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INTEGRATION OF HYDRAULIC COMPONENTS IN A
MULTIBODY FRAMEWORK FOR ROTORCRAFT ANALYSIS
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and Paolo Mantegazza,
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Abstract

A framework for the integrated analysis of ro-
torcraft aeroservoelastic models, which considers
the coupling of the rotorcraft aeroelasticity to
the dynamics of hydraulic components related
to rotorcraft controls, is presented. The hy-
draulic components are modeled in form of mixed
lumped/distributed elements in a finite element
way, which is integrated in a multibody framework
for the modeling of the dynamics and of the aeroe-
lasticity of rotorcrafts. An extensive validation of
the formulation is presented; applications to realis-
tic rotorcraft dynamics problems are outlined, in-
cluding the active control of a tiltrotor wind-tunnel
model based on the actuation of a conventional
swashplate.

1 Introduction

The aerospace industry is moving towards the in-
tegrated analysis of multidisciplinary systems at
every stage of the design and manufacturing pro-
cess. The availability of commercial multibody
analysis packages is pushing this approach; codes
such as MDI’s ADAMS, LMS’ DADS, SAMCEF’s
MECANO and others offer the possibility of dealing
with mechanical systems, and some of them pro-
vide some level of integration with hydraulic sys-
tems and with multidisciplinary systems in general.
Most of them are oriented towards modeling the
global behavior of those components, while some
specialized hydraulics analysis codes can loosely in-
teract with multibody codes. An example is Imag-
ines, which provides some level of integration with
ADAMS for the code AMESim in terms of user-
defined linkable hydraulic component libraries.

In order to achieve the capability of investigat-
ing peculiar aspects of the dynamics of aerospace
systems, a multibody analysis formulation and a
multibody analysis code called MBDyn have been
developed at the Department of Aerospace Engi-
neering of the Politecnico di Milano. They have
both been designed to be easily extended to the

integrated analysis of multidisciplinary systems.
The multibody formulation is based on the direct
writing of the equilibrium equations of a set of dis-
crete bodies, connected by algebraic constraints, in
a Lagrangian multipliers approach, that leads to a
system of Algebraic Differential Equations (DAE)
of index 3. The multibody modeling technique al-
lows an unparalleled freedom in assembling rather
sophisticated mechanisms without any undue ap-
proximation in the kinematics of the constraints.
A finite displacement and rotation, kinematically
exact beam formulation, based on a finite volume
model, allows to write the dynamics of the rotating
blade in a straightforward manner.

This paper is focused on the integration of the com-
ponents required to model hydraulic systems into
the multibody analysis framework. The equations
and the unknowns that model the hydraulic sys-
tem are treated in analogy with the corresponding
mechanical items. The time step integration is per-
formed by an original implicit scheme based on a
multistep formulation that allows unconditionally
A/L-stable, second-order accurate integration, so
the stiffness of the coupled system does not require
any special care.

The main application is represented by the analy-
sis of rotorcrafts. The control of the blade pitch is
performed by modeling the kinematics of the com-
plete control system, including the swashplate and
the control links. The swashplate is actuated by
means of a set of hydraulic actuators, whose dy-
namics is considered both from the mechanical and
the hydraulic standpoint. The actuators are fed
by means of a detailed hydraulic circuit, including
servovalves, pipelines, accumulators, pressure and
flow generators. The dynamics of the hydraulic
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components is accounted for, including the effects
of fluid compressibility and of Reynolds number in
the computation of the viscous losses inside the cir-
cuit. Both the tranfer function approach and the
detailed, nonlinear modeling of the physics of the
servovalves have been exploited. While the two ap-
proaches may only slightly differ when the system
dynamics are addressed, the latter allows a better
insight into the hydraulic system when its design
is specifically addressed. Moreover, the thorough
modeling of the physical components allows the de-
signer to assess the performances and the limita-
tions of the system in a wide range of operating
conditions outside the design point.

2 Multibody Formulation

A multibody system, in a conventional sense, is
intended as a collection of bodies that hold the
degrees of freedom of the system. They can
be connected by means of kinematic or flexible
constraints. Because the bodies in principle are
considered independent, they are allowed to un-
dergo large, finite absolute displacements and rota-
tions, the latter requiring accurate description ow-
ing to the intrinsical nonlinearity of finite rotation
parametrizations. Moreover, the configuration his-
tory of the system may also result in large relative
displacements and rotations, which means large, fi-
nite strains in flexible structural components.

