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Abstract 

The mass and stiffness matrices for a rotating blade are 
established by the finite element method. The formulation is 
based on the LAGP~NGE function presented by J. C. HOUBOLT and 
G. W. BROOKS for combined flapwise bending, chordwise bending, 
and torsion of twisted nonuniform rotor blades. The element 
matrices are created by the non-numeric computer program REDUCE 
by which it is possible to develop the mathematical model by 
symbolic manipulation. An ordering scheme was introduced to 
demonstrate which terms may be simplified or neglected. 

As examples, eigenanalyses, with the finite element computer 
program, are performed for a homogeneous beam and for the non
rotating blade of a wind energy converter. The results of the 
calculations for the beam are compared with the analytical 
solutions. The rotor blade of the wind energy converter was 
tested in a ground vibration test. Thus, it is possible to 
determine to what extent test results correspond to those of the 
eigenanalysis. A short description of the ground vibration test 
technique and performance is given. 

1. Introduction 

Dynamic stability and response problems of helicopters, wind 
turbines, and rotary wing aircraft represent some of'the most 
complex problems in aeroelasticity. An important aspect of the 
aeroelastic investigations of rotating systems is the dynamic 
behaviour of the rotor blades. Before considering the coupled 
rotor/fuselage system it must be ensured that there are no snags 
with the various structural parts. 

At the beginning of the aeroelastic analysis, determination 
of the free vibration characteristics of the rotor blades is an 
an essential foundation. In the design stage the dynamic be
haviour can be determined only theoretically. For this purpose a 
mathematical model is required representing the main physical 
properties of the flexible structure. However, the determination 
of the modal parameters by experiment secures the final dynamic 
qualification. The free vibration behaviour of the nonrotating 
blade can be investigated experimentally by a modal survey test. 

Considerable work has been done to develop the 
well as nonlinear, differential equations of motion 
flapwise bending, chordwise bending, and torsion of 
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uniform rotor blades. Refs. Ill through 1181 represent a typical 
literature dealing with this topic. In these a great number of 
cross section constants, which can be determined only with some 
difficulty, are taken into consideration. The authors specify 
various reasons as to the importance of these terms and how they 
are consistent with the fundamental assumptions of the beam 
theory. This is beyond the scope of this paper. 

If one is restricted to the linear analysis, the work of 
J. C. HOUBOLT and G. W. BROOKS 111 is most usefull. Based on the 
LAGP-ANGE function, developed by them, the mass and stiffness 
matrices for a finite rotor blade element were evolved in 
Ref. 119\. In it, the assumptions and omissions, which are re
quired to obtain the energy equation, are demonstrated. The ana
lytical deduction was performed by the non-numeric computer 
program REDUCE. With this program the formulae were derived by 
symbolic manipulation. In this way a laborious and perhaps 
faulty manual derivation could be avoided. 

The procedure preferred by the Institute for Aeroelasticity 
of determining experimentally the free vibration behaviour is a 
modified version of the classical phase resonance method, see 
Refs. 1201, 1211 and 1221. With this method the modal parameters 
can be measured directly, thus have the advantage that at the 
end of the tests all free vibration parameters are known and no 
further calculations are necessary. However, it can be diffi
cult to adapt the excitation to such an extent that in all 
structural points the phase resonance criterion is satisfied. 

2. Basic Assumptions and Kinematics 

In order to determine the LAGRANGE function for a rotating 
beam, geometrical nonlinear theory of elasticity is applied. The 
nonuniform blade 
- is rotating at a constant speed of rotation around the elastic 

axis, 
- is structurally symmetric about the major principal axis, 
- can have a built-in twist about the undeformed elastic axis, 
-can have an offset from the rotation axis at the.hub, 

can have various distances concerning the elastic axis, mass 
axis and tension axis, 

- is of an isotropic material. 

It is necessary to introduce an ordering scheme in deriving 
the equations. This ordering scheme reduces the number of con
stituent terms and thus not only simplifies the derivation but 
also it is needed to ignore higher-order terms which do not 
agree with the basic assumptions. For this purpose all terms are 
assigned to a certain order, so that the energy equation agrees 
with those of Ref. Ill. The scheme is used to weight variables 
for the non-numeric calculation with REDUCE. With this computer 
program it is possible to neglect the variables in a systematic 
manner. If terms assigned to the quantity e are defined to be of 
first order of magnitude , then terms of an order higher than e2 

are usually neglected. 

