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Abstract

A method for aeroelastic eigenvalue analysis of three-
bladed wind turbines is presented. The method is
described in a general form, as independent of the
particular aeroelastic modelling as possible. The tur-
bine structure is modelled by a Finite beam Element
Method, and the aerodynamic loads are modelled
by the Blade Element Momentum method coupled
with a Beddoes-Leishman type dynamic stall model
in a state-space formulation. The linearization of
the equations of motion is performed about a steady-
state equilibrium, where the deterministic forcing of
the turbine is neglected. To eliminate the periodic
coefficients and avoid using the Floquet Theory, the
multi-blade transformation is utilized. An eigenvalue
problem is formulated and the aeroelastic natural
frequencies, damping and mode shapes of operating
turbines can thereby be computed for any operation
condition. An example shows a good agreement be-
tween predicted and measured aeroelastic damping
of a stall-regulated 600 kW turbine.

Introduction

A new design tool for performing aeroelastic stability
analysis of three-bladed wind turbines is presented.
The tool may be the first of its kind that is based on
eigenvalue analysis and includes dynamic stall. The
tool has also been presented in a similar form within
the wind energy community [1]; this paper is meant
for the the rotorcraft community and contains some
introduction to wind turbine dynamics.

Present research in the wind energy community aims
at improving the tools for predicting the aeroelastic
stability (damping) of turbines, and the tools for de-
sign of control systems. The latter is an important
objective in the continuous optimization of wind tur-
bines with active power regulation. The next gener-
ation of these turbines will be fitted with control sys-
tems that, beside power optimization, also actively
alleviate loads and actively suppress aeroelastic in-
stabilities under critical operation conditions. Op-

timal designs of such control systems depend on a
linear aeroelastic stability tool.

An early example of such a linear stability tool called
ARLIS was represented by Kirchgéafiner [2] at EWEC
1984. The tool was originally developed for rotor-
craft applications, but can also be used for analyzing
wind turbines, as Kirchgéfiner showed for an exper-
imental two-bladed machine. Using Floquet The-
ory for the stability analysis of turbines, ARLIS was
ahead of its time, even though the aerodynamic mod-
elling is based on a quasi-steady assumption.

As the first stall-induced vibrations were observed
on commercial wind turbines in the early 90’s [3],
several tools became available for analyzing stability
of wind turbines, besides the aeroelastic codes for
conducting traditional time-domain analysis. Most
tools are based on a method aimed only at predicting
stall-induced vibrations [4], where the aerodynamic
damping of a blade vibration is approximated as the
work done by the aerodynamic forces on the blade
over one period of oscillation. The advantage of this
method is that the aerodynamic forces may be com-
puted from a nonlinear model, whereby the ampli-
tude dependency of the aerodynamic damping can be
investigated. The nonlinear effects of dynamic stall
have been shown to limit the aerodynamic damping
as the amplitude increases [4, 5], which is important
for load assessments on wind turbines.

The disadvantage of approximating damping from
work computations is that the prescribed blade vi-
bration must be known on forehand. Often the struc-
tural mode shapes of the blades are used in stability
assessments with these tools, based on the assump-
tion that the aeroelastic and structural mode shapes
are identical, and that the blades vibrate mainly in
their mode shapes when mounted on the turbine.
But aeroelastic and structural modes are not iden-
tical, especially not in the case of a classical flutter
instability. Furthermore, blades do not vibrate in
pure blade modes when they operate on the rotor;
flapwise and edgewise bending modes may couple in
the rotor whirling modes of the turbine [6].
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Recently, new stability tools for blade only anal- Linear aeroelastic model
ysis have been developed [7]. Because there are
no periodic coefficients in the aeroelastic equations ~ The linear aeroelastic model of three-bladed hori-
of motion for a blade rotating without influence  zontal axis wind turbines used in HAWCStab is de-
from the remaining turbine’ these tools are based scribed in this section. The turbine is modelled by
on eigenvalue analysis, similar to a tool developed  articulated Timoshenko beam elements using the Fi-
by Chaviaropoulos [8]. The main issues in develop-  nite Element Method, where the aerodynamic forces
ing the new tools have been the linearization and  obtained by a Blade Element Momentum method are
state-space formulation of the aerodynamic models, transformed to the nodes assuming parabolic distri-
which normally are used in nonlinear indicial for- bution over the blade elements. The linear equations
mulations of existing aeroelastic codes. These issues of motion are derived using Lagrange’s equations in a
have been solved, and the solutions form the basis in ~ linear formulation. To enable the eigenvalue analy-
new stability tools for predicting the modal aeroe-  sis, the periodic coefficients in these equations are
lastic damping of the entire turbine. eliminated by formulating the structural and aero-

