6.3
Peper No. 15

THE AIRLOADS ACTING ON HELICOPTER ROTOR WITH COMBINED FLAPWISE BENDING, CHORDWISE BENDING AND TORSION OF TWISTED NON UNIFORM BRADS

RUAN TIANEN
QUANZHOU ELECTRIC POWER SCHOOL, CHINA

LI RUIGUANG, LIU XIANJIAN
CHINESE HELICOPTER RESEARCH AND DEVELOPNENT INSTITUTE

The Airloads Acting on Helicopter Rotor with Combined Flapwise Bending, Chordwise Bending and Torsion of Twisted Nonuniform. Blades

Ruan. Tianen
Quanzhou Electric Power School
Li Ruiguang, Liu Xiangjian
Chinese Helicopter Research and:
Development Institute

Abstract

A rotor discrete free wake geometries and the airloads acting on helicopter rotor with flapwise bending has been presented in refal. Here the free vortex. concept which is same to ref[i], and modified to suited for the coupling elastic deformation is presented. The various connectors with the blade root, such as the device for reducing Chordwise vibration, the pitch link stiffness and the pitch device with friction, are included in the elastic motion equations. the external forces function which depend on the elastic motion parameters are unknown in the motion equations. A series of modes are used in the differential equations of

motion, then the Lagrange's ordinary equation for general coordinate is obtained. Through an iterative procedure, the general coordinate can be solved. Final, the blade airloads, the deformations in flapwise bending, chordwise bending and torsion and the pitch moment are obtained. It is demonstrated by a program for a helicopter model in forward flight. The airloads with only the flapwise bending (i.e, $v=\phi=0$) are demonstrated by comparing with the results measured from test in $\mathrm{H}-34$. And another helicopter model with a more complex on the connector in blade root and with a combined deformations is performed.

Introduction

As mentioned in the refin], the blade airloads are extremely influenced by the wake geometries under rotor. Up to now many efforts on the description of wake flow have been performed by aerodynamicists: as shown in ref.[2] to [8] . Early in 1960's , Scully M. P and Landgrebe A. J presented a free wake concept, and got some valuable conclusion. Fispecially Sadler, S. G presented a free vortex concept in 1971, which interested us. And then we were
studying the distorted wake quoting the free vortex. concept.

It is well known, besides the wake: geometries influence on the blade airloads, the blade elastic. deformation can effect on the blade airloads. In practice, the connecting conditions in the blade root, such as the damper in chordwise, the pitch link stiffness. the pitch-flap coupling parameters etc, are rather complex. Therefore, it is necessary to develop a program including the connecting conditions in blade root to determine the rotor blade airloads, elastic deformation and the pitch moment.

Symbol
a
Sound speed
$A_{V}, A_{\omega}, A_{\phi} \quad$ The mode shape quantities representing chordwise deflection flapwise deflection and torsion deformation, respectively, in a rotating blade coordinate system
b.

Simichord of airfoil
$C_{l}, C_{d}, C_{m \frac{1}{4}}$ The lift, drag and pitch moment coefficient of airfoil respectively, where the $C_{m \frac{1}{4}}$ refers to a quater of chord.

K	Number of blades
$\overline{\mathrm{K}}$	Pitch-flap coupling parameter
jj	Last azimuthal order of full mesh for vortices.
L	Length of trailing vortex. element
$l_{e} ; l_{p}$	Distance between midchord and elastic
	axis as well as pitch axis, respectively, positive when the elastic axis iies a-
	head of the midchord, so does the pitch axis
$\ell_{s h}$	Chordwise offset between midchord and the shaft, positive when shaft ahead
m	Mass per unit length of blade
M_{0}, M_{ϕ}	Aerodynamic moment per unit length of blade which refers to the midchord and
	elastic axis , respectively
N. A	Number of azimuthal step per revolution
Q_{x}, Q_{y}, Q_{z}	General force in. x, y, z direction,respectively
$Q_{\text {HDmax }}$	Maximun damping in pi-tch hinge
$Q_{\psi \psi / \text { max }}$	Maximun damping in chordwise damper
r	Radial coordinate
r_{0}	The distance from the shaft to the flap
	--5--

hinge
$R \quad$ Radius of rotor

T
iv

U

V
v, w Deflection in chordwise flapwise, respectively

Wo Mean down-wash
W Resultant induced velocity
0-xyz Coordinate system which rotates with blade (see fig. 5)

0-XYZ Coordinate system fixed to shaft (see fig. 5)
$\alpha_{g} \quad$ Blade-section pitch angle
$\alpha \quad$ Angle of attack of blade-section
$\alpha_{s} \quad$ Shaft tilt angle
$\alpha_{1}, \alpha_{2} \quad$ Longitudinal and lateral cyclic pitch
Γ Votex element circulation

γ	Circulation density of airfoil
ξ, η	Coordinate along and perpendicular to
	chord respectively, in which the origin
	is located at elastic axis of blade-
	section
ζ_{k}	General coordinate for the $k-$ thi mode
θ_{1}	Blade twist, positive: when leading edge
	is upward
$\theta_{\text {co }}$	Collective pitch
θ_{0}	Blade pitch
λ	Horizontal distance between pitch axis
	and shaft
μ	Advance ratio
ρ	Air density
x	Blade flap angle due to elastic deflec-
	tion.
ϕ	Torsional deformation of blade; or velo-
	city potential
ψ	Blade azimuth
Ω	Rotor rotating speed
ω	Natural frequency of blade

Subscript

Indicate the variable radial station

j, S	Indicate the variable azimuthal station
k	Iterative times, or order of mode
KJ	Blade ordinal number
n	Number of radial points on a blade
NW	Number of azimuthal positions for blade
	advancing or number of azimuthal posi-
	tions in the wake

fig. 1 , the basic block diagram of computer program --9--

Analysis

The rotor blade load is relative to the rotor wake geometry and the blade elastic motion. They interfere with each other, and from a nonlinear complex equation system. In order to obtain the blade load, a series of iterative processes are necessary. As follows, initial average induced velocity is assumed, an initial load can be obtained, so does the initial elastic deformetion. Once the initial parameters are determined,an azimuthal increment is added, this same process is performed, then the rotor wake and blade circullation in this instant can be calculated. Iterations are conducted at each azimuth, until the difference between the previous iteration and the later iteration is less than a given value. Then an azimuth increment is added again and. the previous process is repeated, until the wake grows to such a long distance that its influence on the blade lift turns unvaried (approximately). At this time, the process to determine wake comes to a stop. In this case the determination of blade airloads reaches a stage. Further calculation to solve the blade responses, its loads, moment and strain can be obtained.

I, Wake and Circulations.
We can consider that the wake under rotor consists of two parts. One is called full mesh beneath the rotor; the other is a concentrated vortex for each blade called blade tip vortex, which extends to the downstream.