The axial coordinate x is of 
radius R. They have the order one 
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built-in twist B. The coordinates of the cross section n and ~ 
have the magnitude of the chord and the thickness of the blade, 
respectively, and are weighted 8

112
• The elastic twist $ has the 

same order. Assuming that the warp function J.. is proportional to 
the product of the chord and thickness, it must be of order 8. 

The derivatives with respect to nand ~, respectively, must be 
of order 8

112
• The elastic displacements in flap and lag direc

tion w and v are weighted with 8. They are of an order less than 
the axial displacement u. So in consequence the following order
ing sche.me was used: 

0 ( 1 ) x, R, 13, S' 

O(s1/2) 
n ' 

r dJ <!>' ¢" :>.n, ,\~ 
? ' . ' 

0 (2) v, v' v" 
' 

w, w' 
' 

w" 
' 

\ 

? 
0 ( s-) u, u' u" 

The elastic deformation of the rotor blade is shown in 
Fig. 1. The blade is rotating with the X-Y-Z-coordinate system 
around the Zr-axis, where R is the constant angular velocity. At 
the hub the blade can have an offcentre distance of e

0
• All de

formations are referred to the blade-fixed x-y-z-coordinate 
system, where the x-axis is coincident with the undeformed posi
tion of the elastic axis. At an arbitrary point on the blade the 
~-n-s-coordinates are attached to the elastic axis. After defor
mation this system is shifted about the longitudinal displace
ments u, v, w and rotated about the torsional displacement $. 

~z z 

Y,y 

7J 
I 

~ 
---x 

Figure 1: Undeformed and Deformed Rotor Blade 
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Denoting the position vectors to 
undeformed and of deformed blade by 
their corresponding components can be 

(l) ~0 = + 'J:o 

and 

(2) 

an arbitrary point of the 
+ d + . 1 r 0 an r 1 , respect1ve y, 
expressed by: 

The transformation matrices r. and Il are given in Appendix A. 

3. Finite Element Formulation 

3.1. LAGRANGE's Equations of Motion 

In the case of a holonomic system, the LAGRANGE's equations 
of motion are expressed in terms of the generalised coordinates 
q. and timet as follows: 

1 

( 3) i ; 1 , 2, ... , n. 

The LAGRANGE function L is defined by the difference of the 
kinetic energy V and the potential energy U: 

(4) L ; V- U. 

On the assumption that only stresses due to bending oxx and due 
to torsion Txn a~d Txs occur in the rotor blade, the potential 
energy can be wr1tten: 

(5) 
1 R 

U ; -
2 

J J (a 
0 A XX 

£ +T '( +T '( )dAdx, 
XX XJl Xn· X~ X~ 

where 

( 6) 

(7) 

and 

( 8) 

The components 
t=. and rl, the 

T 
xn 

£ 
XX' 

; 2G s xn 

T ; G '( ; 2G E xc xc xc 
of the classical strain tensor Eij in relation to 
vector positions of an arbitrary point on the un-
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deformed and deformed blade, respectively, can be expressed as: 

( 9) 2 [dx dn dU [sij] 

The expr,ession for the kinetic energy of the blade in terms of 
the velocity of the mass point is given by: 

( 10) 

The vector of the 
defined by: 

( 11) 

+ 
f p v, 
A 

+ 
v

1 
dA dx. 

absolute velocity of the mass point 

+ 
+ w 

+ 
x r 

1
• 

The components of the strain tensor and those of the absolute 
velocity vector are given in Appendix B. In this section the 
resulting equations for the energy contributions are specified 
as well. 

3.2. Determination of the Finite Element Matrices 

Figure 2 shows a typical rotor beam element which has ten 
degrees of freedom, the two translational motions v and w, and 
the three rotational motions ~' y and~ at each nodal point. The 
indices "1" and "2" refer to the left and right nodal points, 
respectively. 

z 

elastic axis 

mass axis 

Figure 2: Rotor Beam Element 
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If the characteristics of the beam element are introduced in 
the final LAGRANGE's equations of motion, it is possible to cal
culate the element matrices in relation to the column matrix of 
the displacements. The integration ·over the length of one ele
ment is performed by REDUCE as are the differentations with 
respect to the generalised coordinates, their time-dependent 
derivatives, and time. 

For the flap and lag displacements w and v, cubic distribu
tions are assumed. Linear distributions are taken into account 
for the built-in twist S, for the elastic torsion ~. and for the 
tension T: 

(12) 

(13) 

(14) 

( 15) 

(16) 

where 
radius 

w = ( 1 -
- (x -

v = ( 1 -

+ (X -

s = (1 -

<I> = ( 1 -

T = ( 1 -

x is the 
direction. 