dynamic degrees of freedom (DOFs) for the rotor in
A new stability tool called HAWCStab for eigenvalue  multi-blade coordinates.
analysis of three-bladed turbines is presented in this
paper. The presentation focuses on the method and  Multi-blade coordinates
less on the detailed modelling. The basic model is
similar to that of the aeroelastic turbine code HAWC ~ The multi-blade transformation, or Coleman trans-
[97 ]_O] A Finite beam Element Method is used for formation for bladed rotors [13, 14] is a method
the structure, and the aerodynamic loads are mod- to describe the individual blade coordinates in the
elled by the Blade Element Momentum method cou- ground fixed frame of reference. The periodic terms
pled with a Beddoes-Leishman type dynamic stall ~ in governing aeroelastic equations can thereby be
model. This model of unsteady aerodynamics is re-  eliminated, when the number of rotor blades is odd,
formulated in state-space as a set of ordinary differ- the rotor is dsotropic (identical and symmetrically
ential equations [11]. The coupled equations of mo- ~ mounted blades), and the inflow to the rotor is uni-
tion are linearized about a steady-state equilibrium, form. These conditions can be expanded to ground
where the deterministic forcing of the turbine is ne-  fixed cyclic variations in blade properties and inflow,
glected. To eliminate the periodic coefficients and  e.g. due to tilt and yaw of rotor, or cyclic blade pitch.
avoid using the Floquet Theory, multi-blade coordi-
nates are used directly in the derivation of these lin- ~ The periodic terms are eliminated because all coor-
ear equations. An eigenvalue problem is then set up, dinates of the model are defined in the same frame
where the eigenvalues and eigenvectors can be com- of reference. The wind field and the motion of the
puted at any operation condition to give the aeroe- tower and nacelle are defined in the ground fixed
lastic natural frequencies, damping and mode shapes ~ frame. The bending of the main shaft are defined
of the entire turbine. This approach is presently lim- in the ground fixed frame by a simple rotational
ited to isentropic rotors (identica] blades and uni- transformation of the shaft coordinates with respect
form inflow), because of the multi-blade transforma-  to the azimuth angle. A physical coordinate gy, for
tion. However, it can be extended to handle ground  blade number &, defined in its own co-rotating frame,
fixed asymmetries, e.g. gravity loads, cyclic pitch, is transformed into the ground fixed frame by the
rotor tilt, and yaw errors. multi-blade transformation:
The paper structured as follows: First, the linear o
aeroelastic model is described with focus on the is- qr(t) = ao(t) + ar(t) cos (Qt + ?(k - 1))
sues that are important for setting up the eigenvalue o
problem. Second, the eigenvalue analysis is describ- + by(t)sin <Qt + ?(k - 1)> (1)
ing including issues about conditioning the eigen-
value problem and interpretation of the eigensolu-
tions. Finally, a stability analysis is presented for ~ where ¢ is time, k = 1,2,3 is the blade number, and
a stall-regulated 600 kW turbine, which has been ) is the mean rotational speed of the rotor. Three
used in an experiment to estimate the aeroelastic =~ multi-blade coordinates ag, a1, and by replace the
modal damping of its edgewise whirling modes [12]. three blade coordinates g1, g2, and g¢s.
For readers unfamiliar with wind turbine dynamics,
the purely structural modes of this turbine are intro- ~ To understand that the multi-blade coordinates de-
duced by a modal analysis similar to [6]. scribe the rotor coordinates in the ground fixed
29TH EUROPEAN ROTORCRAFT FORUM M.H. Hansen

Friedrichshafen, Germany, 16-18 September 2003 Aeroelastic eigenvalue analysis of three-bladed wind turbines

05-2



29th European Rotorcraft Forum, Friedrichshafen, 16-18 September 2003

A <

PN

frame, assume that blade coordinates ¢ describes
a flapwise blade deflection. In that case, the ag co-
ordinate describes a simultaneous flapwise deflection
of all three blades, while the a; and b; coordinates
describe tilt and yaw motions of the rotor, respec-
tively (azimuth angles are measured from the verti-
cal downward position).

Similar considerations can be used for the remain-
ing blade coordinates of both structural and aero-
dynamic DOFs in an aeroelastic model. The fol-
lowing two sections describes the linear aeroelastic
model used for the eigenvalue analysis in HAWC-
Stab, where all blade coordinates are defined in
multi-blade coordinates by the transformation (1).

Structural dynamics

The turbine structure is modelled by articulated
prismatic beam elements as shown schematically in
Figure 1. The beam structures can be divided into
three substructures: Tower, nacelle including the
shaft, and blades. These substructures are kinemati-
cally coupled at the tower top and rotor center nodes.