In a broader sense, a multibody system may be
viewed as a global modeling system, which con-
sists in modeling an integrated (aero)-(thermo)-
servoelastic nonlinear system without any undue
approximation in the description of its kinemat-
ics. In this sense, the multibody approach may be
intended as nonlinear Finite Elements applied to
servomechanical problems, where the description of
the exact kinematics is emphasized.

A multistep, implicit second-order accurate integra-
tion scheme has been used to integrate the initial
value DAE system that results from the multibody
modeling of the problem. It allows to control the
amount of algorithmic dissipation introduced into
the computation. The formula is

. 12 - :
Yn = —75Yn-1+ 5Yn—2 + 8Yn—1+ SYn—2,
h h
h .
Yn = (1—@)yn—1+ayn—2+ 3 (1+20)gn
h . h ;

where h is the time step. The derivative of the
state is predicted with a cubic extrapolation, while

the state itself is predicted by a second-order accu-
rate formula, whose coefficients can be expressed as
functions of the desired asymptotic spectral radius
for the numerical solution:

4pgo — (1 — poo)2

4-(1 _pOO)2 ’
24-(1 _pOO)2

The formula has been derived from a broader
class of multistep numerical integration schemes;
it represents a good compromise between accuracy
and implementability in a general multidisciplinary
multibody formulation [1].

2.1 Rigid Body Dynamics

The equilibrium equations are directly used to de-
scribe the dynamics of a rigid body. Consider a
body of mass m, with first- and second-order iner-
tia moments S and J, whose configuration is de-
scribed by the position x and the orientation R,
and whose angular velocity is w x = RRT; the mo-
mentum and the momenta moment, with respect
to the body reference point, are:

/8 =
’y =

mx—S X w,
S x4+ Jw.

Their time derivative yields the inertia force and
couple contribution to the equilibrium equations of
the body:

B = F,
y+ixB = M.

A detailed description of the formulation can be
found in [2, 3, 4].

2.2 Kinematic Constraints

The kinematic constraints are introduced by means
of algebraic equations in a Lagrangian Multipliers
way, depending on the kinematics of the bodies.
The multipliers represent the reacting forces, which
directly contribute to the equilibrium of the con-
strained bodies. Consider for instance a spheri-
cal hinge joint, which basically forces two nodes to
share a point. To make the joint general, consider
a pair of constraint points, z.;, .2, that are off-
set from the body reference points: z.; = z; + f;,
where f; is an offset vector that for simplicity is as-
sumed to be constant, i.e. rigid and independent of
time, in the body reference frame. The constraint
equation is

Lo+ fo—x1—f1r = 0.
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It implies the existence of three reaction unknowns,
the reaction forces F', that are applied to the bod-
ies at the constraint points; as a consequence, the
resulting forces and couples on the bodies are:

F, = F,

F, = -F,

M, = fixF,
My, = —fyxF.

A complementary constraint is the one that en-

forces the orthogonality of two arbitrary unit vec-

tors, ey, es, that are fixed in the reference frames

of two bodies. The (scalar) constraint equation is
efez =0

It results in a scalar couple, ¢, that acts in the di-

rection normal to the plane generated by the two
orthogonal vectors, namely

M,
My =

(e1 X ea) ¢,
—M;.

2.3 Flexible Constraints

Under the definition of flexible constraints both
lumped elastic and viscoelastic elements and Fi-
nite Element-like discrete deformable elements are
collected. The present formulation entails a finite
volume beam model and a general flexible body
based on the superimposition of a rigid body mo-
tion and of a linear combination of flexible modes,
computed by means of a linear finite element modal
analysis, and possibly of static shapes. The flexi-
bility is handled in terms of “flexible constraints”,
since the multibody philosopy interprets flexibility
as a source of internal forces that tie otherwise in-
dependent bodies together. From an operational
standpoint, however, the trends of flexibility im-
plementation in multibody analysis move towards
true nonlinear finite elements; the same approach
has been followed in this work. A detailed descrip-
tion of the finite volume beam formulation, which
is key to the capabilities of the multibody analysis
presented in this work, can be found in [3].