3 
:::2 

2 
:::3 

(3 
::2 

2 ~3) X + X ) w, + X - w2 
-~ ~3) (i2 i3) 2 -~ + l + - 1 X y, y2 

:::2 ~3) :::2 -~ 
3 X + 2 v, + (3 X - 2 >n v2 + 

2 
:::2 

i
3

l l -&, (~2 i3) 1 -&2 X + - ' 

~) e., + X B2 

il <1>1 + x ~2 

~) T1 + 
::: 
X T2 ' 

dimensionless local coordinate in the rotor 

For one rotor blade element the following parameters are con-
sidered as constant: 

distance between elastic axis and tension_axis eA, 
distance between elastic axis and mass axls e, 
distance between elastic axis and rotating axis e

0
, 

- mass per unit length m, 
- mass radii of gyration km 1 and km 2 , 

bending stiffnesses EI 1 and EI 2 , 
polar radius of gyration of cross-sectional area effective in 
carrying tensile stresses kA, 

- torsional stiffness GJ, 
- section constants EB

1 
and EB

2
. 

The equations of motion for the beam element can be written 
in matrix form: 

(17) 

where l)) is 
Ji, is 
X is 

and 
f is 

the 
the 
the 

the 

+ k X = f = - _, 

mass matrix, 
stiffness matrix, 
column matrix of the nodal point displacements 

column matrix of the nodal point forces. 
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The matrices are symmetric and have the dimension 10 x 10. 
The column matrices consist of ten elements according to the ten 
degrees of freedom of the element. If the blade is rotating at a 
constant angular velocity, then the stiffness matrix is composed 
of the elastic stiffness matrix and the geometric and centri
fugal stiffness matrices. The column matrix of the nodal point 
forces comprises the column matrices of the tensile and the cen
trifugal forces. 

4. Free Vibration Calculation 

In order to calculate the free vibration behaviour of a whole 
rotor blade, the blade has to be subdivided into a sufficient 
number of beam elements along the rotor radius. The global 
matrices are obtained by superimposing the element matrices. 
Eigenanalysis can be performed for any desired boundary con
ditions if the desired degrees of freedom are constrained at the 
hub. Moreover, it is possible to take into account point masses 
and stiffnesses at the nodal points. 

As a numerical example of the free vibration calculation, 
eigenanalysis of a homogeneous beam was performed. The nonrotat
ing untwisted beam of 2 m length with a rectangular cross 
section was subdivided into 10, 20 and 40 elements. The first 
25 eigenfrequencies and eigenmodes were calculated for the blade 
which was clamped at the hub. 

Within the frequency range of the first 25 eigenmodes lie 
13 flap modes, 7 lag modes and 5 torsional modes. In Tab. l the 
natural frequencies of the analytical solution are compared with 
those computed by the finite element program. 

Ana IYt. 40 E I emen ts 20 Elements 10 Elements 

Eigenmode Frequency Frequ12ncy Deviation Frequency Deviation trnqucncy Ocvintion 
Hz Hz % Hz % Hz % 

1H flap II. 1709 4.1709 - 1.1..1709 - 1.!.1710 -
2nd flap 26.139 26. 13.9 - 26.139 - 26. 1110 -
3cd flap 73.190 73.190 - 73. 191 - 73.208 -
4th flap 143.42 143.42 - 143.43 - 1113.56 o. 1 
5th flap 237.09 237.09 - 237.13 - 237.69 o. 3 
6th flap 354. 17 354. 18 - 351l.30 - 3%.08 0.5 
7th flap 4911.66 494.69 - 495.02 0.1 499.60 1.0 

1H tag 16.684 16.684 - 16.684 - 16.684 -
2nd Jag 104.56 lOlL 56 - 104.56 - 104.56 -3rd tag 292.76 292.76 - 292,. 76 - 292.B3 -lith J·ag 573.69 573.69 - 573.73 - 5711.24 o. 1 
5th lOg 9118.35 9118.35 - 9118.51 - 950.74 o. 3 
6th t•g 1416.7 11116. 7 - 141 7.2 - 142'-i.3 o. 5 
7th tag 1978.7 1978.7 - 1980.1 0.1 1998.'-i 1.0 