The tower is assumed to be clamped at the first node
of the tower substructure. The tower top node has
the same DOFs as the first node of nacelle substruc-
ture, except for a constant speed azimuthal rotation
of the shaft node. In this first version of HAWC-
Stab there is no rotational DOF for modelling the
generator. The nacelle substructure models both
nacelle deformations and torsional deformations of
drive-train, which is rotating at the constant rotor
speed. The three blades are connected to the nacelle
at the rotor center, whereby the first common blade
node has the same DOFs as the shaft end, when ac-
counting for the 120° azimuthal blade rotations.

The Timoshenko beam theory, used for the prismatic
beam elements, includes the shear deformations and
rotational inertia of the beam cross-sections. Each
node has therefore six DOFs: Two pairs of cross-
sectional translations and rotations, a longitudinal
translation, and a torsional rotation. The shape
functions used to describe the variations of these de-
formations over the element as function of the ele-
ment coordinate and node DOF's are similar to the
functions suggested in [15]. The six deformations
of all beam cross-sections of the turbine model is
thereby described by the node deformation vector:

(2)

where u; contains the tower node DOFs, u,, contains
the nacelle node DOF's described in the fixed frame

u = {u; u, u,, U, ubl}T

> M

S

Shaft/nacelle

Rotor center node

Tower top node

Pitch bearing node

Figure 1: Schematics of the articulated beam element
model of a wind turbine used in HAWCStab. Note
that only one blade is drawn.

of reference, u,, contains the symmetric node DOF's
of the rotor blades, and the two vectors u,, and uy,
contain the two asymmetric node DOFs of the rotor
blades (cf. equation (1)).

The equations of motion are derived using La-
grange’s equation. The total kinetic energy can be
written as

2

e

T =) Ti(u,i)

k=1

3)

where N, is the total number of elements, u is the
node velocity vector, and T}, is the kinetic energy of
element number k, which is derived as

lmk
2Ak/ /rkrdedz

where ry = 1ty (z,y,2;u,0) is a velocity vector in
the ground fixed frame for the cross-sectional mass
particle with mass my, /A, at cross-sectional position
(z,y) and element coordinate z, and I, my, and Ay
are the length, mass per unit-length, and area of
the cross-section for the prismatic element k. This
velocity vector is obtained as the time derivative of
the position vector, which is not written out here for
the brevity of this paper.

Ti(u, (4)

