Figure 2. Act Lynx Control Panels

91-74.10

Sensor
Element

CLISU

PCP

Ground
Support
System

Control Law
Element

Control Law
Output Support
Element

Figure 3: AACTS Logical Elements

CLU
(2 siblings)

Figure 4. Connections to a CLU

91-74.11

Actuator Drive
& Monitoring
Element

CLOSU

ADME

Fail

Power up
System

Perfonn
System Test

Ann
System

Engage

Disengage

......... System powered up

..... .System Test in progress

......... Standby

...... ... Arming in progress

......... System armed

....... . System engaged

Figure 5. Possible System Control Flowchart

System Test Fail

Figure 6. Possible FSM for System Control

·9 J-74. J 2

Arm Engage
Cycle

0

Nonnal
Cycle

Anned

Stan
Test

Engage
Cycle

System
Test

* System
Test Cycle

Pilot
Engagement

Engage •
Cycle

Engage

Test
Body

? 0
Success

Disengage

? 0
Failure

Figure 7: Pilot Engage and System Test Processes

. 91- 74.13

Actions

Action Summary Attributes
ARM The pilot reque~ts that the system be

armed.
ARMED The actuator positions and the

control law demands are in harmony
ARM_DEFAULT_MODE The initial arming of a default ID: MODE_ID_TYPE

control mode.
CANCEL_SYSTEM A request to cancel the system test.
_TEST
CAPTURE This is the signal to mode to go ID: MODE_ID_TYPE

from ARM to ARM AND IN CAP
COMPLETED_SYSTEM All tests of the system test have

TEST been successfuly completed
CONTINUE_SYSTEM Indication that the current test of the
_TEST system test has been successfully

completed.
DISENGAGE The system has been disengaged.

This may happen before
engagement (1) by the pilot pressing
the disengage button or (2) by the
system failing to get into the
ARMED or ENGAGED state.
It may happen whilst ENGAGED
on receipt of a signal from an
actuator relaying the fact that it has
become disengaged

DOWN_DISTURBANCE The pilot wishes to be offered the
_REQUEST previous valid disturbance, that is

the first disturbance with a lower
index number (ID)
This is equivalent to the pilot
presssing the DOWN button

ENGAGE The pilot requests (successfully)
that the system be engaged.

FAIL_ TEST _STAGE The current 'automatic' stage of the
system test has not been
successfully completed.

Figure 8. Typical list of actions.

91-74.14

Nonnal
Cycle

I
Ann Anned

I
10 11

I
13

0

I

Pilot
Engagement

Pilot
Engagement
Body

Engage *
ment Cycle

I
Engage Disengage

I I
12 13

Operations:
10. SV.SYSTEM_STATE:=ARMING;

11. SV .SYSTEM_STATE:=ARMED;
12. SV.SYSTEM_STATE:=ENGAGED;

r

Ann

13. SV.SYSTEM_STATE:=DISENGAGED;

Figure 9: Pilot Engagement

91-74.15

0
Early
Disengage

I

I
Actions Disengage

I
*

Actions 13

I
0 0

Anned

parameters clise_beep _trim

parameter
_set

mode

par_set_
selector

cla_tgm

control_law
_selector

actuator_
demands

disturbance t-o1111111f.-++-<

_imposer

disturbance_
demands

frequency
_splitter

Figure 10 The CLE Control Law

91-74.16

'-'-'__,_lise _beep
trim

clise_amse
_data

clise_adse
_data

disturbance

disturbance
_generator

Control law
select~ -

I
I I

Initial
Selection control

law actions

I

I I I
P new P-new •
oITercd current, Selection

P-ncw ctrl action

r I I
I I

24,10,12, Selection
23,11

13
30,41 action

body

I
I I

0 0
Allowed Disallowed
action action

I
I I

- 0 0
-J

Up Down

I I
I I I I I I

Un- OfTerable,
Un- Offerable,

50,51,40 offerables P-new 50,52,40
offerables P-new

offered offered

I I I I
I • •

Un- 21,11 Un- 21,11
offerable

offerable

I I
51,40 52,40

(a) CLE Control Law Selector Process

I
0

Select

I
P-new
current,
P-new ctrl

I
22,I0,12,
13

Figure 11

10. @WRITE 1 CL OUTPUTS NEW CURRENT CL
((ID =>SV.CURRENT_CONTROL_LAW)) -

11. @WRITE 1 CL OUTPUTS NEW OFFERED CL
((ID=> SV.OFFERED_CONTROL_LAW))