1H torsi on 179.71 179. 72 - 179.75 - 179.89 o. 1 
2nd torsion 539.13 539.114 0.1 5'-10,37 0.2 5illl. 13 0.9 
Jed torsion 898.55 899.99 0.2 904.33 0.6 921.78 2.6 
IJth torsion 1258.0 1261. 9 0. 3 1273.9 1.3 I 321 .9 S. I 
Sth torsion 1617,!.! 1625.8 0.5 1651.2 2.1 1752. 7 8./j 

Table l: Eigenfrequencies of the Homogeneous Beam 

If the length of the elements comprises 5 % of the rotor 
radius, the results are satisfactory. This means, if the cal
culation is performed with 20 elements, the frequency deviation 
is 0.1% in the 7th flap and in the 7th lag mode. Nearly 2% 
deviation was obtained in the 5th torsion frequency. In general, 
the frequency errors in the torsional modes are high. This is 
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caused by the linear distribution of the torsional displace
ments. Since the frequency range of up to 3rd torsion mode of 
the actual rotor blades is of interest, it is seen from Tab. l 
that the finite element calculations yield good results even 
with ten elements. The reliability of such calculatio·ns depends 
on the extent to which the structure is subdivided into finite 
elements. 

5. Modal Survey Test on a Rotor Blade 

The 50 m rotor blade of a wind energy converter was investi
gated by a ground vibration test to determine experimentally the 
modal parameters. Figure 3 illustrates how the blade was 
clamped to the test setup at the axial coordinate x = 4.3 m. The 
test stand consists of a stiff steel box connected to a concrete 
base. The plug for changing the pitch of the blade was mounted 
on the test setup. 

z 

- Om -

/////////////////////////// / 

z 

:r, 
r-- --., 1) 
' 
I I 
I I 

y 

!'-.. ./ 

/ ' ' / / / / / 

Figure 3: Test Setup 

Assuming that the upper limit is the first elastic torsion 
mode, previous finite element calculations have shown that a 
frequency range from 0.9 Hz to 26 Hz must be considered. Within 
this frequency range lie 7 flap modes, 5 lag modes and the tor
sion mode. For each eigenmode 
- the mode shapes, 
- the eigenfrequencies, 
- the generalised masses and 
- the modal damping coefficients 
are to be determined. 
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5.1. Test Procedure 

The test was performed with the mobile test assembly of the 
Institute for Aeroelasticity. Essentially, it is a transportable 
container, which accommodates the complete ·data ·recording equip
ment including a process computer. This computer-controlled 
modal survey test technique is based on the phase-resonance 
method, using a multipoint excitation, to realise the in-phase 
normal mode condition for all structural points. 

It is known that the structural response to a 
coherent excitation with the circular frequency 
pressed by the uncoupled equations: 

harmonic phase 
n can be ex-

(18) 
2 - 2 -

[- Q Mr + ( 1 + i y r) wr Hr] qr = Q r = 1,2,3 ... m, 

where Mr is the generalised mass, 
wr is the circular eigenfrequency, 
Yr is the damping loss angle, 
qr is the complex amplitude of the generalised coordinate 

and 
Q is the amplitude of the generalised force. 

The column matrix of the complex geometric displacements X is 
to be determined by the superposition of the measured column 
matrices of the normal modes Kr= 

m 
(19) X = E X q 

r=1 -r r· 

In conformity with the phase resonance method a 
exists when there is a phase angle of ±TI/2 between 
displacements and the excitation forces. For this 
excitation frequency and the distribution of the 
forces must be adapted to the harmonically vibrating 

normal mode 
the dynamic 
purpose the 
excitation 

structure. 

Denoting the 
imaginary part 
satisfied, if: 

real part of the 
with q~ the phase 

complex qr with q~ 
resonance criterion 

and the 
will be 

(20) q' = 0. 
r 

Then we obtain for the r-th natural mode shape (referring to 
the index 0) : 

(21) -112 M 2 
Mr 0 • + w = 

0 r r 

and 

(22) 
2 M q " = Qr . -yrwr r ro 0 

The process of identification of an eigenmode is performed by 
exciting the structure with slowly increasing frequency and 
recording the phase resonance criterion with various exciter 
configurations. The process computer of the test assembly cal
culates on-line a significant value of the resonance criterion. 
From the complex acceleration response of all n measuring points 
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a so-called indicator function ~ is calculated: 

(23) ~ = 1000 

Moreover, ·the deformations of the structure in terms of the 
real and imaginary parts of the accelerations can be observed on 
a display screen. Both the indicator function and the graphic 
display can be used advantageously in the identification and 
isolation phase. 

