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Abstract 
 

Accurate and real-time load monitoring of vital components located in the rotor system is 
important not only for inferring usage and estimating fatigue in those components but also for 
developing load alleviation control schemes. An approach for on-line estimation of rotor 
component loads is presented in this paper in which a linear time invariant (LTI) model of 
helicopter coupled body/rotor dynamics is combined with a Linear Quadratic Estimator (LQE), 
which is designed to correct LTI model state response using fixed system measurements. The 
developed LTI/LQE scheme is evaluated in simulation using a nonlinear model of a generic 
helicopter  for  on-line  prediction  of rotor blade pitch link  loads  arising  from  vehicle maneuvers. 

1. NOMENCLATURE  

𝐴𝐴  LTI state matrix 
𝐵𝐵  LTI input matrix 
𝐶𝐶       LTI output matrix 
𝐷𝐷   LTI direct transmission matrix 
𝐸𝐸   Harmonic reconstruction matrix 
𝐿𝐿   Discrete time LTI state matrix 
𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹,𝐹𝐹𝐹𝐹   Fixed system rotor hub forces 
𝐹𝐹(𝜓𝜓)   LTP state matrix 
𝐺𝐺(𝜓𝜓)   LTP input matrix 
𝐾𝐾   Kalman gain matrix 
𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀   Fixed system rotor hub 

moments 
𝑁𝑁    Discrete time LTI output matrix 
𝑃𝑃  Filter error covariance 
𝑃𝑃(𝜓𝜓)   LTP output matrix 
𝑃𝑃,𝑄𝑄,𝑅𝑅 Body roll, pitch and yaw rates 

(Figs. 5 and 9) 
𝑄𝑄  Process noise covariance 

matrix 
R  Measurement Noise 

covariance Matrix 
R(ψ)    LTP direct transmission matrix 

 
U  Augmented control vector 
U, V, W  Vehicle body axes velocity 

components (Figs. 6 and 10) 
𝑋𝑋  Augmented state vector 
𝑌𝑌  Augmented output vector 
𝑠𝑠   Measurement estimate  
𝑢𝑢   Control vector 
v  Measurement noise 
w  Process noise 
x   State vector 
y   Output vector 
z   Measurement 
ψ   Non-dimensional time  
()0   Average or zeroth harmonic 

term 
()𝑛𝑛𝑛𝑛   nth cosine harmonic term 
()𝑛𝑛𝑛𝑛   nth sine harmonic term 
()𝑘𝑘   kth iteration 
()𝑥𝑥   Longitudinal axis 
()𝑦𝑦   Lateral axis 
()𝑧𝑧   Vertical axis  
()−   Previous Iteration   
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2. INTRODUCTION 

A 2012 survey of the past 30 years, carried out 
within Augusta Westland Limited (AWL) 
Materials Technology Laboratory, concluded 
that fatigue failures account for approximately 
55% of all premature failures in helicopter 
components1. The causes of low cycle fatigue 
are largely due to aircraft maneuvers, gust 
loading and through takeoff and landing. 
Critical helicopter components, classified as 
Grade-A Vital components by regulatory 
authorities, are subject to significant fatigue 
loading in which the failure would result in a 
catastrophic event. A list of fatigue critical 
components2 on the AH-64A Apache shows 
that many of the Grade-A Vital components 
are located in the rotor system, creating 
challenges for real time load monitoring of 
those components. 

Current methods for structural health and 
usage monitoring and load alleviation control 
rely on distributed sensing and operational 
monitoring to infer usage and estimate fatigue 
in critical components. Such inference 
process is affected by significant uncertainty 
given that sensors’ type and locations are 
often removed from hot spot areas 
characterized by maximum stresses. For 
example, past work3 for limiting pitch link loads 
used proxy models of the vibratory loading. A 
classic example is the Equivalent Retreating 
Indicated Tip Speed (ERITS) parameter, 
which has been correlated as a function of 
airspeed and normal load factor with vibratory 
pitch link loads from retreating blade stall 
onset, can be limited to indirectly constrain the 
pitch link loads.  

A recent Penn State study4 (see Figure 1 
taken from Ref. 4) used curve fits of pitch link 
vibratory loads as function of aircraft states 
and demonstrated the potential for limiting the 
peak-to-peak pitch link loads by limiting roll 
rate in a high fidelity FLIGHTLAB® simulation 

of a utility helicopter, thereby reducing 
incremental fatigue damage (as measured by 
a crack growth model), in this case, by over 
50% (shown as ‘DMC’ in Figure 1) for a roll 
reversal maneuver. The role rate limiting 
resulted in no degradation in handling qualities 
when evaluated using the ADS-33 attitude 
quickness and bandwidth specifications.  