3 Hydraulic Formulation

The hydraulic system is modeled in form of a hy-
draulic network, which is discretized in a finite ele-
ment manner. The nodal pressures are considered
as primary algebraic unknowns, and the conjugated
equations involve the nodal flux balance. Wherever
the time derivative of the pressure is required to

describe the dynamics of a component, it is consid-
ered as an internal differential state p; of the related
element, and an algebraic equation is written to re-
late it to the pressures p, at the boundaries of the
element, namely

J (pn) -

Most of the hydraulic components have been mod-
eled as lumped elements: the minor losses, the ori-
fice, the accumulator, the reservoir, and the valves.
Particular care has been taken in modeling the
pipelines; a dedicated finite volume implementation
is here presented for the characterization of a pipe
that accounts for compressibility as well as viscos-
ity. Thanks to the particular nature of the multi-
body framework the hydraulic system has been im-
plemented in, advantage has been taken of the Ob-
ject Oriented pre-existing environment by resorting
to a layered scheme. Utility objects that imple-
ment many simple elements (linear losses, pressure
and flux generators) were inherited from an existing
multi-purpose element library.

pi =

3.1

The hydraulic fluid properties object is shared by
all the hydraulic elements, and allows the user to
introduce customized fluid constitutive laws and
properties without interfering with the implementa-
tion of the elements. The most general constitutive
law is implemented in principle, because only its
local linearization is required during the solution:

op _ 9p(p,.-.)
Op Op

Generic Hydraulic Fluid

p=rp®--),

The linearized compressible fluid, which is charac-
terized by the widely used linear approximation of
the relationship between the fluid density, p, and
the local pressure p, is a typical example:

_ 9p
p = P0+8—p(P—Po)a (1)

where the bulk modulus 3 is used in

9 _ ro

op B
Each element uses a general Application Program-
ming Interface (API) to ask the Fluid Object for
the value of the density and for its pressure rate as
functions of the local pressure; in C++ notation, a
pure virtual base class for a pressure dependent hy-
draulic fluid is shown in Figure 1. The methods that
do not require the pressure in input simply yield
the reference values of density and density rate;
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class HydraulicFluid {
/] ...
public:

virtual Real GetDensity(void) const =
virtual Real GetDensity(const Real & Pressure) const =
virtual Real GetDensityDPressure(void) const =
virtual Real GetDensityDPressure(const Real & Pressure) const =

/] ...

0;

0;

0;

0;

Figure 1: Hydraulic Fluid Pure Virtual Class Declaration

they are used by those elements that do not handle
the compressibility. Those in turn that require the
pressure do yield the actual density and density rate
regardless of the underlying fluid model. The effec-
tiveness of this approach has been highlighted by
the recent addition of a simplified cavitation model
to the standard linear fluid, which required no mod-
ification of the hydraulic element library at all:

p = % (1 + tanh (a (p — po)))

+ %Oramp (p— Do) -

The use of such a simplified constitutive law does
not prevent the solution from encountering negative
pressures in critical cases, but it partially cures the
problem, and in general it may warn the user of a
possible misuse of the analysis scheme.

3.2 Boundary Conditions

Typical hydraulic network boundary conditions in-
volve 1) the enforcement of the pressure at some
nodes, and 2) the imposition of the inflow at other
nodes.

Since the nodal pressures are the main hydraulic
unknowns, the pressure at a node can be enforced
by using an algebraic constraint in the form:

Pn = Do,

where the nodal pressure p,, is required to match
the desired value pp (which may depend on time or
on other states), in analogy with the enforcement of
a displacement in a structural model. At the same
time, an unknown reaction flux qq, originating from
the ideal “pressure generator”, must be added to
the node balance equation.

The input of an exogenous flux ¢¢ at a node is im-
posed by simply adding it to the node balance equa-
tion, in analogy with the imposition of an external
force in a displacement-based structural model.

3.3 General Lumped Elements

Concentrated losses, orifices, the accumulator and
the reservoir have been modeled as lumped ele-
ments. Their implementation is relatively straight-
forward, so it has not been reported here for sim-
plicity. Interested readers may refer to any basic
text on hydraulic systems [5].