For each eigenmode an in-phase vibration must be attempted by 
means of force and frequency variations. If the phase resonance 
criterion is satisfied, the exciter frequency is equal to the 
eigenfrequency and the imaginary parts of the accelerations 
correspond to the normal mode shapes. In practice, the condition 
~ ~ 900 is aimed at in order to obtain sactisfactory modal 
parameters. 

5.2. Test Performance 

The rotor blade was excited harmonically by no more than two 
electrodynamic exciters. There were several points of applica
tion of force distributed in rotor radius direction. The metal 
fittings, provided for the static tests performed after the 
ground vibration test, were connected with the spar of the 
blade. These fittings were also used to attach the exciters by 
tappets. The response of the blade was measured by a number of 
accelerometers distributed over the blade. Some additional mea
suring points were arranged at the steel box to control the dis
placements of the test setup. 

The generalised mass of each natural mode shape was computed 
with the column matrix of the measured eigenmodes X by: 

-r,M 

( 24) M = XT M X 
r -r,M = -r,M 

where ~ is the mass matrix of the rotor blade based on the 
physical displacements. 

The modal damping coefficients were measured by means of the 
decay curves. For this purpose the excitation of the structure, 
vibrating in an eigenmode, was switched off and the response of 
one accelerometer was recorded. In the case of low damping the 
loss angle is given by: 

(25) 100 [%] 
' 

in which 6 is the logarithmic decrement, 
r 

(26) = ln 
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6. Comparison of the Test Results with the FE-Calculation 

The measured and calculated eigenmodes of the first three 
flap and lag modes and of the torsion mode are presented in 
Figs. 4 to 10. In these figures the flap, lag and torsion com
ponents are plotted versus the elastic axis. The eigenmodes are 
normalised such that the generalised mass of each mode shape is 
unity. Before deviding the test data into the particular com
ponents ~long the elastic axis, a balancing calculation was per
formed to eliminate measurement errors and to smooth the curves. 

The natural frequencies of the calculated modes are always 
greater than the measured ones. Whereas the lag frequencies 
agree quite well with the calculations, there is some deviation 
in the flap frequencies and in the torsion frequency. The maxi
mum deviation is in the torsion mode and amounts nearly 21 %. 

The essential difference in the mode shapes which can be ob
served is the lack of coupling between the flap and lag com
ponents in the calculated eigenmodes whereas, there is sometimes 
a noticeable coupling in the measured mode shapes. The flap and 
lag frequencies of adjoining measured eigenmodes lie closer to
gether so that coupling is possible. Furthermore, it is obvious 
that the vibration nodes of the calculated modes are situated 
closer to the tip of the blade. This may be influencend by the 
test stand which is not as perfectly stiff as calculated. The 
accelerometers controlling the displacements of the clamping 
device indicate small signals, but these were within the range 
of the test precision. 

An orthogonality test with the calculated and measured normal 
modes and the mass matrix of the FE-calculation was performed. 
A symmetric correlation matrix of the generalised masses can be 
determined with a modal matrix composed of the calculated modal 
matrix ~C and the measured matrix !M: 

(27) rl:icc 
l~MC 

The submatrix Eke is the generalised mass matrix of the cal
culated eigenm~des and must be a unit matrix. The submatrix ~~ 
of the general1sed masses of the measured mode shapes is a sym
metric matrix in which small off-diagonal elements, caused by 
measurement errors, can occur. The correlation of the calculated 
and measured eigenmodes can be determined from the matrix tjHC 

The three submatrices of the correlation matrix are presented 
in Tab. 2, where all elements are multiplied by 100. In this 
way, the orthogonality of the measured eigenmodes can eas~ly be 
determined from the off-diagonal elements of the matrix ~ as 
percentage. There is rather a substantial deviation of 19 % in 
the 5th lag mode (LS) which is not quite orthogonal to the 4th 
lag mode (L4). The 7th flap mode (F7) was measured with nearly 
15% deviation in orthogonality to the 3rd flap mode (F3). For 
the other mode shapes the orthogonality test yields good 
results. This is also proved by the high values of the indicator 
function. These values are arranged in the last column behind 
the corresponding eigenmode. 
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F1 F2 F3 F4 F5 F6 F7 L1 C2 L3 L4 L5 T1 

F1 100.0 F1 
F2 0.0 100.0 F2 
F3 0.0 0.0 100.0 F3 
F4 0.0 0.0 o.o 100.0 F4 
f5 0,0 0.0 0.0 0.0 100.0 F5 