1, The Velocity Induced by Straight Element Vortex The induced velocity based on Laplace equation of classical three dimensional imcompressible flow is ${ }^{[10]}$:

$$
\begin{align*}
\stackrel{\rightharpoonup}{q}_{p}=\frac{\Gamma}{4 \pi}\left(\frac{\vec{\gamma}_{A} \times \vec{\gamma}_{B}}{\left|\vec{\gamma}_{A} \times \vec{\gamma}_{B}\right|^{2}}\right)\left[\stackrel{\rightharpoonup}{L}_{A} \times\left(\frac{\stackrel{\rightharpoonup}{\gamma}_{A}}{\gamma_{A}}-\frac{\stackrel{\rightharpoonup}{\gamma}_{B}}{r_{B}}\right)\right] \tag{1}\\
\vec{q}_{p}=q_{x p} \vec{i}+q_{y p} \stackrel{\rightharpoonup}{j}+q_{z p} \stackrel{\grave{h}}{ } \\
q_{x p}=\nu_{x} G \\
q_{y p}=\nu_{y} G \tag{2}\\
q_{z p}=\nu_{z} G
\end{align*}
$$

where

$$
\mathcal{L}_{A}=\sqrt{\left(X_{B}-X_{A}\right)^{2}+\left(Y_{B}-Y_{A}\right)^{2}+\left(Z_{B}-Z_{A}\right)^{2}}
$$

Similarly for γ_{B} and γ_{A}

$$
\begin{gathered}
\nu_{X}=\left(Y-Y_{A}\right)\left(Z_{A}-Z_{B}\right)-\left(Z-Z_{A}\right)\left(Y_{A}-Y_{B}\right) \\
\nu_{Y}=\left(Z-Z_{A}\right)\left(X_{A}-X_{B}\right)-\left(X-X_{A}\right)\left(Z_{A}-Z_{B}\right) \\
\nu_{Z}=\left(X-X_{A}\right)\left(Y_{A}-Y_{B}\right)-\left(Y-Y_{A}\right)\left(X_{A}-X_{B}\right) \\
-11-
\end{gathered}
$$

$$
G=\frac{\Gamma}{2 \pi} \cdot \frac{\gamma_{A}+\gamma_{B}}{r_{A} \gamma_{B}\left[\left(\gamma_{A}+r_{B}\right)^{2}-\mathcal{L}_{A}^{2}\right]}
$$

where the subscript P is the point interested,
other symbols can be seen in fig. 2
2, The V.elocity Induced by Curved Vortex
Element Itself: (it was considered approximatly as the straight elements) the velocity at
 point P induced by the curved vortex element is ${ }^{[9]}$

fig.2, Elow model induced by vortex.

$$
\begin{align*}
q_{S}= & \frac{1}{8 \pi S}\left\{\Gamma_{C}\left[\ln \left(\frac{8 S}{a_{C}} \operatorname{tg} \frac{\varphi_{C}}{4}\right)+\frac{1}{4}\right]\right. \\
& \left.+\Gamma_{D}\left[\ln \left(\frac{8 S}{a_{D}} \operatorname{tg} \frac{\varphi_{D}}{4}\right)+\frac{1}{4}\right]\right\} \tag{3}
\end{align*}
$$

where a_{C} and a_{D} are the vortex core radius of $\widehat{C D}$ and $\widehat{D P}$, respectively,

$$
S=\frac{\mathscr{L}_{C} \mathscr{L}_{D} \delta_{C}}{\sqrt{4 \mathscr{L}_{C}^{2} L_{D}^{2}-\left(\mathscr{L}_{C}^{2}+\mathscr{L}_{D}^{2}-\delta_{C}^{2}\right)^{2}}}
$$

$$
\begin{align*}
& \vec{q}_{S}=q_{S X} \vec{i}+q_{S Y} \vec{j}+q_{S Z} \vec{h} \\
& q_{S X}=q_{S} \frac{m_{X}}{B} \\
& q_{S Y}=q_{S} \frac{m_{y}}{B} \tag{5}\\
& q_{S Z}=q_{S} \frac{m_{z}}{B}
\end{align*}
$$

fig. ; , The Geometry of Curved Vortex
the subscript S represent the self-induaing parameter, the others can be seen in fig. 3 .

$$
\begin{aligned}
& m_{X}=\left(Y-Y_{C}\right)\left(Z_{D}-Z\right)-\left(Y_{D}-Y\right)\left(Z-Z_{C}\right) \\
& m_{Y}=\left(Z-Z_{C}\right)\left(X_{D}-X\right)-\left(Z_{D}-Z_{i}\right)\left(X-X_{C}\right) \\
& m_{Z}=\left(X-X_{C}\right)\left(Y_{D}-Y\right)-\left(X_{D}-X\right)\left(Y-Y_{C}\right) \\
& B=\sqrt{m_{X}^{2}+m_{Y}^{2}+m_{Z}^{2}}
\end{aligned}
$$

$$
\operatorname{tg} \frac{\varphi_{c}}{4}= \begin{cases}\frac{2 S-\sqrt{4 S^{2}-L_{c}^{2}}}{\mathcal{L}_{C}} & \text { for } \alpha_{c}^{2} \leqslant \delta_{c}^{2}+\mathcal{L}_{D}^{2} \\ \frac{2 S+\sqrt{4 S^{\prime 2} L_{c}^{2}}}{L_{C}} & \text { for } \mathcal{L}_{c}^{2}>\delta_{C}^{2}+\mathcal{L}_{D}^{2}\end{cases}
$$

$$
\begin{aligned}
& \operatorname{tg} \frac{\varphi_{D}}{4}= \begin{cases}\frac{2 S-\sqrt{4 S^{2}-\mathcal{L}_{D}^{2}}}{\mathcal{L}_{D}} & \text { for } \mathcal{L}_{D}^{2} \leqslant \delta_{C}^{2}+\mathcal{L}_{C}^{2} \\
\frac{2 S+\sqrt{4 S^{2}-\mathcal{L}_{D}^{2}}}{\mathcal{L}_{D}} & \text { for } \mathcal{L}_{D}^{2}>\delta_{C}^{2}+\mathcal{L}_{C}^{2}\end{cases} \\
& \mathcal{L}_{C}=\sqrt{\left(X-X_{C}\right)^{2}+\left(Y-Y_{C}\right)^{2}+\left(Z-Z_{C}\right)^{2}}
\end{aligned}
$$

Similary for L_{D}

$$
\delta_{C}=\sqrt{\left(X_{D}-X_{C}\right)^{2}+\left(Y_{D}-Y_{C}\right)^{2}+\left(Z_{D}-Z_{C}\right)^{2}}
$$

3, the Resultant Velocity Induced by All Vortices Plement
a, The contribution of trailing vortices $\boldsymbol{\Gamma}_{t, i, j}$ to the point P

$$
\begin{align*}
& V_{t x}\left(x_{r, s}, Y_{r, s}, Z_{r, s}\right)=\sum_{K J=1}^{K} \sum_{i=1}^{N} \sum_{j \neq r}^{N W} q_{X, i}{ }^{(K J)}+ \\
& \sum_{K J=1, j}^{K} \sum_{\substack{j=1 \\
j \neq s-1, s}}^{N W} q_{x, i, j}^{(K J)}+q_{s, x}(r, s) \tag{6}
\end{align*}
$$

similary for $V_{t y}\left(X_{r, s}, Y_{r, s}, Z_{r, s}\right)$ and $V_{t Z}\left(X_{r, s}, Y_{r, s}, Z_{r, s}\right)$, but yet the subscript variables should be changed correspondingly. In order to simplify the description , only the x -component is descripted here.