Recent work5,6 at Georgia Tech has developed 
methods for approximation of coupled 
body/rotor dynamics using high order Linear 
Time Invariant (LTI) models. These methods 
use harmonic decomposition to represent 
higher frequency harmonics as states in an 
LTI state space model, and they offer the 
potential for real-time estimation of the effect 
of control inputs on component dynamic loads, 
which in turn can be used in combination with 
reduced order structural models to estimate 
primary damage variables associated with 
fatigue of critical components. Such real-time 
estimation of component level dynamic loads, 
stresses and strains, etc., provides the 
opportunity for real-time monitoring of 
component damage variables, and the 

 

Figure 1. Reduction of vibratory pitch link load 
using roll rate limiting technique. (Ref. 4) 



 

development of control schemes designed to 
alleviate component fatigue damage.  

The present study is focused on developing a 
real time algorithm for estimation of 
component level dynamic loads arising from 
vehicle maneuvers. It explores on-line use of 
LTI models of coupled body/rotor dynamics, a 
Linear Quadratic Estimator (LQE), and fixed 
system measurements for estimation of 
rotating system component loads.  

3. LTI/LQE MODEL 

A detailed description of the proposed 
LTI/LQE scheme for component load 
estimation is presented in this section. 
Considering an LTP model of the form given in 
Eqs. (1) and (2), harmonic decomposition for 
an extraction of LTI model assumes the 
approximation for the state vector, 𝑥𝑥, in Eq. (3) 

(1)                𝑥̇𝑥 = 𝐹𝐹(𝜓𝜓)𝑥𝑥 +  𝐺𝐺(𝜓𝜓)𝑢𝑢 

(2)                 𝑦𝑦 = 𝑃𝑃(𝜓𝜓)𝑥𝑥 + 𝑅𝑅(𝜓𝜓)𝑢𝑢 

(3)        𝑥𝑥 = 𝑥𝑥0 + ∑ 𝑥𝑥𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1  

where 𝑥𝑥0 is the average component and 
𝑥𝑥𝑛𝑛𝑛𝑛  and  𝑥𝑥𝑛𝑛𝑛𝑛 are respectively the n/rev cosine 
and sine harmonic components of 𝑥𝑥. Likewise, 
the control 𝑢𝑢 is expanded in terms of harmonic 
components as 

(4)     𝑢𝑢 = 𝑢𝑢0 + ∑ 𝑢𝑢𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 + 𝑢𝑢𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑀𝑀
𝑚𝑚=1   

and the output 𝑦𝑦 is expanded in terms of 
harmonic components as 

(5)       𝑦𝑦 = 𝑦𝑦0 + ∑ 𝑦𝑦𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙 + 𝑦𝑦𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝐿𝐿
𝑙𝑙=1   

where 𝑦𝑦𝑜𝑜 is the average component and 
𝑦𝑦𝑙𝑙𝑙𝑙 and 𝑦𝑦𝑙𝑙𝑙𝑙  are respectively the 𝑙𝑙𝑡𝑡ℎ harmonic 
cosine and sine components of 𝑦𝑦.  

The LTI approximation of the LTP model given 
by Eqs. (1) and (2) can be obtained by 
substituting for harmonic expansions of 𝑥𝑥,𝑢𝑢 

and 𝑦𝑦, i.e., Eqs. (3), (4), and (5) into Eqs. (1) 
and (2) (see Refs. 5 and 6 for details). The 
resulting equations can be represented in 
state-space matrix form by defining an 
augmented state vector as:  

(6)      𝑋𝑋 =  �𝑥𝑥0𝑇𝑇 . . 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇  𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇 . . 𝑥𝑥𝑗𝑗𝑗𝑗𝑇𝑇  𝑥𝑥𝑗𝑗𝑗𝑗𝑇𝑇 . . �𝑇𝑇 

and the augmented control vector as 

(7)             𝑈𝑈 =  [𝑢𝑢0𝑇𝑇 . .𝑢𝑢𝑚𝑚𝑚𝑚𝑇𝑇  𝑢𝑢𝑚𝑚𝑚𝑚𝑇𝑇 . . . . ]𝑇𝑇  

where 𝑥𝑥0 is the zeroth harmonic component, 
𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖 are the ith harmonic cosine and sine 
components of 𝑥𝑥, and  𝑢𝑢0 is the zeroth 
harmonic and  𝑢𝑢𝑚𝑚𝑚𝑚, 𝑢𝑢𝑚𝑚𝑚𝑚 are the mth harmonic 
cosine and sine components of u, 
respectively. The state equation of the 
resulting LTI model is 