3.4 Pipelines

Consider the mass conservation and the momentum
balance equations for a one-dimensional flow:

D
D_t(dm) = 0, (2)
D
5: Q) = df. (3)

When a rigid pipe is considered, the total derivative
D/ Dt of the test mass dm = pAdz of Equation (2)
yields

D amy = 2

which results in

0
5 (dm) + v% (dm),
q/x +Ap/t = 0,

where ¢ = pAv is the mass flux. Consider now the
momentum equation (3); the total derivative of the
momentum d() = vdm yields

D@Q) = (g + (av),,) do,

while the pressure gradient and the viscous con-
tributions can be isolated from the force per unit
length on the right hand side:

df = —Adp+ fudx +df*,

so, by neglecting the deformability of the pipe and
the extra forces df* acting on the fluid, the momen-
tum balance equation yields

4+ (qv+Ap),, = fo,
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which can be reduced to the pressure and flux un-
knowns simply by recalling the definition of the
flux:

e
q¢ + (p—A +Ap) = fo

A flexible pipe has been considered as well; the
formulation is not reported for simplicity, because
such a level of detail is required only for very spe-
cialized problems, and a first approximation can be
obtained by altering the bulk modulus of the fluid.
The pipe is discretized by considering a finite vol-
ume approach, based on the use of constant step-
wise (Heavyside) test functions with arbitrary trial
functions. In the present case, linear trial functions
have been considered both for the flux and for the

/x

pressure:
C1-¢ 1+¢lf @

@ = {T T]{q}
1-¢ 1+¢ j21

ple) = {T ?]{p}

with £ = £(z) € [-1,1] and d§/dx = 2/ (b—a).
The discrete form of the pipe equations results in

q(b)—q(a) = -

2 (1) + (L2000

- Q(G)z + Ap(a) _ /bf dz:

p(a) A o
by dividing the pipe in two portions, and by con-
sidering the domains [—1,0] and [0, 1] for £ in each

portion, the discrete equations of the finite volume
pipe become

b
op
. a_pp/t dz,
2

_%(q1+q2)_%pl/2)§(3ﬁl +p2) = 41,
%(qﬁqz)_%;/”g(pﬁsm) = &,
S
+§(P2—P1) = §/_01fv d,
oo i - e
+§(pz—p1) = g/olfv d,

where ¢ and ¢, are the contributions of the two
portions of pipe to the respective nodal flux balance
equations. The integral of the time derivative of the

density is numerically computed, although, when
the usual linearized form of Equation 1 is consid-
ered, a closed form solution may be easily obtained.
The integral of the viscous forces per unit length is
numerically performed as well, accounting for the
flow regime in the pipe as function of the Reynolds
number. In fact, for the forces per unit length,
the dependency on the flux is considered linear for
0 < Re < 2000, and quadratic for Re > 4000, while
a polynomial fitting of the transition behavior, ac-
counting also for the rate of the Reynolds number,
is modeled for 2000 < Re < 4000.

3.5 Actuators

The actuator has been modeled in the spirit of the
multibody approach by combining a set of elemen-
tary parts. The mechanical part of the device is ob-
tained by assembling conventional structural parts,
namely two rigid bodies connected by a joint that
allows relative sliding and axial rotation. Mechan-
ical friction between the parts, even dependent on
the reaction forces, can be easily added, although
at present none has been considered.

The relative kinematics, namely the elongation and
its time rate, are used to compute the volume of the
chambers and the volumetric flux. The two bodies
share an axis as a consequence of the application
of the slide constraint; the distance between the
bodies is thus

d = 61T(372+f2—371—f1),

where e; is the unit vector oriented as the axis of
the actuator; it is arbitrarily related to the first
body, with no loss in generality, owing to the slid-
ing constraint. A general configuration, with the
actuator axis offset from the nodes by the relative
positions f; and fs is considered to allow as much
freedom as possible in modeling the system. The
time derivative of the distance yields the relative
velocity:

d = el(gra+wrxfo

— &1 —wy X (T2 + f2 — 71)) -
As a result, the volumes in the two chambers are

i = A(Ii+4d),
Vo = Ay(Ly—d),

and the fluxes are

q = P1A1d+V18—pp1,
D
@ = —pzAzd-l-Véa—ppz-
D
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No built-in leakage between the two chambers has
been modeled; in fact, a leakage can easily be added
by connecting the two pressure nodes that describe
the lumped chambers with a general purpose minor
loss element.