On the boundary:

$$
\begin{aligned}
& q_{S x}(\gamma, 1)=q_{s x}(\gamma, 2) \\
& \text { When. }\left.\quad\right|_{t, r, 2} \equiv 0 \\
&
\end{aligned}
$$

$$
q_{s x}(r, 1)=q_{s x}(r, 2)=0
$$

$q_{x, i, j}$ and. $q_{s x}(r, s) \quad$ have been given in equations (2) and (5) respectively , but the subscript of the points A, B and P should be replaced by $A\left(X_{i, j}\right.$, $\left.Y_{i, j}, Z_{i, j}\right), B\left(X_{i, j+1}, Y_{i, j+1}, Z_{i, j+1}\right)$ and $P\left(X_{r, s}\right.$, $\left.Y_{\text {r.s }}, \mathbf{Z}_{r . s}\right)$ respectively, tine subscript of points C and iv should be replaced by $C\left(X_{r, s-1}, Y_{r, s-1}, Z_{r, s-1}\right)$ and $D\left(X_{Y, S+4}, Y_{r, s+1}, Z_{Y, S+1}\right)$.

Similarly for the other components.

NW
fig. 4 Illustration for the Subscript of the Wake Mesh
b, the Contribution of Shed Vortices (including bound vortices) to the Point $P_{r . s}$.

$$
\begin{align*}
& V_{d x}\left(X_{r, s}, Y_{r, s,} Z_{r, s}\right)=\sum_{K J=1}^{K} \sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq s}}^{j j} q_{x, i, j}^{(K J)} \\
& \quad+\sum_{K J=1}^{K} \sum_{\substack{i=1 \\
i \neq r-1, r}}^{n} q_{x, i, s}^{(K J)}+q_{s x}(r, s) \tag{7.}
\end{align*}
$$

where the point A and B in equation (2) are $A\left(X_{i, j}, Y_{i, j}, Z_{i, j}\right)$ and $B\left(X_{i+1, j}, Y_{i+1, j}, Z_{i+1, j}\right)$ respectively, and the point C and D in equation (5) are $C\left(X_{\gamma-1, S}, Y_{\gamma-1, S}, Z_{\gamma-1, s}\right)$ and $D\left(X_{\gamma+1, s}, Y_{\gamma+1, s}\right.$, $Z_{\gamma+1, s}$) respectively .

On the boundray:
For the inboard vortices behind the blade

$$
q_{S X}(\gamma, S)=q_{S X}(\gamma+1, S)_{I_{d, \gamma+1, s} \equiv 0}
$$

for the outboard vortices behind the blade

$$
q_{s X}(r, s)=\left.q_{s X}(r-1, s)\right|_{\Gamma_{d, \gamma-2, s} \equiv 0}
$$

when. $S=1$

$$
\begin{aligned}
& q_{s x}(r, 1)=0 \\
& q_{X i, 1}\left(X_{r, 1}, Y_{r .1}, Z_{r, 1}\right)=0
\end{aligned}
$$

The resultant induced velocity :

$$
\begin{align*}
& W_{x}\left(X_{r, s}, Y_{r, s}, z_{r, s}\right)=v_{t x}\left(X_{r, s}, Y_{r, s}, z_{r, s}\right)+ \\
& v_{d x}\left(X_{r, s}, Y_{r, s}, z_{r, s}\right) \tag{8}
\end{align*}
$$

4. The Circulation of Vortex Element in Wake For the bound vortex:

$$
\Gamma_{i, 1, K J}^{(N W)}=\Gamma_{b}\left(r_{i}, \psi_{K J, N W}\right)
$$

where $\Gamma_{b}\left(\gamma_{i}, \psi_{K J, N W}\right)$ will be given in aquation (17.) expressed later.

For the shed vortex:

$$
\begin{array}{ll}
\Gamma_{d, i, j, K J}^{(N W)}=\Gamma_{i, 1, K J}^{(N W-1)}-\Gamma_{i, 1, K J}^{(N W)} & \text { for } j=2 \\
\Gamma_{d, i, j, K J}^{(N W)}=\Gamma_{d, i, j-1, K J}^{(N W-1)} & \text { for } j \geqslant 3
\end{array}
$$

For the trailing vortex:

$$
\begin{array}{ll}
\Gamma_{t, i, 1, K J}^{(N W)}=\Gamma_{i-1, i, K J}^{(N W)}-\Gamma_{i: 1, K J}^{(N W)} & \\
\Gamma_{t, i, 1, K J}^{(N W)}=-\Gamma_{i, 1, K J}^{(N W)} & \begin{array}{ll}
\text { when } i \text { is at the } \\
\text { inboard positions } \\
\text { of the blade. }
\end{array} \\
\Gamma_{t, i, 1, K J}^{(N W)}=\Gamma_{i-1,1, K J}^{(N W)} & \begin{array}{l}
\text { when } i \text { is at the out- } \\
\text { board. position of the }
\end{array} \\
\Gamma_{t, i, j, K J}^{(N W)}=\Gamma_{t, i, j-1, K J}^{(N W-1)} \quad \text { for } j \geqslant 2 .
\end{array}
$$

Where the $\Gamma_{i, 1, \mathrm{KJ}}^{(\mathrm{NW})}$ expresses the circulation of KJ -th blade, which is located at azimuth $\psi_{K J}=(K J-1) \frac{2 \pi}{K}+$ $(N W) \cdot \Delta \psi$ and its joint in wake is at point (i, j). One can transfer $\Gamma_{b}\left(\gamma_{i}, \psi_{K J, N W}\right)$ into $\Gamma_{i, j, K J}^{(N W)}$ according to $\Gamma_{i, j+1, K J}^{(N W+1)}(\psi+\Delta \psi)=\Gamma_{i, j, K J}^{(N W)}(\psi)$. Therefore, the arbitrary Γ in wake can be obtained. For the tip vortex:

When the shed vortices are far away from the blade, its influence on blades should be alleviated, and the trailing vortices would effect each other . With the trailing vortices going dow, they will roll-up and form a $"$ vortex braid $"$. Its influence on blade airload is sensitive. The factors that effect the trailing vortices rolling-up are very complicated, it is concerned with viscous ilow. No perfect analysis is made. In order to satisfy the need for engineering, a tip vortex is used to simulate the " vortex braid ", its circulation is equal to the maximum circulation of the bound vortex and. its initial radial position can be determined as $\mathfrak{I} 0-$ llow, like that of wing.
where i_{M} means the spanwise station at which the maximum circulation of bound vortex located; $i_{\text {out }}$ is the number of radial positions on blade tip, equal to n .

$$
X_{M, i j}=\frac{\sum_{i=i, i+1}}{i_{i, i j j} \cdot \Gamma_{t, i, j j-1}} \Gamma_{t, M, j j-1}
$$

5. The Coordinate of Wake Joint:

The wake joints at blade:

$$
\left.\begin{array}{l}
x_{l, i, K J}^{(N W)}=\gamma_{0} \cos \psi_{K J, N W}+\sum_{t=0}^{i-1}\left(\gamma_{t+1}-r_{t}\right) \cos X_{K J, N W}^{(t)} \cdot \cos \bar{\psi}_{K J, N W}^{(t)} \tag{9}\\
Y_{i, 1, K J}^{(N W)}=r_{0} \sin \psi_{K J, N W}+\sum_{t=0}^{i-1}\left(Y_{t+1}-r_{t}\right) \cos \chi_{K J, N W}^{(t)} \cdot \sin \bar{\psi}_{K J, N W}^{(t)} \\
z_{i, 1, K T}^{(N W)}=\sum_{t=0}^{i-1}\left(Y_{t+1}-Y_{t}\right) \sin \chi_{K J, N W}^{(t)}
\end{array}\right\}
$$

$$
\psi_{K J, N W}=(K J-1) \frac{2 \pi}{K}+(N W) \Delta \psi
$$

$$
\bar{\psi}_{K J, N W}^{(t)}=v^{\prime(t)}+\psi_{K J, N W}
$$

$$
v^{\prime(t)}=\arcsin \frac{v^{(t+1)}-v^{(t)}}{\left(\gamma_{t+1}-Y_{t}\right) \cos X_{K T}(t)}
$$

The wake jonits behind blade: (for $j \geqslant 2$)
$X_{i, j, K J}^{(N W)}=X_{i, j-1, K J}^{(N W-1)}+\left(V_{f} \cos \alpha_{S}+W_{x, i, j-i, K J}^{(N W-1)}\right) \frac{\Delta \psi}{\Omega}$
$Y_{i, j, K J}^{(N W)}=Y_{i, j-1, K J}^{(N W-1)}+W_{Y, i, j-i, K J}^{(N W-1)} \frac{\Delta \psi}{\Omega}$
where the V_{f} is the forward flight velocity Note : follow the example of $W_{X, i, j-1, K J}^{(N W-i)}$, it indicates the X-Component of induced velocity at wake joint $(i, j-1)$, which is generated by $K J-t h$ blade, and the blade located at an azimuth $\psi_{K I, N W}=(K J-1) \frac{2 \pi}{K} \div$ $(N W) \Delta \psi$.

6, The Convergent Criteria for the Circulation
$\Gamma_{b}\left(r_{i}, \psi_{K J, N W}\right)$

$$
\begin{aligned}
& \text { a, At a certain }, \text { when } \\
& \sum_{i=1}^{n}\left[\Gamma_{b, i, 1, k T}^{(k+1)}-\Gamma_{b, i, t, k J}^{(k)}\right]^{2} / \sum_{i=1}^{n}\left[\Gamma_{b, i, 1, k J}^{(k+1)}\right]^{2} \leqslant 0.00025
\end{aligned}
$$

make an increment $\Delta \psi$, then repeat the same process for other azimuth.

$$
\begin{align*}
& \text { D., In the case of } \\
& \frac{\sum_{i=1}^{n}\left[T_{i, 1, K}^{\left(N W+\frac{N A}{K}\right)}-\Gamma_{i, 1, K J=1}^{(N W)}\right)^{2}}{\sum_{i=1}^{n}\left[T_{i, 1, K J=1}^{(N W)}\right]^{2}} \leqslant 0.00025 \tag{11}
\end{align*}
$$

then we are sure that the wake geometry appears periodically, i.e, the wake motion is steady, and make it output the quantity $\Gamma_{i, i, k J}^{(N w)}, W_{z, i, j, K J}$, $X_{i, j, k J}$ etc.
7. The Radius of Vortex Core.

At the continuous vortex. surface, the induced velocity follows the form of $q \sim \int \frac{d x_{0}}{x-x_{0}}$. Only the two ends of the vortex surface can result in an infinite induced velocity. In the case of using discrete vortices, the induced velocity would increase infinitly near the vortex. It contradicts the practice. So a viscous vortex core should be taken into account.

Since the aerodynamic coefficients of airfoil are used, the influence of vortex core on the whole aerodynamic. characteristic of the rotor is slight.

Some vortex core radius are used in computation. It indicates that the differences is small. Here we assume the vortex core radius $a=0.01 R$.

As mentioned in fig. 1 . during the stage when the blade circulation and wake geometry are determined the initial blade elastic deformation - the flapwise, choordwise and torsion--should be taken into account in that. When the wake geometry has already been determined, the final elastic deformation differential equation of blade must be solved.

II The Blade Airloads and.

Responses

1, The Airloads of the Blade Element.
For any blade element, the equation of airloads can be obtained from Bernoulli's equation (7)

$$
\begin{align*}
\Delta p & =2 \rho\left(u \varphi_{x}+\dot{\varphi}\right) \tag{12}\\
\varphi_{x} & =\frac{1}{2} \hat{\gamma}(x) \\
\dot{\varphi}=\frac{\partial \varphi_{s}}{\partial t} & =\frac{\partial}{\partial t} \int_{-b}^{x} \varphi_{5, s} d \xi=\frac{\partial}{\partial t} \int_{-b}^{x} \frac{1}{2} \gamma(\xi, t) d \xi \tag{13}
\end{align*}
$$

where φ_{S} shows the velocity potential at airfoil surface.

$$
\begin{align*}
& \varphi_{s} \text { shows } \frac{\partial \varphi_{s}}{\partial \xi} \\
& \gamma=2 u\left(A_{0} \operatorname{ctg}{ }_{2}^{\theta}+\sum_{n=1}^{\infty} A_{n} \sin n \theta\right) \tag{14}
\end{align*}
$$

the equation for boundary condition of the flow round the airfoil:

$$
\begin{align*}
& \alpha_{g}+\frac{w_{z}(x)}{u}+\frac{v_{i}(x)}{u}=\frac{d y_{m}}{d x} \tag{15}\\
& d y_{m}=F^{\prime}(\xi)+\frac{d y_{1}}{d x} \tag{16}\\
& d x
\end{align*}
$$

where $v_{i}(x)$ is the velocities perpendicular to the chord induced by distributive vortices at airfoil; $\mathrm{F}^{\prime}(\xi)$ is the derivative of the ordinate at the mean airfoil
cuevature with respect to the chord without angle of attack; θ is an integrating variation. let $x=-b \cos \theta$, or $\quad \xi=-b \cos \theta$.