The total potential energy can be written as

Ne
V=> Vi(u
k=1
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where V}, is the potential energy stored in element  autonomous, the contributions of element £ to the
number k, which for rotor elements has the form mass, gyroscopic, and stiffness matrices can be de-
rived as
Vi(u) = Ve r(u) + Ve r(u) (6)
2
where V,  is the elastic strain energy, and V. is Mk 0“Ly,
the potential energy due to centrifugal blade forces. ’ 0101 u=ug, 1=0
The geometric nonlinearity that an element is elon- 92L,, 92L,,
gated by variations in cross-sectional deformations, Jijk = ( Juou.  u au-) . (10)
causes energy from the centrifugal normal forces to ; J I/ lu=u,, =0
be stored in the blade elements. R 0Ly,
Gk du0u;
) lua=ugp, 0=0
It is important to note that the presumption of an
1sotr'op.1c rotor for the use of ml%ltl_bl‘a de coordm.ates where ug is the steady state deformation of the tur-
to eliminate the periodic coefficients in the equations . A . . .
; . . . bine, which in this first version of HAWCStab is as-
of motion, also implies that the blade nodes are iden- . .
. . sumed to be a symmetric deformation of the rotor.
tical for all three rotor blades. Each set of three iden- . .
. Note that the mass and stiffness matrices are sym-
tical blade elements can therefore be collected to a . . .. . .
] . . ) L metric, and the gyroscopic matrix is anti-symmetric.
single rotor element, which simplifies the derivation
. . . , .
of the equation of motion using Lagrange’s equat%on Aerodynamics
on element level. The contribution to the Lagrangian —————
L,: T,_V from a rotor element s the sum of the con- The distribution of aerodynamic forces over an blade
tributions from the three identical blade elements: . .
element is assumed to be parabolic, whereby three
= Tlfh + Tsz + TkBg _ VkBl _ Vsz _ VkB3 (7) aerodynamic calculation points are needed for egch
element. To reduce the total number of calculation
where the subscript k here refers to the rotor element points and ensure that the distribution over the en-
number. Similar to the contributions from a tower tire blade is continuous, the three calculation points
element L! and a nacelle element L7, this collected  are placed at the nodes and the middle of each ele-
contribution from a rotor element is independent of ~ ment. Because the aerodynamic forces are assumed
time ¢ because of the multi-blade formulation. The to vanish at the tip and rotor center, the number of
element contributions to the Lagrangian depend only calculation points is Ny, = 2N, — 1 for each blade,
on the structural state Ly = Lg(u,0), where the  where N is the number of blade elements.
superscripts are omitted.
A Beddoes-Leishman type dynamic stall model in a
Lagrange equations including generalized aerody- state-space formulation recently developed at Risg
namic forces can be written as National Laboratory [11] is used to model the un-
o /oL oL steady forces in each aerodynamic calculation point.
Z <8_ ( 8'k> -3 u ) =Q; (8)  The model includes the dynamic effects of the near
k 1\ Oui Ui wake (Theodorsen Theory) and the trailing edge sep-
. . . tion in stall on the lift, d d t coef-
where i = 1,2,..., N, the summation over index k aration in stat on the L, 4rag, and moment coe
. ficients. However, the effect of leading edge separa-
includes the tower, nacelle, and rotor elements, and .
. . tion is neglected because of the moderate reduced
N = 6 x N, is the total number of generalized co- . s .
. . .. frequencies and types of airfoils applicable for tur-
ordinates (DOFs). Note that there is no dissipation . . .
. . . bine blades. Added fluid mass is also neglected due
function introduced here; structural damping will be .
. . . to the moderate reduced frequencies.
added to the equation of motion as element matrices
based on a Rayleigh type damping model [16]. Figure 2 shows an example of typical loops of the un-
. .. , . . steady lift and drag coefficients for vibrations about
Linearization of Lagrange’s equations (8) and intro- . .
. . . . different angles of attack. The model of the trail-
duction of structural damping yields that the linear . T . .
5 . ing separation is highly nonlinear, however it can be
equation of motion can becomes . . . .
linearized with reasonable agreement between linear
Mii+ (C+G)i+Ku=Q (9) and nonlinear loops, even for relatively large varia-
tions in angle of attack, as seen in Figure 2.
where the damping matrix C is derived from the
Rayleigh type damping model. Using that the con-  The model uses four aerodynamic states to describe
tributions to the Lagrangian from all elements are  the dynamics of the unsteady lift, drag, and moment
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2 , , — culation point. The vector on the right hand side
Static - is an inherent nonlinear function of the deformation
Nonlinear -------- . s :
15 Linear and velocity vectors describing the effect of turbine
= 70 ) vibrations on the angle of attack, pitch rates, and rel-
5 ST p ative inflow velocity at the calculation points. This
% T / e, ) function is linearized as
Q
o
£ o5l 4 | H(u,u) ~ C,u+ K,,u (13)
rd The linearization of the dynamic stall model to ob-
0 L L L L L tain the matrix A, and linear approximation of the
0 5 10 15 20 25 30 function H is performed about the steady state given
Angle of attack [deg] by the symmetric deformation ug of the rotor and a
0.4 — T T - symmetric aerodynamic state xg. This steady state
0 35 | Statlc .................. :'_:' | . t d . lt 1 _th th . d d l .
. Nonlinear ---—- ; is computed simultaneously wi e induced veloci-
. 03} Linear . ties to obtain the influence of the wake on the steady
= 025¢ . state conditions. The wake is assumed to be fixed,
3 0.2 n i.e., the induced velocities computed for each oper-
@ 0.15 7 ational condition are constant and independent of