Ecc F6 0.0 o.o o.o 0.0 0.0 100.0 F6 
F7 0.0 0.0 0.0 0.0 0.0 0.0 100.0 F7 
L1 0.0 0.0 0.0 0.0 0.0 0.0 o.o 100.0 L1 
L2 0.0 0.0 0.0 o.o o.o o.o 0.0 0.0 100 .o L2 
L3 0.0 0.0 o.o o.o 0.0 0.0 0.0 o.o 0.0 100.0 L3 
L4 0.0 0.0 o.o 0.0 0.0 0.0 o.o 0.0 0.0 0.0 100.0 L4 
L5 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 L5 
T1 0.0 o.o 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0,0 0.0 100.0 T1 

F1 F2 F3 f4 f5 f6 f7 L1 L2 L3 L4 L5 11 

F1 ~ 1,9 4.4 -1.5 0.3 -0.3 -0.5 0.0 0.0 0.0 o.o 0.0 -0.4 F1 

F2 J. l-9~-gl -12.2 7.8 5.4 -4.2 3.7 0.0 0,0 0.0 0,0 0.0 -0.9 F2 
F3 6.0 -1 . l~j·Q' -22.5 .. 10.3 6.1 -2.1 0.2 6.9 4.8 3.3 0.3 -0.2 FJ 
F4 2.0 6.8 . ~ 27.2 -1'3.7 ll.2 -2.9 6.0 -12. 1 -7.1 -?.. 1 -l.?. "' F5 4.5 -5.6 -11.4 46.0 ~ 33.5 -13.8 1.3 -2.1 4.8 -13.2 1.5 0.9 F5 
F6 -1.3 3.4 Ll.6 -15.Ll -5Ll. 7 ~ 35.1 0.6 -1.1 0. 7 -3.6 5.9 -2.3 F6 

8Mc F7 -0.7 1.6 11.2 -9.1 -8.6 1!7.8 ~ 0. 3 5. 3 5.5 8.6 10.2 24.1 F7 
L1 0.0 o.o 0.0 0.0 0.0 0.0 0.0 ~ -12.2 -5.6 -0.8 0.3 0.0 L1 
L2 -2.1 -5.5 -0.5 -2.0 -3.4 2.4 -1.7 5 ~ 20.9 9.4 6.6 0.2 L2 
L3 -1.4 -u.2 0.7 -11.7 -3.5 3.0 -2.0 -2.7 23.71-90.71-27.4 -13.3 -0.4 L3 
L4 0.5 -2.7 3.3 9.7 -8.6 4.8 -z.; -1.2 -9.0 -44.3 crr:Il 36.9 -1.2 L4 
L5 -0.5 -1.3 2. 3 3.8 -6.6 1.7 2.2 -4.4 3.0 5.1 65.7 rn:J] 1.2 L5 
T1 -4.9 0.8 0.2 0.3 -2.6 -18.0 -8.9 2.4 -1.2 -1.0 5.4 19.8 ~ T1 

F1 F2 F3 F4 F5 F6 F7 L1 L2 L3 L4 L5 T1 t:. 
F1 100.0 F1 992 
F2 2.5 100.0 F2 988 
FJ -2.0 2.8 100.0 F3 981 ,,, -1.7 -1.0 6.5 100.0 f4 9811 
F5 -5.9 3. 3 -9.6 5.2 100.0 f5 96 7 
F6 1.5 -2.7 7.2 -8.2 1.5 100.0 F6 955 

;;; F7 0,4 -1.9 II!W!l -2.5 -1. 1 6.0 100.0 F7 952 
-MM L1 0.0 o.o -0.9 -2.9 1,4 0.8 -0.7 100.0 L1 925 

L2 2.0 4.9 9.4 -2.0 1.5 _,. 8 6.8 -7.3 100.0 L2 920 
L3 1.6 2.6 1.0 2.3 -1.7 -1.1 -9.0 -0.3 0.9 100.0 L3 973 
L4 -0.5 2.1 2. 7 4.1 1.6 -1.9 7. 7 2. 3 -6.9 10.3 100.0 L4 991 
L5 0.4 1.1 4,6 -1.2 -2·.9 -3.0 3.8 -6.6 3.9 -11.8 (!![J'!I 100 . 0 L5 978 
T1 4.5 -1.7 -0.5 -1.9 -0.8 8.9 6.0 2.6 1.4 -3.8 11.3 -9.4 100.0 T1 946 

F1 F2 F3 F4 F5 F6 F7 L1 L2 L3 L4 L5 T1 

Table 2: Submatrices of the Correlation Matrix 

The correlation between the calculated and the measured 
eigenmodes can be taken from the diagonal elements of the matrix 
EMc . There is a correlation of over 90 % for the first three 
flap and lag modes. In the higher bending modes and in the tor
sion mode the conformity is not so good. The difference between 
the calculated and measured mode shapes is obvious. The area of 
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the clamping device appears to be assumed too stiff in the FE
calculations. In this area the measured higher eigenmodes have 
greater components as the calculated ones and, as mentioned, 
coupling does not occur in the calculations contrary to the 
measurement. The results of FE-calculations ca~ be only as good 
as the ihput data, as regards the mass and stiffness distri
butions. 