In general, in order to get the circulation Γ of bound vortex, an integrated equation according to the lift line or lift-surface theory should have been used. But yet the task for the wake calculation has been considerably complicated, in addition to solve the integrated equation. the amount of calculation is too large to practise, and there is another important problem that the integrated equation is unvaluable for the angle of attack exceeding the stall angle. In order to satisfy the need for engineering, a series of synthesis expressions for lift, drag and pitch moment coefficients were used. Therefore, substitute $C_{l}\left(\alpha_{i, N W}, M_{i, N W}\right)$ for $2 \pi \alpha_{i, N W}$, through equation (12) to (16) the circulation of bound vortex can be determined, as follow:

$$
\begin{aligned}
& \Gamma_{b}\left(r_{i}, \psi_{K J, N W}\right)=\Gamma_{\ddot{i}, 1, K J}^{(N W)} \\
& = \\
& b_{i} u_{i, K J}^{(N W)} C_{l}\left(\alpha_{i, K J}^{(N W)}, M_{i, K J}^{(N W)}\right)+2 \pi b_{i}\left[(l _ { p i } + \frac { b _ { i } } { 2 }) \cdot \left(\dot{\theta}_{C . K J}^{(N W)}\right.\right. \\
& \\
& \left.-\bar{K}_{X_{i=0, K J}^{(N W)}}^{(N)}+\chi_{i, K J}^{(N W)}\left(l_{s h, i}+\frac{b_{i}}{2}\right)+\left(l_{e, i}+\frac{b_{i}}{2}\right) \dot{\phi}_{i, K J}^{(N W)}\right]
\end{aligned}
$$

$-T_{f, i}{ }^{(N W)}$
$T_{i, i, K J}^{(N W)}=2 u_{i, K J}^{(N W)} \quad \int_{-b_{i}}^{b_{i}} F^{\prime}(\xi) \sqrt{\frac{b_{i}+\xi}{b_{i}-\xi}} d \xi$
where Y_{m} is the mean airfoil curvature with angle of attack; y_{1} is the ordinate of the plate wing section with angle of attack. Subscript 1 in $\Gamma_{i, 1, k J}^{(N)}$ shows $j=1$. $\mathrm{M}_{i, \mathrm{NW}}$ is the airfoil local Mach Number at NW-th azimuth.

Note : In order to simplify writing. the subscript KJ is omitted later.

The lift of blade element
$Y=\int_{-b}^{b} \Delta p d x=\int_{-b}^{b} \rho u \gamma(x) d x+\rho \frac{\partial}{\partial t} \int_{-b}^{b} d x \int_{-b}^{x} \gamma(\xi, t) d \xi$ $=\rho u \Gamma+\rho \frac{\partial}{\partial t} \int_{-b}^{b}\left[\int_{\xi}^{b} \gamma(\xi, t) d x\right] d \xi$ $=\rho u \Gamma+\rho \frac{\theta}{\partial t} \int_{-b}^{b} \gamma(\xi)(b-\xi) d \xi$
$=\rho u \Gamma+\rho \frac{\partial}{\partial t}\left[b \Gamma+\frac{M}{\rho u}\right]$

$$
\begin{equation*}
\frac{M}{\rho u}=2 C_{m} U b^{2}-2 \int_{-b}^{b} W_{i} \sqrt{b^{2}-\xi^{2}} d \xi \tag{18}
\end{equation*}
$$

where W_{1} is the velocity normal to the chord, which is concerned with the situation for the element blade motion:

$$
\begin{aligned}
M_{0} & =-\int_{-b}^{b} \Delta p(x, t) x d x=-\int_{-b}^{b} 2 \rho\left(u \varphi_{x}+\dot{\varphi}\right) x d x \\
& =-\left\{\int_{-b}^{b} \rho u \gamma(x, t) x d x+\rho \frac{\partial}{\partial t} \int_{-b}^{b} \int_{-b}^{x} \gamma(\xi, t) d \xi x d x\right\} \\
& =-\left\{\int_{-b}^{b} \rho u \gamma(\xi, t) \xi d \xi+\rho \frac{\partial}{\partial t} \int_{-b}^{b} \gamma(\xi, t) d \xi \int_{\xi}^{b} \dot{x} d x\right\} \\
& =-\int_{-b}^{b} \rho u \gamma(\xi, t) \xi d \xi-\frac{\rho}{2} \frac{\partial}{\partial t}\left[\int_{-b}^{b} b^{2} \gamma(\xi, t) d \xi-\int_{-b}^{b} \xi^{2} \gamma(\xi, t) d \xi\right](19)
\end{aligned}
$$

Substitute the expressions metioned above for the corresponding terms in equations (18) and (19), and show the radial variable i and the azimuthal variable NW, then we can obtain:

$$
\begin{align*}
& Y_{i, N W}=\rho u_{i, N W} \Gamma_{i, N W}+\rho\left\{b_{i} \dot{\Gamma}_{i, N W}+2 b_{i}^{2} \frac{\partial}{\partial t}\left(C_{m i, N W} \cdot u_{i, N W}\right)\right. \\
& +\pi b_{i}^{2}\left[l_{p i}\left(\ddot{\theta}_{0, N W}-\bar{K} \ddot{X}_{i=0, N W}\right)+l_{e, i} \ddot{\phi}_{i, N W}\right. \\
& \left.\left.+l_{s h ; i} \Omega \dot{X}_{i, N W}\right]\right\}-\dot{T}_{2, i, N W} \tag{20}\\
& T_{2, i, N W}=2 \rho u_{i, N W} \int_{-b_{i}}^{b_{i}} F^{\prime}(\xi) \sqrt{b_{i}^{2}-\xi^{2}} d \xi \\
& M_{0, i, N W}=2 C_{m, i, N W} \quad \rho \quad u_{i, N w}^{2} b_{i}^{2}+\pi \rho b_{i}^{2}\left[l _ { p i } \left(\dot{\theta}_{0, N W}\right.\right. \\
& \left.\left.-\overline{\mathrm{K}} \dot{X}_{0, N W}\right)+l_{e, i} \dot{\phi}_{i, N W}+l_{s h, i} \Omega \chi_{i, N W}\right]-\frac{\rho}{4} \\
& \left\{b_{i}^{2} \dot{\Gamma}_{i, N W}+\frac{\pi b_{i}^{4}}{2}\left(\theta_{0, N W}-\bar{K} \ddot{X}_{0, N W}+\ddot{\phi}_{i, N W}+\Omega \dot{X}_{i, N W}\right)\right.
\end{align*}
$$