o 01f ] rotor vibrations.
g 005 / 4
s} -
0F ) 7 The aerodynamic forces and moments in the calcu-
-0.05 7 lation points on the blades are given by nonlinear
01 0 5 10 15 20 25 30 functions of the aerf)dynamic stgtes x, and the struc-
Angle of attack [deg] tural states u and u due to thelr. eff(?ct on the ar.lg.les
of attack, pitch rates, and relative inflow velocities.
Figure 2: Linear and nonlinear unsteady lift and drag ~ The three calcplat'ion points for ea'ch k?lad'e elsement
coefficients computed from the Beddoes-Leishman ~ €nable thg derivation of a pa'rabohc distribution of
type dynamic stall model developed in a state-space  Cross-sectional forces and torsional moment over the
formulation by Hansen et al. [11]. Model parame-  ©lement k:
ters and reduced frequencies used in this example are ) )
typical for turbine blades. Fip = Fp(ziu,0,x) and My = My(2;u,0,x) (14)
where z is the element coordinate. These forces
coefficients [6]: Two states to model the two time-  (which are not written out here for brevity) are de-
lags in the near wake effect (corresponding to a two  fined in the ground fixed frame, and they are applied
time-lag approximation to the indicial function of the  in the aerodynamic center of the blade cross-section,
Theodorsen theory), and two time-lags in the effect  resulting in the generalized forces [17]:
of trailing edge separation (one lag in the pressure
distribution over the chord, and one lag in movement L or o0
! _ 70T AC K AC,k
in the separation point). Hence, the total number of Qi = Z/o (Fk D + M, D > dz (15)
aerodynamic states is N, = 4 X 3 X N, which are k
collected in an aerodynamic state vector: where i = 1,2,....N, the summation over index
X = {X4, Xa, X, }T (11) k includes all blade elements, the vector rac i =
) ) ) rac,k(z;u) describes the position of the aerody-
where x,, contains the symmetric aerodynam.lc namic center in the ground fixed frame, and 64 =
states, and the two vectors x,, and x;, contain fac.x(z; ) is the torsion of the cross-section.
the two asymmetric aerodynamic states of the rotor
blades, as defined by equation (1). After linearization of (15) about the steady state
) ) ) (ug,Xp), the generalized aerodynamic forces can be
The llnfear first order dyna_mlc equations for the aero- 5 hrovimated by
dynamic states can be written as [11]
where A, is a matrix having uncoupled 4x4 matri-  where the contribution to the aerodynamic damping
ces in the diagonal, one for each aerodynamic cal- and stiffness matrices (C, and K,) and the coupling
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matrix A from each blade element is derived as mass and stiffness matrix of the turbine at standstill)
are used for this exapnsion:
b/ OFT or dM; 96 al
k OTACk k 00ack
Ca.ii = dZ = ;2 =
aig:k /0 <6u] ou; + 6’&]‘ ou; ) o u ZV’ Z’(t) ez (19)
i=1
U T
Koiji = / <5Fk Orac i n OM}, 9 ac i (17) where ® is a modal matrix containing the undamped
o \Ouj Ju Ouj  Ou; eigenvectors in the columns, and z is a new structural
Orack 00ac i state vector
+F7! : . dz )
0.k 8ui8uj 0.k 8ui8uj 0
B Ik 8F{ Orac  OMy dac To set up the elggnvalge problem all aeroelastic
afijk = + dz states are collected in a single state vector
0 8xj 8U,i 856]‘ 8U,i 0
X
= VA 20
where Fy ;, and My j are the steady state force and Y 2 (20)
moment distributions for element k, and all expres-
sions are evaluated at (u,1,x) = (ug,0,%o). These  and a solution of the form y = we* is sought. After
matrix contributions do not have any type of sym-  yse of expansion (19) and insertion of this solution
metry, which corresponds to the fact that the aero-  form, the following eigenvalue problem is obtained
dynamic forces Q are circulatory.
Collection of equations (9), (12), (13), and (16) 0 0 -1 +AI|w=0
yields the coupled equations of motion of the linear dTA ¥ K, ® ITC.P
aeroelastic model of wind turbines: (21)
) _ where K; = K+ K, and C; = C+ G + C, are the
Mii+(C+ G+ C,)u total stiffness and damping matrices. The eigenval-
+K+Ky)u+A;x = 0 (18) ues A, and eigenvectors w, of this problem yields
X+ Ayx+Cpu+Kyuu = 0 the natural frequencies, damping, and mode shapes
of the aeroelastic turbine modes.
These equations are autonomous enabling an eigen- Natural frequency and logarithmic decrement of
value analysis to determine the aeroelastic natural =~ mode n are given by the imaginary and real part
frequencies, damping, and mode shapes of wind tur- of the corresponding eigenvalue A\, = o, + iw, as
bines operating at a constant rotor speed. w o
n n
=— and 0,=—— 22
Eigenvalue Analysis and the corresponding mode shape can be computed
in physical (blade) coordinates from the eigenvector
The aeroelastic equations of motion (18) couple the ~ Wa by the modal expansion (19) and the multi-blade
structural motion of the turbine with the dynamics trgnsformatlon (1). This computation of modal am-
of the aerodynamic forces. The structural dynamics  plitudes for the physical blade coordinates enables
is characterized by N natural modes with frequen-  an identification of the modes as described in [6].
cies and damping through a second order differential o
equation, whereas the dynamics described by the in-  Identification of modes
dependent first order differential equation for each ) ' N
aerodynamic calculation point can be characterized ~ Insertion of the solution y = wye™" into (19), the
as over-damped aerodynamic states. modal solution for the multi-blade coordinates of a
particular rotor element DOF can be written as
The coupling of dynamic and purely damped states ao(t) ao
means that a direct formulation of an eigenvalue a1(t) b = Ref alvn Mty (23)
problem from (18) will lead to an ill-conditioned by (1) bl’"
problem. This issue cannot be solved but the prob- "
lem can be better conditioned by a modal expansion where the complex modal amplitudes ag , a1,,, and
of the structural DOFs. The undamped eigenvec- b1, is given by w,, and ®. Insertion of these multi-