7. Conclusions 

A computer program for the free vibration analysis of rotor 
blades was developed by application of the finite element 
method. The formulation was made for coupled bending and torsion 
of a twisted nonuniform rotor blade. The blade was assumed to be 
structurally symmetric about the major principle axis. There 
were no restrictions concerning the geometric arrangement of the 
elastic, neutral, and mass axes. 

The analytical deduction of the mass and stiffness matrices 
of the finite rotor beam element was performed by a non-numeric 
computer program. With this programm it was possible to weight 
the variables and to simplify the derivation in a systematic 
manner. 

The finite element calculations, performed for a nonrotating 
homogeneous beam, yielded good results. There were only small 
differences between the eigenfrequencies end eigenmodes of the 
analytical solution and the FE-calculations. As another example, 
the FE-calculations were carried out for an actual rotor blade 
of a wind energy converter. This blade was investigated in a 
ground vibration test and the modal parmeters were determined. 
The comparision of the measured and computed smallest flap and 
lag natural mode shapes and frequencies was very satisfactory. 
Greater differences occured at the higher modes. 

Finally, it must to be mentioned, that the results permit no 
conclusions as regards a creditable specification of the influ
ence of the twist and the tension in the FE-formulation. A 
twisted rotating blade should be investigated in a vibration 
test to prove this influence. The blade should be built very 
simple, so that the cross section constants could be calculated 
easily. It could be examined how the test results are compatible 
with the finite element model. 
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Appendix A 

The transformation matrices Io. and !.1 are defined by: 

and 

1:o = [: 0 

cesS 

sinS 
si~S ] 
cosB 

- sinai cos (S+<!>) sinai sin (S+<r) 

COSGi COSCI.2 
:- ccsGi sina

2 
sin(S+•>) 

1
- cosai sina

2 
cos(S+4>) 

-------,-------------~-------- ------
. I cosai ccs(S+<P) - cosc'i si11(S+•Pl 

SJ.na. COS a
2 

I 
I I 

sina
2 

1- sinai sina
2 

sin(S+<P) I_ sinai sinc,
2 

cos((;+•~) 
- ----- _L - - -- - - -- -- - _I_ - - - -

I 
. I 

SJ.n::t2 I 
I 
I 

cosa
2 

cos (S+¢) 

where 
vi 

sin;::t... ::::: 
I /i + vi 2' 

i 
cosai = 

/i 
\ I 

+ vt2 

wl 
sina

2 = 
/i 

\ I 

+ vl2 + w'2 

11 + vl2 

cosa
2 = 

/i v'2 2' 
+ + wl 

The trigonometrical functions with the arguments a 1 and a2 as 
well as those with the elastic torsion ~ can be expanded into 
series. If all terms greater than 0( e2 ) are neglected this 
yields: 

sina 1 
' 

cosai 

sina.
2 

cosec, 
" 

sin'P 

COS¢ 

vi ( i i 
"' -

2 
vl2) "' vi 

I 

"' i 
i v'2 - 2 

w' ( l- i ....,,2 i w' 2) w' "' - " 
::: 

2 " 
I 

::: ( i i 1 2) ( i _ i v 1 2 i w' 2) +2v 2 -2 ~ 

"' 1 ·' 3 "' - 6 y I 

~ 1 1 A2 i ~4• -z-·· +24" 
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Appendix B 

The strain tensor components and the components of the absolute 
velocity vector were calculated by 'neglecting all te~ms greater 
than 0 ( E 2 ) : 

= u' + .:!. v' 2 + .:!. w' 2 - A <P" + 2 2 ( 8' <!>' 