$$
\begin{align*}
& \left.-T_{3, i, N W}\right\}-T_{2, i, N W} \cdot u_{i, N W} \tag{21}\\
& T_{3, i, N W}=4 \dot{u}_{i, N W} \int_{-b_{i}}^{b_{i}} F^{\prime}(\xi) \sqrt{b_{i}^{2}-\xi^{2}} d \xi \\
& C_{m, i, N W}=C_{m \frac{1}{4}}\left(\alpha_{i, N W}, M_{i, N W}\right)+C_{\ell}\left(\alpha_{i, N W}, M_{i, N W}\right) \cdot \frac{1}{4} \\
& X_{i, N W}=C_{d}\left(\alpha_{i, N W}, M_{i, N W}\right) \rho u_{i, N W}^{2} b_{i}
\end{align*}
$$

where $X_{i, N W}, Y_{i, N W}$ and $M_{0, i, N W}$ are the drag, Lift and pitch moment on the airfoil, respectively. In the C_{l}, C_{d} and C_{m} are got from the experiment data, then $\mathrm{F}^{\prime}\left(\xi_{1}\right)=0$.

2, The Flow Parameters

$$
\begin{aligned}
& \bar{\alpha}_{i, N W}=\theta_{0, N W}+\theta_{1, i}+\phi_{i, N W}-\overline{\mathrm{K}} \chi_{0, N W}+\operatorname{Arc} \operatorname{tg} \frac{\bar{V}_{i, N W}}{U_{i, N W}} \\
& \alpha_{i, N W}= \begin{cases}\bar{\alpha}_{i, N W}-2 \pi & \text { for } \bar{\alpha}_{i, N W}>\pi \\
\bar{\alpha}_{i, N W}+2 \pi & \text { for } \bar{\alpha}_{i, N W}<-\pi \\
\bar{\alpha}_{i, N W} & \text { for }-\pi \leqslant \bar{\alpha}_{i, N W} \leqslant \pi\end{cases} \\
& \operatorname{Arctg} \frac{\bar{V}_{i, N W}}{U_{i, N W}}=\left\{\begin{array}{lr}
\operatorname{arc} \operatorname{tg} \frac{\bar{V}_{i, N W}}{U_{i, N W}} & \text { for } U_{i, N W} \geqslant 0 \\
\pi+\operatorname{arctg} \frac{\bar{V}_{i, N W}}{U_{i, N W}} & \text { for } \bar{U}_{i, N W}^{i, N W}<0 \\
-\pi+\operatorname{arctg} \frac{\bar{V}_{i, N W}}{U_{i, N W}} & \text { for } \bar{U}_{i, N W}<0
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \bar{V}_{i, N w}=\dot{h}_{i, N W}+V_{f} \sin \alpha_{s}+W_{z, i, N w} \\
& U_{i, N W}=r_{i} \Omega+V_{f} \cos \alpha_{s} \cdot \sin \psi_{N W} \\
& \theta_{0, N W}=\theta_{C O}+\alpha_{1} \sin \psi_{N W}+\alpha_{2} \cos \psi_{N W} \\
& u_{i, N W}=\left[U_{i, N W}^{2}+{\overline{V_{i, N W}}}^{2}\right)^{\frac{1}{2}} \\
& X_{i=0 . N W}=W_{i=0, N W} \\
& \dot{h}_{i, N W}=-\dot{w}_{i, N W}-w_{i, N W}^{1} \quad V_{f} \operatorname{Cos} \alpha_{s} \cdot \operatorname{Cos} \psi_{N W} \\
& \Delta \psi=-\frac{2 \pi}{N} \frac{\pi}{A}-\cdots \\
& F_{Z i, N W}=Y_{i, N W} \quad \frac{U_{i}, N W}{u_{i, N W}}+X_{i, N W}-\frac{\bar{V} i_{i, N W}}{\bar{u}_{i, N W}} \\
& F_{\dot{y} i, N W}=Y_{i, N W}-\frac{\bar{V}_{i, N W}}{\bar{u}_{i, N W}}-X_{i, N W}-{\frac{U}{i} i_{i, N W}} \\
& M_{\phi, i, N W}=M_{0, i, N W}-F_{i, N W} \cdot l_{e, i} \\
& \text { Y }
\end{aligned}
$$

Fig. 5, the Illustrate for the Relationship between the Coordinate System $0-X Y Z$ and $0-x y z$

3. The Responses

A motion for combined flapwise bending chordwise bending and torsion of twisted nonuniform rotor blade is to be dealt with in this paper. The external force applied to the blade is concerned with the unknown deformation of blade (it is a nonlinear function) . With the reference [11] [12], a set of natural vibration differential equations can be obtainea. Then take into account the external airloads, Coriolis force and the damping moment in chordwise and in pitch device. Final a set of forced vibration \because differential equations can be obtained.

$$
\begin{align*}
& -\left[\left(G J+T k_{A}^{2}+E B_{1} \theta_{1}^{\prime 2}\right) \phi^{\prime}+T k_{A}^{2} \theta_{1}^{\prime}-E B_{2} \theta_{1}^{\prime}\left(v^{\prime \prime} \cos \theta_{1}+w^{\prime \prime} \sin \theta_{1}\right)\right]^{\prime} \\
& +T e_{A}\left(v^{\prime \prime} \sin \theta_{1}-w^{\prime \prime} \cos \theta_{1}\right)+\Omega^{2} \bar{m} x e\left(w^{\prime} \cos \theta_{1}-v^{\prime} \sin \theta_{1}\right) \\
& +v \Omega^{2} \bar{m} e \sin \theta_{1}+\Omega^{2} \bar{m}\left[\left(k_{m 2}^{2}-k_{m 1}^{2}\right) \cos 2 \theta_{1}+e e_{0} \cos \theta_{1}\right] \phi \\
& +\left(\bar{m} e \ddot{w} \cos \theta_{1}-\bar{m} e \ddot{v} \sin \theta_{1}\right)+\bar{m} k_{m}^{2} \ddot{\phi}=Q_{x} \tag{22a}
\end{align*}
$$