tors of the stationary turbine v; (computed from the  blade coordinates into the transformation (1) yields
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that the modal solution for the physical DOF gy, Prediction compared to observation
on blade number k vibrating in mode n becomes
Thomsen et al. [12] have developed an experimen-
0 out 0 tal method for estimating the aeroelastic damping
Gk = Ape’ticos(wnt + ¢y) (24)  of turbine modes while the turbine is operating.
n %Agwedktcos((wn_'_ Q)t + %’r(k—l) + ¢12W) In their experiment with a §ta11—regulated 600 kW
Bonus turbine, the low damping of the two first edge-
+ %Azwe""‘tcos((wn— )t — 2?”(k—l) + ¢EW) wise whirling modes were estimated. They showed
that the forward whirling mode is more damped than
the backward whirling mode, although they are as-
where the amplitudes (A%, ABW AFW) and phases  sociated with the same edgewise blade mode.
(2, pBW ¢EW) are uniquely determined by the com-
plex modal amplitudes aog,p, @1,n, and by y,. Hansen [6] presented a theoretical modal analysis of
the particular turbine based on a simplified turbine
Equation (24) shows that for turbine vibrations in ~ model, which showed that the blades vibrated more
mode n, the motion of blade number & in the partic- out of the rotor plane in the forward whirling than in
ular physical coordinate gy, consists of three com- the backward whirling mode. This difference can ex-
ponents: A symmetric component where all blades plain the measured difference in aerodynamic damp-
deflect simultaneously with the amplitude Agyn, and  ing of the two modes because out of plane blade vi-
two asymmetric components where the blades de- brations are more damped than in plane vibrations.
flect with phase shifts of 27/3 and the amplitudes
ARV and ALY, respectively. As indicated by the  In this section the aeroelastic modes are computed
superscripts, the asymmetric components represent with HAWCStab for the same 600 kW turbine. The
backward and forward rotor whirling. The direction results support the conclusion by Hansen [6], and
of the whirl is determined by sign of the blade de- also shows that the predicted aeroelastic damping of
pendent phase shifts 2% (i — 1). the two turbine modes correspond well with the ob-
servations. For readers unfamiliar with wind turbine
The frequency of the symmetric component is wy, dynamics, the modal analysis with the simpler tur-
while the frequencies of the backward and forward bine model presented in [6], is redone here based on
blade whirl components are wy +  and wy, — 2, re- the more detailed model of HAWCStab.
spectively. The reason for these frequency shifts is
that the natural frequency wy, is given in the ground The input to aeroelastic model is taken from the orig-
fixed frame. An observer on the tower top (in the inal HAWC model of the turbine used in the prepa-
ground fixed frame) will measure the natural fre-  rations for the experiment by Thomsen et al. [12],
quency wyg, however the observer on a blade will mea- except for an improved calibration of structural stiff-
sure the frequencies wy, +$2 and wy, —? for a backward nesses to give the measured frequencies of the first
and forward whirling modes, respectively. ten structural modes at standstill. These modelled
and measured frequencies of the stationary turbine
Often, the asymmetric rotor modes of a turbine are are listed in Table 1. Note that there has only been
not purely forward, or backward whirling, but con-  estimated a single frequency for each of the higher
sists of both forward and backward whirling com-  asymmetric mode pairs.
ponents, and some symmetric component. In such
cases, the observer on the blade will see three peaks Structural modal analysis
for each mode in the frequency response.
A comparison of modelled and measured frequen-
Note that the exponential decay (or growth in case  cies (cf. Table 1) leads to the assumption that the
of instability) of blade amplitudes given by et is model is sufficiently tuned to the experimental tur-
independent of the reference frame of the observer. bine. The naming of the first ten modes is based on
animations of their mode shapes and the measured
As the following example will show, it is possi- frequency responses. The sequence of modes is typi-
ble to identify the symmetric and asymmetric rotor cal for a turbine of this size; with the exception that
modes of a turbine by computing the symmetric and the 1% shaft torsion mode may be higher than the
whirling components for the DOFs at the blade tip tower bending modes. The longitudinal tower bend-
nodes of the rotor. To identify the tower bending  ing lies always slightly lower than the lateral tower
modes it may be necessary to compute the modal  bending mode because it contains some tilting of the
amplitudes for the tower top DOFs. rotor which has a large inertia.
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Mode | Mode Modelled | Measured 5 : : : : :
no. name freq. [Hz] | freq. [Hz] Operational speed
1 15 shaft torsion 0.55 0.56 ) -
2 | 1% long. tower 0.76 0.73 @
3 15¢ lat. tower 0.81 0.80 g -
4 | 1% yawing flap 1.41 1.2 S
5 1% tilting flap 1.50 1.5 £ -
6 | 1 sym. flap 1.70 1.76 g
7 15t vertical lag 2.92 99 s .
8 1% horizontal lag 2.99 )
9 274 yawing flap 3.43
10| 27 tilting fla 3.64 36 %0
g nap
Table 1: Modelled and measured natural frequencies 9
of the lowest 10 modes of the stationary turbine. 'g
8 -
8
Modes 4 and 5 are the 1% tilt/yaw modes involving £ 1
the first flapwise blade mode. The yaw mode most _g
often lies lower than the tilt mode because towers = 7
are stiffer in tilt than in yaw. The sixth mode is the %
1% symmetrical flap mode, where the blades vibrate 3 7
simultaneously in the flapwise blade mode in counter é Operational speed
phase with a longitudinal tower vibration. w 0 0 é 1|0 1|5 2|0 2|5 30