(8)                       𝑋̇𝑋 = [𝐴𝐴]𝑋𝑋 + [𝐵𝐵]𝑈𝑈  

Likewise, the augmented output vector of the 
LTI model is defined as 

(9)                𝑌𝑌 =  [𝑦𝑦0𝑇𝑇 . .𝑦𝑦𝑙𝑙𝑙𝑙𝑇𝑇  𝑦𝑦𝑙𝑙𝑙𝑙𝑇𝑇 . . . . ]𝑇𝑇  

Then the output equation of the LTI model can 
be written as    

(10)              𝑌𝑌 = [𝐶𝐶]𝑋𝑋 + [𝐷𝐷]𝑈𝑈 

Detailed expressions for the LTI model 
matrices A, B, C and D are developed in Ref. 
6.  

In order for construction of an LTI/LQE model7, 
the LTI model of Eqs. (8) and (10) are 
represented in discrete form including process 
and measurement noise terms as Eqs. (11) 
and (12) 

(11)          𝑋𝑋𝑘𝑘 = [𝐿𝐿]𝑋𝑋𝑘𝑘−1 + [𝑁𝑁]𝑈𝑈𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1 

(12)                 𝑌𝑌𝑘𝑘 = [𝐶𝐶]𝑋𝑋𝑘𝑘 + [𝐷𝐷]𝑈𝑈𝑘𝑘 + 𝑣𝑣𝑘𝑘 

where the random variables, 𝑤𝑤 and 𝑣𝑣, 
represent the process and measurement 
noise, respectively. They are assumed to be 



 

independent, zero-mean white noise with 
normal probability distributions given by Eqs. 
(13) and (14) 

(13)                         𝑝𝑝(𝑤𝑤)~𝑁𝑁(0,𝑄𝑄) 

(14)                         𝑝𝑝(𝑣𝑣)~𝑁𝑁(0,𝑅𝑅)  

where Q and R are the process noise 
covariance and measurement noise 
covariance matrices, respectively.   

The goal of the LQE (Kalman filter) is to 
compute a posteriori state estimate, 𝑋𝑋�𝑘𝑘 , as a 
linear combination of an a priori estimate, 𝑋𝑋�𝑘𝑘

−, 
and the weighted difference between an actual 
measurement, zk, and a measurement 
prediction, sk, as shown in Eq. (15). 

(15)                𝑋𝑋�𝑘𝑘 = 𝑋𝑋�𝑘𝑘
− + 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝑠𝑠𝑘𝑘)  

The difference (𝑧𝑧𝑘𝑘 − 𝑠𝑠𝑘𝑘) is called the 
measurement innovation, or the residual, and 
K is referred to as the Kalman gain matrix that 
minimizes the a posteriori error covariance. 

The Kalman filter algorithm estimates a 
process by predicting future response using 
the previous state estimate, current control 
input, and the system model, then corrects 
that prediction using current measurement 
data. As such, the equations for the Kalman 
filter fall into two groups: time update 
equations and measurement update 
equations. The time update equations first 
project the system state and error covariance 
estimates forward in time using the current 
control vector to predict the future states and 
error covariance given the estimate from the 
previous time step and the system model. 
These equations are presented as Eqs. (16) 
and (17)8. 
(16)          𝑋𝑋�𝑘𝑘

− = 𝐿𝐿𝑋𝑋�𝑘𝑘−1 + 𝑁𝑁𝑈𝑈𝑘𝑘−1 

(17)          𝑃𝑃𝑘𝑘− = 𝐹𝐹𝑃𝑃𝑘𝑘−1𝐹𝐹𝑇𝑇 + 𝑄𝑄  

The measurement update equations generate 
an improved a posteriori estimate by 
correcting the a priori estimate with current 
measurement data weighted against the a 

priori estimate using the estimated error 
covariance. 