- 11 · ( v" cos (3 + w" sinS) + 11 •P ( v" sin (3 - w" cos B) + 

+ 1; (v" sinS - w" cosi3) + i; <P (v" cosG + w" sinS) 1 

Yxn = - (I; + An) <!>' I 

YXI; = (1'} - Ll <P' s 

and 

v = u 
1 , X 

- A <!>' + 
. 
<!> [v' (i; cosS + 11 sinS) + 

+ w' (I; sinS - 11 cos s) l + 

Q [ ( <P 
1 <1>3) + -
6 

(I; cosB + 11 sinS) + 

( 1 1 <1>2) (I; sinS cos 13) -+ - - n 2 

. 
~ <P (I; sin(l - n cos B) 

v1,Y = v + 
1 <P 2) sinS) l - ( 1 - 2 (I; cosB + n + 

+ Q [ ( <P w' + v' ) (I; sinS - n cos B) + 

+ (<!> v' - w' ) (I; cosB + 11 sinS) + 

+ u + X - A <!>' ]I 

v
1 

,Z = w - <l> [ (1 - ~ <P
2

J 
+ <P 

( 1; sin 13 - n cos B l + 

(i; cosi3 + 11 sinS)] 

v - e 0 J, 

If all terms of the order greater than 0(8 4 ) are ignored the 
potential energy results in: 

1 R 
U = 2 f [EI 1 (v" sinS - w" cos8) 2 

+ EI
2 

(v" cos(l + w" sinS) 2 <-
0 

+ (GJ + EB 1 
8'2)·~,2 - 2 EB 2 

(vu cosS + w" sinS) (3' <!>' + 

+ EC 1 
rpn2 2 EC 2 (v" sinB w" cos 13) <l>" 

T2 
dx. - - + EA] 
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In the equation for the kinetic energy all terms greater than 
0( e 3 ) are neglected: 

R 
V = J n2 

m x u dx + 
0 
R 

Q2 + f m {e x [<!> (v' sinS - w' cosS) - (v' cosS + w' sinG)] + 
0 

+ v (e cosS - e <!> sinS) 1 2 
+ 2 v + + eo 

+ <!> 
2 2 

[(km1 - km2 J sinS cosS- e e
0 

sinS) + 

1 
+ 

2 
-2 2 2 

<P [ (km1 - km2) cos2S - e e 0 cosS) + 

+ 
1 
6 

di_ 3 - Q e eo s~n,_, + 

+ 
1 
2 

( 2 2 2 . 20 2 2 
x + e 0 + 2 e e 0 cosB + krn 1 s~n ,_, + km

2 
cos SJ} dx+ 

+ 
R 
f n { ~ [ (~ ,.2 · o o · O) " m - u e 0 + v x + ~ e x ~ ., s~n,_, - <tr cos,_, + s~n,_, -
0 

e e (v' - 0 sinS - w' cosS)]} dx + 

R 
+ f rn 

0 
[l •2 •2 

2 
(v + w 

2 • 2 
+ k <!>) - e j (~ sinB- w cosB)l dx m 

where 
R 

= f T u'dx 
0 

R 
= J T [i'A - ~ ( v' 

2 
+ w' 

2
) -

0 

- ki (<!>' S' + ~ <!>' 
2 ) + eA (v" cosS + w" sinS) -

- e <!> (v" sinS - w" cosSJ) dx. 
A 

These equations are obtained in considering the following sec
tion integrals: 

f k 2A f 
2 ~; 2 )dA 0 ( E 

2 ) A = dA 0 (s) = (n + 
A A A 

0 (s3/2) ? 2 
0 ( E 

2 ) eAA = f ndA ' 
J = f [ (n-!, ~;l- + (~+An) ]dA, 

A A 

f 
2 0 ( s 2 ) f 

2 2 
0 (s 2 ) r1 = I; dA, I2 = n dA - eAA 

A A 

f i-. 2dA, 6 ( s 3 ) s, f (n 
2 2 

- k 2 ) 2ctA 0 ( £3) c, = = + I; 
A A A 

c2 f Al;dA, 0 (ES/2) B2 f <n 
2 1;2 ki)dA 0 (sS/2) = = n + 

' A A 
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and 

f p dA 0 ( £ l ' 2 m = f p 1;2 dA, 0 (.:2) m = Kml 
A A 

f 0(£3/2) k2 f 
2 

dA, 0 (s 2 ) em = p n dA, m = p !') m2 
A A 

k2 2 2 
= krn1 + km2 m 

On the assumption of a symetrical cross section of the rotor 
blade these integrals will become zero: 

f l;(ll 
2 

I; 
2 ) dA = 0 f i;;dA = 0 + 

A A 

f A(n 2 z; 2 JdA 0 f nr;dA = 0 + = 
A A 

1 AlldA = 0 f AdA = 0 

A A 
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