Modes 7 and 8 involve the first edgewise blade mode
and their frequencies are close to the edgewise blade
frequency of 2.94 Hz. In both modes, the blades vi-
brate edgewise against each other so that they cancel
out the torsional moment at the rotor center. The
two modes differ in the direction of the reactive force
at the rotor center, as indicated by their names:
15¢ vertical and 15! horizontal edgewise mode. The
sequence of these two modes is given by the vertical
and horizontal stiffness of the rotor support.

Modes 9 and 10 are the 2°¢ tilt/yaw modes, where
the rotor blades are tilting and yawing in counter
phase with the tilt and yaw of the nacelle. Again
the yaw mode lies below the tilt mode because of
the lower yaw than tilt stiffness of the tower.

Figure 3 shows how the natural frequencies and
structural damping of these first ten modes change
with the rotation speed of the rotor, from standstill
to the operation speed. The frequencies of the tower
bending modes and the shaft torsion mode are con-
stant with rotor speed. The frequency of the sym-
metric flap mode increases due to centrifugal stiff-
ening of flapwise bending. The frequencies of the
asymmetric rotor modes change with the rotor speed
due to gyroscopic effects.

All pairs of asymmetric rotor modes at standstill
(modes 4/5, modes 7/8, and modes 9/10) become
pairs of rotor whirling modes due to the rotation,

Rotor speed [RPM]

Figure 3: Campbell diagram (top) and damping di-
agram (bottom) showing the natural frequencies and
structural damping of the first ten structural turbine
modes versus the rotation speed of the rotor.

e.g. the 1% tilt/yaw modes become the 1t flapwise
whirling modes and the 1% pair of edgewise modes
become the 1°¢ edgewise whirling modes. The fre-
quencies of the backward whirling (BW) modes de-
crease with rotor speed, whereas the frequencies of
the forward whirling (FW) modes increase with rotor
speed.

The damping diagram in Figure 3 shows the struc-
tural damping of the first ten modes as modelled
by the Rayleigh type damping model. The levels of
the damping are assumed from experience, noting
that the blades are fitted with edgewise vibration
dampers, yielding damping of approximately 5 %
logarithmic decrement for the first edgewise blade
mode, whereby the first edgewise whirling mode pair
obtain about the same level of damping (see Fig-
ure 6). The damping of the 1°¢ shaft torsion mode
is not included in Figure 3, because this damping is
difficult to model without the modelling of the in-
duction generator. Note that some modes seems to
interchange levels of damping, which is due to the
modal interactions discussed in the following.
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The splitting of the natural frequencies of a whirling
mode pair with the rotor speed () is related to the
coordinate system of observation through gyroscopic
effects. The natural frequencies w, in Figure 3 are
observed from the ground fixed frame. Equation (24)
shows that in a co-rotating blade frame the frequency
of a symmetric rotor mode remains w,,, whereas the
frequencies of BW and FW modes become w,,+£2 and
wp — Q, respectively. If only a single blade mode is
involved in a pair of whirling modes, their frequencies
will split in the ground fixed frame about the natural
frequency wpladge Of this blade mode. In this ideal
case, the observer on the blade will measure the same
frequency wplade = wBW +Q = wEW —Q for both the
BW and FW mode.

This ideal condition is affected by structural asym-
metry of the turbine and coupling of blade modes
in the turbine modes. Such modal interactions may
occur when the natural frequencies of two turbine
modes come close. Figure 3 shows that the frequen-
cies of the 15* FW edgewise mode (mode 8) and the
2 BW flapwise mode (mode 9) become close at
about 20 RPM. These two modes interact, which
can be shown by the flapwise and edgewise whirling
components in their mode shapes.

Figure 4 shows the FW and BW components of
flapwise and edgewise blade motion in modes 7-10.
These whirling components are computed from the
eigenvectors in multi-blade coordinates as defined in
equation (24). The dominating amplitudes for mode
7 and 10 show that these modes are, respectively, a
BW edgewise and a FW flapwise mode. However,
there are no dominant modal amplitude for modes
8 and 9 over the whole range of rotation speeds. It
seems that these modes interchange mode shapes:
Mode 8 can be defined as a FW edgewise mode and
mode 9 as a BW flapwise mode at rotation speeds
below 20 RPM, and above it is vice versa. This
modal interaction also explains the interchange of
structural damping seen in Figure 3.