(18)       𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐶𝐶𝑇𝑇(𝐶𝐶𝑃𝑃𝑘𝑘−𝐶𝐶𝑇𝑇 + 𝑅𝑅)−1  

(19)           𝑋𝑋�𝑘𝑘 = 𝑋𝑋�𝑘𝑘
− + 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝑠𝑠𝑘𝑘)  

(20)                    𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐶𝐶)𝑃𝑃𝑘𝑘−   

Since the objective of the proposed LTI/LQE 
scheme is to correct the LTI model state 
response using fixed system measurements, 
and, in turn, use the corrected LTI state 
response for the estimation of rotating system 
component loads, we consider, in this study, 
the total hub loads as the measurement, z. 
Since the total hub loads can be obtained as a 
linear combination of the LTI outputs, the 
measurement equation used to determine s is 
defined as follows: 

(21) 𝑠𝑠𝑘𝑘 = 𝐸𝐸(𝜓𝜓)𝑌𝑌�𝑘𝑘
− = 𝐸𝐸(𝜓𝜓)𝐶𝐶𝑋𝑋�𝑘𝑘

− + 𝐸𝐸(𝜓𝜓)𝐷𝐷𝑈𝑈𝑘𝑘−1 

(22) 𝐸𝐸(𝜓𝜓) =  [𝐼𝐼    𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖    𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖   ⋯ 

 𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗𝑗𝑗𝑗𝑗    𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗𝑗𝑗    ⋯ ] 

 
where 𝐸𝐸(𝜓𝜓) is the time-periodic linear 
combination of LTI system outputs which 
comprises the total hub loads in the fixed 
frame. The measurement update equations 
are thus updated to reflect this augmented 
output as follows. 

(23) 𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐶𝐶𝑇𝑇𝐸𝐸(𝜓𝜓)𝑇𝑇(𝐸𝐸(𝜓𝜓)𝐶𝐶𝑃𝑃𝑘𝑘−𝐶𝐶𝑇𝑇𝐸𝐸(𝜓𝜓)𝑇𝑇 + 𝑅𝑅)−1 

(24)                  𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐸𝐸(𝜓𝜓)𝐶𝐶)𝑃𝑃𝑘𝑘− 

With all system matrices and noise covariance 
matrices are constant or time periodic, the 
steady state solution to the Kalman gain 
matrix, K of Eq. (23), is periodic. Since 
calculation of the periodic steady state Kalman 
gain matrix does not depend on system state 
or time, it may be pre-calculated off-line for a 
given set of output and noise covariance 
matrices to improve the computation time 
associated with application of the LTI/LQE 
scheme. Thus, Eqs. (17), (23) and (24), can 



 

be iteratively solved a priori for selected values 
of the process noise covariance (Q) and the 
measurement noise covariance (R) in Eqs. 
(13) and (14). A block diagram representation 
of the proposed LTI/LQE scheme for rotor 
component load estimation using fixed-system 
measurements is illustrated in Fig. 2. 

 

Figure 2. Block diagram of the proposed      
LTI/LQE scheme for rotor component load 
estimation. 

4. RESULTS 

The proposed LTI/LQE scheme was 
evaluated in simulation for the case of on-line 
estimation of blade pitch link loads arising from 
vehicle maneuvers using a nonlinear model of 
a generic helicopter in FLIGHTLAB®. Using 
the scheme for LTI model extraction from a 
nonlinear model presented in Ref. 6, an LTI 
model with harmonic decomposition of LTP 
states in a first order representation (i.e., 
separate displacement and velocity states) 
was developed from a full vehicle nonlinear 
(NL) FLIGHTLAB® model of a generic 
helicopter with elastic blade mode shapes and 
a 33-state Peters-He dynamic inflow model. 
The extracted LTI model has previously been 
validated through comparisons with the 
nonlinear model both in time and frequency 
domains and is found to be of sufficient 
fidelity6. The LTP model, developed from the 
NL model prior to being decomposed into 
harmonic states for the LTI system, included 8 
body states, 33 inflow states (Peters-He Finite 

state inflow with 4 harmonics and a maximum 
radial variation power of 8), and 48 multi-blade 
coordinate (MBC) rotor states including elastic 
modes. Thus, the total number of LTP states 
is 89. Each of these LTP states was then 
decomposed into 0-8/rev harmonic 
components, resulting in 1513 total LTI model 
states. It should be noted that all 0-8 
harmonics may not be required to achieve 
acceptable fidelity in the LTI model as 
discussed in Ref. 6. Future work should 
consider reduced order LTI models for 
reduced computational cost. The nonlinear 
model was trimmed at 120 knots.    Figure 3 is 
a plot of the reference blade pitch link axial 
load variation with time at equilibrium from the 
nonlinear model.    