$\left[\left(E I_{1} \cos ^{2} \theta_{1}+E I_{2} \sin ^{2} \theta_{1}\right) w^{\prime \prime}+\left(E I_{2}-E I_{1}\right) \sin \theta_{1} \cos \theta_{1} \cdot V^{\prime \prime} E B_{2} \theta_{1}^{\prime} \phi^{\prime} \sin \theta_{1}\right]^{\prime \prime}$ $-\left(T w^{\prime}\right)^{\prime}-\left(T e_{A} \phi \cos \theta_{1}\right)^{\prime \prime}-\left(\Omega^{2} \bar{m} x e \phi \cos \theta_{1}\right)^{\prime}+\bar{m}\left(\ddot{w}+e \ddot{\phi} \cos \theta_{1}\right)$

$$
+\left\{\Omega^{2} \bar{m}\left[\left(k_{m_{2}}^{2}-k_{m_{1}}^{2}\right) \sin \theta_{1} \cos \theta_{1} \cdot v^{\prime}+\left(k_{m_{2}}^{2} \sin ^{2} \theta_{1}+k_{m_{1}} \cos ^{2} \theta_{1}\right) w^{\prime}\right]\right\}
$$

$$
\begin{equation*}
+\left[\bar{m}\left(k_{m_{2}}^{2} \sin ^{2} \theta_{1}+k_{m_{1}}^{2} \cos ^{2} \theta_{1}\right) \ddot{w}^{\prime}+\bar{m}\left(k_{m 2}^{2}-k_{m 1}^{2}\right) \sin \theta_{1} \cos \theta_{1}\right. \tag{22b}
\end{equation*}
$$

$$
\left.\cdot \ddot{v}^{\prime}\right]^{\prime}=Q_{z}
$$

$\left[\left(E I_{2}-E I_{1}\right) \sin \theta_{1} \cos \theta_{1} \cdot w^{\prime \prime}+\left(E I_{1} \sin ^{2} \theta_{1}+E I_{2} \cos ^{2} \theta_{1}\right) v^{\prime \prime}+T e_{A} \phi \sin \theta_{1}\right.$
$\left.-E B_{2} \theta_{1}^{\prime} \phi^{\prime} \cos \theta_{1}\right]^{\prime \prime}-\left(T v^{\prime}\right)^{\prime}-\Omega^{2} \bar{m} \Omega+\Omega^{2} \bar{m} e \phi \sin \theta_{1}+\left(\Omega^{2} m x e \phi \sin \theta_{1}\right)^{\prime}$
$+\left\{\Omega^{2} \bar{m}\left[\left(k_{m_{2}}^{2}-k_{m_{1}}^{2}\right) \sin \theta_{1} \cos \theta_{1} \cdot w^{\prime}+\left(k_{m_{2}}^{2} \cos ^{2} \theta_{1}+k_{m_{1}}^{2} \sin ^{2} \theta_{1}\right) v^{\prime}\right]\right.$
$+\bar{m}\left(\ddot{v}-e \ddot{\phi} \sin \theta_{1}\right)+\left[\bar{m}\left(k_{m_{2}}^{2}-k_{m_{1}}^{2}\right) \sin \theta_{1} \cos \theta_{1} \cdot \ddot{w}^{\prime}\right.$
$\left.+\bar{m}\left(k_{m_{2}}^{2} \cos ^{2} \theta_{1}+k_{m 1}^{2} \sin \theta_{1}\right) \cdot \ddot{v}^{\prime}\right]^{\prime}=Q_{y}$
$Q_{x}=M_{\phi}-\dot{m}_{m}^{2} \ddot{\theta}$
$Q_{z}=F_{z}-\left(\overline{\mathrm{m}} e \ddot{\theta} \cos \theta_{1}\right)$
$Q_{y}=F_{y}$
$B_{1}=\int_{\xi_{t e}}^{\xi_{l e}} t \xi^{2}\left(\xi^{2}+\frac{t^{2}}{\sigma^{-}}-k_{A}^{2}\right) d \xi$
$B=\int_{\xi_{t e}}^{\xi_{t e}} t_{\xi}\left(\xi^{2}+\frac{t^{2}}{12}-k_{A}^{2}\right) d \xi$
t is the thick of airfoil
and B_{1}, B_{2} are small in its quantity, can be neglcted. Combine the geometry boundary conditions, if the external forces Q_{x}, Q_{y}, Q_{z}, equal to zero, it is a well. known Sturm-Liouville problem. It can't be solved exac. tly. Therefore, a mode shape superposition has been of considered here.

さet

$$
\begin{aligned}
& \phi=\sum_{k} A_{\phi_{k}} \zeta_{k} \\
& v=\sum_{k} A_{v k} \zeta_{k} \\
& w=\sum_{k} A_{\omega k} \zeta_{k}
\end{aligned}
$$

We can deduce an ordinary difierential equation from the set of partial difierential equation (22a), (22b) and (22c) through a miscellaneous performing

$$
\begin{equation*}
\ddot{\zeta}_{k}+2 \sigma_{k} \omega_{k} \dot{S}_{k}+\omega_{k}^{2} \zeta_{k}=-\frac{1}{1 T_{k}}-\left[F_{k}(t)+\Delta F_{k}(t)\right]+2 \sigma_{k} \omega_{k} \dot{\zeta}_{k} \tag{23}
\end{equation*}
$$

where $\sigma_{k} \omega_{k}$ is the supposed damping coefficient, its value does not effect the solution of (23), but does effect the rate of convergence.

$$
\begin{align*}
& \mathrm{H}=\int_{\gamma_{0}}^{R}\left(\bar{m} \Sigma_{m}^{2} i_{\phi k}^{2}-2 \bar{m} e\left(\sin \theta_{1}+i \omega_{k}-\lambda_{k}-\cos \theta_{1} w_{k} A_{V k}\right)\right. \\
& +\bar{m}\left(A_{1 / k}^{2}+A_{v k}^{2}\right)-2 \bar{m}\left(k_{m_{2}}^{2}-k_{m_{1}}^{2}\right) \sin \theta_{1} \cos \theta_{1} A_{\omega k}^{1}+\nu k \\
& -\bar{m}\left(k_{m 2}^{2} \cos ^{2} \theta_{1}+k_{m 1}^{2} \sin ^{2} \theta_{1}\right) A_{v k}^{\prime}-\bar{m}\left(k_{m 2}^{2} \sin \theta_{1}\right. \\
& \left.\left.+\mathrm{k}_{m 1}^{2} \cos ^{2} \theta_{1}\right) \mathrm{~A}_{40 k}^{2}\right\} \mathrm{dr} \tag{24}\\
& F_{k}(t)=\int_{\gamma_{0}}^{R}\left(Q_{x} A_{\phi k}+Q_{z} \dot{\omega}_{\omega k}+Q_{y} A_{\nu k}\right) d r+\Delta Q . \tag{25}
\end{align*}
$$