At the operation speed, mode 9 must be character-
ized as the 1%* FW edgewise mode with some con-
tent of flapwise whirling. Comparison of the flapwise
whirling components of modes 7 and 9 shows, what is
also shown in [6], that the 15* FW edgewise mode in-
volves more flapwise blade motion than the 15t BW
edgewise mode. Hansen [6] suggests that this out
of rotor plane motion of the blades can explain the
difference in aerodynamic damping of the BW and
FW edgewise modes (modes 7 and 9) measured by
Thomsen et al. [12], and predicted in the following
eigenvalue analysis with HAWCStab.
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Amplitudes [-]

Amplitudes [-]

Amplitudes [-]

0 5 10 15 20 25 30
Rotor speed [RPM]

BWflap —e—

| BW lead-lag —*—
FW flap —e—

FW lead-lag —8—

Figure 4: Flapwise and edgewise whirling compo-
nents of the modal blade amplitudes for modes 7-10
computed as defined in equation (24).
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Aeroelastic eigenvalue analysis 10 : : :
< Aeroelastic damp. @
Figure 5 shows the structural and aeroelastic natu- = 8 ‘i'}"' ‘e-%__e i I\_/Ie%stlrj-rgamrﬁgf o
ral frequencies and damping of the first ten modes of £ i ?
the turbine operating at different wind speeds (and % 6 o ' i
the operational rotor speed of approx. 27.4 RPM). © Doy - :’“‘"u-u.
It shows that the natural frequencies are not af- 8 . _* { } o ] '--G-"e-'-e--e---@-"e---e.. o
fected significantly by the aerodynamic forces, ex- CE» F i G‘% FW edgewise mode
cept for the modes involving flapwise blade modes, £ 5L ) ‘eé i
which are also the most highly damped modes seen E 0-0.0-00-0-0.4
in the damping diagram. The lowest and negatively a 0 ) , BW edgewise mode
damped mode is the symmetric edgewise (first shaft 5 10 15 20 25
torsion) mode because of the blade vibrations purely Wind speed [m/s]
in the rotor plane. On the actual turbine, this mode
will be damped by the drive-train damping due to Figure 6: Predicted and measured aeroelastic damp-
the slip of the induction generator. ing of the forward and backward edgewise whirling
modes of the Bonus 600 kW turbine, together with
The two next lowest damped modes are the two the structural damping to show the change in damp-
asymmetric edgewise modes, i.e., the forward and ing due to the interaction with aerodynamic forces.
backward edgewise whirling modes. Figure 6 shows
the predicted and measured aeroelastic damping of
these two modes, together with the structural damp- . L . .
ing for comparison. Although the standard devia- jmons of the measured damping 1s.relatlvely large, _lt
is clear that these modes have different aeroelastic
damping. The same qualitative difference is seen in
the predicted aeroelastic damping, and furthermore
5 . . _ . the level of damping is very similar to the observed
_ Agrt‘r’ﬁé?jg mgggg e dam.p.ing. Thesg ﬁrs‘F results w.ith. the new tool for
T4 o OO CRCECEe: stability analysis indicate that it is possible to pre-
g Qe ° 6-6-0 dict the qualitative and quantitative behavior of the
g 3t T T damping of aeroelastic turbine modes.
% ° © ©0-0-0-6-&
= 2¢576:858ggiea SEeRemea
g 096:6:6:6-6-6-0 Conclusion
2 1 $20:0:0-0-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-0
0 L . i In this paper a design tool, called HAWCStab, for
5 10 15 20 o5 performing aeroelastic stability analysis of three-
Wind speed [m/s] bladed wind turbines is presented. The aeroelastic
turbine model is derived from a Finite beam Element
< 3055 6.4 Aeroelastic modes ~@- Method and the Blade Element Momentum method,
= 250 | Structural modes -------- - where the unsteady aerodynamic forces are modelled
g by a Beddoes-Leishman type dynamic stall model
g in a state-space formulation. Multi-blade coordi-
‘00’_ nates are used directly in the derivation of the linear
g aeroelastic equations of motion to eliminate the peri-
g) odic coefficients, thereby avoiding the use of Floquet
£ Theory. The eigenvalue problem based on these au-
£ tonomous equations is ill-conditioned, however the it
e L is conditioned by a modal expansion of the structural
15 20 degrees of freedom based on the undamped modes of
Wind speed [m/s] the turbine at standstill. This enables the computa-
tion of the natural frequencies, logarithmic decre-
Figure 5: Natural frequencies (top) and damping  ments, and mode shapes of the aeroelastic turbine
(bottom) for the first ten structural and aeroelastic modes. An example shows a good agreement be-
modes of the Bonus 600 kW, predicted with HAWC-  tween predicted and measured aeroelastic damping
Stab for different operation wind speeds. of a stall-regulated Bonus 600 kW turbine.
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