 

Figure 3. Steady state reference blade pitch 
link axial load variation with time. 

4.1 Pitch maneuver (less aggressive) 

To assess the performance of the LTI model, 
a less aggressive pitch maneuver was created 
using a combination of ramps in the 
longitudinal cyclic control.   

Figure 4. Percentage change from trim of 
longitudinal cyclic control input. 



 

 

Figure 5. Body angular rate response from the 
nonlinear model for the selected longitudinal 
control input shown in Fig. 4. 

 

Figure 6. Body velocity response from the 
nonlinear model for the selected longitudinal 
control input shown in Fig. 4. 

Figure 4 is a plot of the percentage change in 
longitudinal cyclic control variation applied 
both to the nonlinear model and the LTI model. 
All other controls were held fixed at their trim 
values. The vehicle angular rate responses (P, 
Q, R) and the body velocity component 
responses (U, V, W) from the nonlinear model 
are presented in Figs, 5 and 6. The vehicle 
pitch rate (Q) response stays within 0.05 
rad/sec for the selected longitudinal cyclic 
control input. Hence, this is considered as a 
less aggressive maneuver in this study.     

The resulting variation of the reference blade 
pitch link axial load as predicted by the LTI 
model is compared with that from the 
nonlinear model in Fig. 7, where the sub-plot 
in Fig. 7 is a close-up view of the comparison 
over a selected time window. It is seen from 
the results in Fig. 7 that the LTI model 
prediction of the blade pitch link axial load 

variation arising from the selected less 
aggressive pitch maneuver is nearly same as 
that from the nonlinear model. 

 

Figure 7. Axial pitch link load comparison 
between LTI and NL models for the selected 
longitudinal control input shown in Fig. 4. 

4.2 Pitch maneuver (slightly more 
aggressive)  

For further assessment of the fidelity of the LTI 
model for rotor blade pitch link load prediction, 
a slightly more aggressive pitch maneuver 
was simulated using the longitudinal cyclic 
control variation from trim shown in Fig. 9. 
Once again, all the other controls were held at 
their respective trim values.  
   

 

Figure 8. Percentage change from trim of    
longitudinal cyclic control input. 



 

The resulting body angular rate and velocity 
responses from the nonlinear model 
simulation are shown in Figs. 10 and 11, 
respectively. The body pitch rate (Q) response 
goes up to 0.1 rad/sec for this case.  

 
Figure 9. Body angular rate response from the 
nonlinear model for the selected longitudinal 
control input shown in Fig. 8. 

 

 
Figure 10. Body velocity response from the 
nonlinear model for the selected   longitudinal 
control input shown in Fig. 8. 

 

The reference blade pitch link axial load 
variation as predicted by the LTI model is 
compared with that of the nonlinear model in 
Fig. 11, with the inset figure showing a close-
up view of the comparison over a selected 
time window. Now for this case of slightly more 
aggressive maneuver, differences between 
the LTI model predictions and the nonlinear 
model predictions of the blade pitch link loads 
are observed in Fig. 11. The observed 
differences are presumed to be associated 
with nonlinear effects becoming significant 
due to aggressiveness of the maneuver, which 
are not captured by the LTI model. 

 

 
Figure 11. Axial pitch link load comparison 
between predictions from LTI and NL models 
for the selected longitudinal control input 
shown in Fig. 8. 

 

4.3 LTI/LQE Performance   

In order to improve the LTI model predictions 
for aggressive maneuvers, the LTI model is 
combined with a pre-designed Kalman filter 
using fixed system hub load response data 
from the nonlinear model as measurements to 
form the LTI/LQE scheme presented in Fig. 2.  
The form of the noise covariance matrices Q 
and R of Eqs. (13) and (14) for the Kalman 
filter design was selected to be diagonal as 
given in Eq. (25) 