12. @WRITE 1 NEW CONTROL LAW NEW CONTROL LAW
((ID=> SV.OFFERED_CONTROLJ.AW)) -

13. @WRITE 1 NEW LAW NEW CONTROL LAW
((ID=> SV.OFFERED_CONTROL_LAW))

21. SV.OFFERED_CONTROL_LAW := CONTROL_LAW_ID;

22. SV.CURRENT CONTROL LAW :=
SV.OFFERED_CONTROL_LAW;

23. SV.OFFERED_CONTROL_LAW := 1;
24. SV.CURRENT_CONTROL_LAW := 1;
30. @READ CL_SELECTION_CMDS

40. GET_SV(CONTROL_LAW_ID, PARAMETER_SET_SU~SET);

41. GET SV(1,CL PILOT ENG SUBSET);
50. CONTROL_LAW_ID :: SV.OFFERED_CONTROL_LAW;

51. CONTROL LAW ID := CYCLIC SUCC(CONTROL LAW ID);
52. CONTROL=LAW=ID := CYCLIC=PRED(CONTROL.:}AW=ID);

(b) The CLE Control Law Selector Operations

UNIT IE
STD-INFO

LONGNAME
REFERENCEIE
[*]CLASSIFICATION-SET
[*]SUMMARY
This um is connected to the
inceptors of the evaluation
pilot. .
[o]NARRATIVE

NO
MAIN-PART

[o]TYPE
ANALOGUE

[o)BASE-REDUNDANCY
SIMPLEX

REPLICATION 3
[o]UNIT-L VL-SYNCHRONISATION

ASYNCHRONOUS
FRAME-LAG

[*]INTRA-UNIT-CONNECTIONS
UNIT-SID

(a) Unit Description (analogue)

CONNECTION IE_CLISE
STD-INFO

LONGNAME
REFERENCE IECLIS
[*]CLASSIFICATION-SET
[*]SUMMARY
[o]NARRATIVE

NO
MAIN-PART

SOURCE IE
DESTINATION CLISE
[o]DATA-TRANSMISSION

BROADCAST
[o]SPEC>INTERFACE

NO
[o]CONSOLIDATION

YES
HISTORY LENGTH 3

[o]SIBLING_ERROR_MONITORING
YES

HISTORY _LENGTH 3

(c) Connection Description

UNIT CLE

Figure 12

. 91-74.18

STD-INFO
LONGNAME
REFERENCE CLE
[*]CLASSIFICATION-SET
[*)SUMMARY
This unit houses the control
law algorittm and associated
processing. It is the middle processor
in a three processor ·1ane·.
[o]NARRATIVE

· NO
MAIN-PART

[o]TYPE
DIGITAL

(o)3ASE-REDUNDANCY
SIMPLEX

REPLICATION 3
(o]UNIT-LVL-SYNCHRONISATION

ASYNCHRONOUS
FRAME-LAG 10

[*]INTRA-UNIT-CONNECTIONS
UNIT-SID

(b) Unit Description (digital)

FREQUENCY
_SPLITIER

CLU

PARAMETER CONTROL
_SET _LAW

(d) CLU Implemen~tion Diagram

with CLE_ID_ TYPE_PACKAGE;
use CLE_ID_TYPE_PACKAGE; .
with SYSTEM;
package CLE TASK TYPE PACK is

function CURRENT_ID return CLE_ID_TYPE;
task type CLE_TASK_TYPE is

pragna PRIORITY (SYSTEM.PRIORITY'FIRST);
entry INITIALISE(ID: in CLE_ID_TYPE);
entry ENSURE_INITIALISATION;
entry FRAME_START(FRAME_NUMBER: in NATURAL);

end CLE TASK TYPE;
end CLE_ TASK_ TYPE_PACK;

INCEPTOR ELEMENT (IE)

Figure 13. CLE Package Specification

IU(I)

DOWN
STREAM
MONITOR

Error log+

Consolidation Data

IU(2) IU(3)

Raw Yalues

SIBLING
CONSOLIDATER ~ MONITOR

CONTROL LAW SUPPORT ELEMENT (CLISE) '-------~siblings'-----,---

Consolidated Yalues t Error Jog

CUSU(l)

(a) IE to CLISE interconnection (b) Schematic Diagram of Fault Processing

Figure 14

91- 74.19

CUSU(2)

CUSU(3)

Template
Library

JWB repository

Data Extraction

Ada sources

Template
Parameters

Template Processor
(JSP-MACRO)

Figure 15 Operation of Code Generation Tool

91-74.20