$$
\begin{align*}
& \Delta Q=\int_{r_{0}}^{R} 2 \overline{\mathrm{~m}} \Omega \omega^{\prime} \dot{w} A_{V k} d r \tag{26}\\
& \Delta F_{k}(t)=-\left[\operatorname{Sign}\left(\dot{\phi}_{i=2, N w}+\dot{\theta}_{i=0, N w}-\bar{K}_{\dot{w}_{i=0, N W}^{\prime}}^{\prime}\right)\right. \\
& Q_{H D \max } A_{\phi k}-\left(\operatorname{Sign} \dot{v}_{i=1, N w}^{\prime}\right) Q_{\psi \psi \max } A_{v k}^{\prime}\left(r_{i}\right) \tag{27}\\
& \sigma_{k} \omega_{k}=-\frac{1}{2 \bar{M}}-\rho \Omega b C_{l \alpha} \int_{\gamma_{0}}^{R} r A_{\omega k}^{2} d r \tag{28}\\
& T=\int_{\gamma}^{R} \bar{m} r \Omega^{2} d r
\end{align*}
$$

wince the forcing function at the right side of equation (23) is a nonlinear function, in which some unknown quantities ζ_{k} and $\dot{\zeta}_{k}$ are involved. An iterative process must be made to obtain the solution, and the ζ_{k} and \dot{S}_{k} at right side terms are replaced by a the previous values. Where the $A_{v_{k}}(r), A_{w k}(r), A_{\phi k}(r)$ and ω_{k} are obtained from ref. (12).
4., The Collective Pitch Correction

Early in the wake calculating, the initial collective pitch is based on the momentum theory. It is not too accuracy. So far, a collective pitch correction is necessary.

Thrust

$$
T=-\frac{1}{A}-\sum_{N W=1}^{N A} \sum_{i=1}^{N} \quad F_{z, i, N W}-\frac{1}{2}-\left(r_{i+1}-r_{i-1}\right)
$$

where NA is the numbers of azimuthal steps per revolution. Then /T-G/ greater than a prescript quantity, then

$$
\begin{align*}
& \Delta \theta_{C O}=\frac{G-\frac{K}{N}-\frac{\sum_{N W=1}^{N A}}{N_{i=1}^{N}} F_{z, i, N W} \frac{1}{2}\left(r_{i+1}-r_{i-1}\right)}{\sum_{N W=1}^{N A} \sum_{i=1}^{N} \rho b_{i} u_{i, N W} U_{i, N W} \bar{C}_{l \alpha}-\frac{1}{2}\left(r_{i+1}-r_{i-1}\right)} \tag{29}\\
& \theta_{C O}^{(k+1)}=\theta_{C 0}^{(k)}+\Delta \theta_{C 0}^{(k)}
\end{align*}
$$

Repeat this process in section II . until

$$
\delta=\frac{\sum_{N W=1}^{N A} \sum_{i=1}^{N}\left[F_{z, i, N W}^{(k+1)}-F_{z, i, N W}^{(k)}\right]^{2}}{\sum_{N W=1}^{N A} \sum_{i=1}^{N}\left[F_{z, i, N W}^{(k)}\right]^{2}} \leqslant 0.001
$$

5, The Synthesis Expressions for Aerodynamic Doefficients

The airfoil lift, drag and pitch moment coefficients obtained from experiment suitable for the overrall range of angle of attack among $0^{\circ} \sim 180^{\circ}$ is necessary in airload compute. For the sake $\odot \hat{I}$ saving on space. They are omitted here.

III The Resultant and Discussion
In order to check the availability of this method, two configurations for calculation are performed. the first one is $H-34$ [13] in $\mu=0.2498$ and 0.288 . Only the flapping deformation is considered. (i.e $\mathrm{v}=\phi=0$. no chordwise deformation and torsion are considered) . The resultants of calculation are shown in fig. 6-8 latter, in which the resultants measured from flight test are shown in a small circle to compare with that irom calculation. The second one is another helicopter model, which has a more complex connection in blade root with a combined deformations. Its results are shown in fig. 9-13.

As mentioned above, there is a large gradient of circulation at tip , thus causing a strong tip vortex, it is concerned with the viscous flow. So far, its detail mechanism would be still unknown or known a little. It is very complicated. So does the flow pattern within the vortex core. Still, how to describe the vortex rol-ling-up appropriately would be interested us. further effort must be made on this subject.

IV Acknowledge

We should like to express here our appreciation to Mr. Han Qingrui for his work early in the paper. Aslo, we'd like to thank ir Then Kinkang for his part program in this paper.

in Illustration for the articulations at Root

Fig. 6, H-34 helicopter rotor blade airloads various harmonic components comparision of measured and predicted ($\mu=0.2498$)

Eig. 7

Fig. 8 , wake geometry

Fig. 10 airloads per unit length variation witn azimuth

Fig. 11 flapwise bending linear deflection variation with azimuth

with azimuth
 azimuth.

1，Ruan Tianen，Han Qingrui，Li Ruiguang and Shex Kinkang．

A Study for Calculating Rotor Loads Using Vortex Concept．ACTA AERODYNAMICA SINICA No．2． 1984 ．

2，Glauert，in．A．General Theory of The Autogiro． ARC．1111．（19．26）

3，Look，Further Development of The Autogiro Theory． ARC．RM 1127.

4．，Manyler，K．W．and Squire，H．B．The Induced Velo－ city Field of Rotor．ARC．Ril 2624.

5，Heysen，H．H．and Katzobb，S．Induced Velocity Near A Lifting Rotor with Nonuniform disc Loading． NACA．TR． 1319

6，Wang Shicun．The lecture Note for Vortex Theory On Helicopter Liîting Rotor．iVorth－West Engi－ neering University．
（王适存，直升机升力桨的涡流理棆讲义。西北工业大学
7．Piziali，R．A．A Method for Prediction the Aero－ dynamic Load and Dynamic Response of Rotor Blades． AD． 628583

8, Landgrabe, A.J. Rotor Wake-the key to performance prediction. AGARD CP-111. p1-1-1-18.

9, Sadler, G.G. Development And Application of A methord for Prediction Rotor Pree Wake Positions And Resulting Rotor Elade Air Loads.

NASA. CR-1911.
10,A. Robinson. J. A. Laurmann. Wing Theory. Cambridge at The University Press

11,John, C.Houbolt and George, it. Brooks. Differential Equations of fotion for bombined rlapwise bending, Chordwise iending and Torsion O.I Twisted Vonuniform Rotor Blades NACA MTY 3905

12, Thou thide. The Solution for Dynamic ivatural Frequency of Rotor Blade iith The Finite Element. 792-19. Chinese Felicopter Research .nd Jevelopment Institute. (MRDI)

13, James s. NiS.. TV .-952.