(25)                  𝑄𝑄 = 𝑄𝑄0 ∗ 𝐼𝐼      𝑅𝑅 = 𝑅𝑅0 ∗ 𝐼𝐼  

where 𝐼𝐼 is the identity matrix, Q is a diagonal 
square matrix with size equal to the total 
number of states, and R is a diagonal square 
matrix with size equal to the total number of 
measurements. For this study, the values of  
𝑄𝑄0 and 𝑅𝑅0 in Eq. (25) were set to 10 and 10E-
8, respectively. Since no explicit noise was 
added to the fixed system hub load response 
data, it was expected that the selected values 
of  𝑄𝑄0 and 𝑅𝑅0 would allow the estimator to trust 



 

the nonlinear hub load response much more 
than that of the LTI model response, and 
hence, correcting the LTI model response in 
order to make the LTI model predictions of the 
fixed system hub loads match with that of the 
nonlinear model. This aspect is verified by 
comparing the hub load predictions from the 
LTI and LTI/LQE with that of the nonlinear 
predictions for the slightly aggressive pitch 
maneuver case. 

Figure 12 compares the fixed system hub 
loads (forces Fx, Fy and Fz and moments Mx, 
My and Mz) variations from trim as predicted 
by the LTI model with those of the nonlinear 
model for the slightly aggressive maneuver 
case. With the nonlinear model predictions 
representing the truth data, errors in LTI model 
predictions of hub loads can be seen in Fig. 
12. The observed errors in LTI model 
predictions of hub loads are corrected by the 
proposed LTI/LQE scheme as seen from the 
results presented in Fig. 13, where estimates 
of hub load variations from trim from the 
LTI/LQE are compared with those from the 
nonlinear model. These observations are 
better illustrated in Fig. 14 where the 
differences between the LTI and the nonlinear 
model and the LTI/LQE and the nonlinear 
model of the hub loads predictions are 
compared. While the errors in LTI/LQE 
predictions stay near zero, LTI predictions 
show errors in Fig. 14. 
 

 
Figure 12. Comparison of fixed system hub 
load variations from trim between nonlinear 
(NL) model and LTI predictions. 

 
Figure 13. Comparison of fixed system hub 
load variations from trim between nonlinear 
model (NL) and LTI/LQE predictions.   

 

 
Figure 14. Comparison of error in fixed system 
hub load variations between LTI and LTI/LQE 
predictions. 

 

From the results presented in Figs. 12 through 
14, it is seen that LTI/LQE adjusts the LTI state 
responses in order to make its hub load 
predictions match with those of the nonlinear 
model. Hence, correction to the LTI model 
prediction of blade pitch link loads can be 
expected, provided, all, or at least the 
important, harmonic states of the LTI model 
are observable in the selected fixed system 
measurements.  Figure 15 compares the error 
in blade pitch link load variation between LTI 
and LTI/LQE predictions. As expected, the 
LTI/LQE pitch link load predictions have less 
error when compared to that of the LTI model. 
While the LTI model predictions are improved 
by the LTI/LQE scheme, there are still 
significant errors seen during initial parts of the 
responses to control changes. This is felt to be 
due to non-observability of certain harmonic 



 

components of the LTI model states in the 
fixed system hub load responses. 
 

 

Figure 15. Comparison of error in reference 
blade axial pitch link load predictions between 
LTI and LTI/LQE.  

 

5. CONCLUDING REMARKS 

An approach for on-line estimation of rotor 
component loads is presented in which a 
linear time invariant (LTI) model of a helicopter 
coupled rotor/body dynamics is combined with 
a Kalman filter. The Kalman filter is designed 
to use fixed system measurements (for 
example, fixed system hub load 
measurements) in order to correct the LTI 
model state responses. The corrected LTI 
model state responses are in turn used for 
prediction of rotor system component loads. 

The proposed LTI/LQE scheme is evaluated in 
simulation for on-line estimation of rotor blade 
pitch link loads arising from vehicle maneuvers 
using a nonlinear model of a generic helicopter 
in FLIGHTLAB®. The Kalman filter uses fixed 
system hub load responses from the nonlinear 
model as measurements. The presented 
results show promise in the ability of the 
proposed LTI/LQE scheme to improve LTI 
model predictions of blade pitch link loads for 
the maneuver considered in this study. 

While the LTI model predictions are improved 
by the LTI/LQE scheme, there are still 
significant errors seen during initial parts of the 

responses to control changes. This is felt to be 
due to non-observability of certain harmonic 
states of the LTI model in the fixed system hub 
load responses used as measurements in this 
study. Future work needs to address this issue 
by using other fixed system measurements for 
LTI model state response corrections.    
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