The pressures in the chambers are used to compute
the forces and the couples that the actuator applies
to the two related bodies. They result in:

P = e (Aipr — Aspa),
E = -I,

M, = fi1xF,

My = foxF

Extra structural forces, such as inertia and friction,
can be separately added by combining appropriate
structural elements.

3.6 Control Valves

The actuator can be connected to a hydraulic net-
work at the pressure nodes related to the two cham-
bers. A significant case is that of a network com-
posed of an actuator connected to a servovalve by
means of pipelines. A servovalve consists in a set
of equations that distribute the input and output
flows to a subcircuit based on the value of a pa-
rameter related to the position of the mobile part
of the valve. Its dynamics can be modeled as well,
leading to a dynamic valve model. In usual imple-
mentations the dynamics of the valve is accounted
for by means of transfer functions, which imply a
linearized model; this is very useful when the initial
design of the hydraulic system is considered, but it
may represent an oversimplifying assumption at a
more advanced design stage. In the present case,
the dynamics of the valve is directly written, ac-
counting for all the nonlinear terms related to the
dynamics of the fluid.

The valve uses four pressure nodes, that can be
arbitrarily connected, depending on the value of its
state. The subscripts refer to the symbols used in
Figure 2. The cross-sections of the orifices are

2 3

Figure 2: Control Valve

Ay Atm + w ramp (z)
Ay = Aoy +wramp (—zx)
A3 = Aszp + wramp ()
Ay = Ayp + wramp(—2x)

where A;,, indicates a residual section that ac-
counts for leakages, z is the position of the mobile
part of the valve and w is the transverse dimension
of the orifices. By assuming a turbulent flow across
the orifices of the valve, the fluxes at the four nodes
are defined as

—C4A2+/2p|p1 — ps|sign (p1 — p3)

qgq =

— CaA1v/2p|p1 — palsign (p1 — p2),
a2 = CyA1v2p|p1 — palsign (p1 — p2)

— CaAs/2p |p2 — palsign (p2 — pa),
g3 = C4As+\/2p|p1 — ps3lsign (p1 — p3)

— CaA3z+\/2p|p3 — palsign (p3 — pa),
@ = —CaA3\/2p|p3 — palsign (ps — pa)

— CaAs\/2p|p2 — palsign (p2 — p4) .

The dynamics of the valve is described [5] by

mi + (0-4Dde \/m) &

+ (0.43wAp+k)z = F; (4)
it accounts for the suction effect at the openings in
the chambers as well as for the viscosity due to the
motion of the valve body. A structural spring k has
been added for completeness.

4 Results

4.1 Validation of the Formulation

The hydraulic components have been indepen-
dently validated by performing thorough unit tests;
only the case of the pipe that accounts for fluid
compressibility and viscosity is presented for sim-
plicity. Consider a pipe of length [ = 19.74 m,
diameter d = 12.32e-3 m, filled with a fluid of den-
sity p = 870 kg/m?, bulk modulus 8 = 1705 MPa
and viscosity g = 0.0696 kg-s/m, which is loaded
by a stepwise flux ¢ = 1.e-3 for 1.e-4 seconds at one
end. The pressure at the other end is free, which
means that the pipe is perfectly sealed. The prob-
lem has been discussed in the literature; a solution
based on a spectral formulation of the problem has
been proposed in [6], compared to other integration
methods. The solution is represented by a train of
waves that travel back and forth from the loaded
end, as clearly shown in Figure 3, where the pres-
sure as function of time and position is depicted
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Table 1: Hydraulic Circuit Properties

Kinematic Viscosity 80 pm?/s
Density 870 kg/m?3
Sound Speed 1400 m/s
Pipe Radius 0.006 m
Orifice Diameter 0.006 m
Orifice Coefficient 0.6
Actuator Area 0.01 m
Actuator Volume 0.001 m?

for the first 0.2 s of simulation. The present solu-
tion showed to be slightly dependent on the spa-
tial resolution (in this case 20 pipe elements have
been used, but the 10 element solution does not
appreciably differ), while a higher dependence on
the time step and on the algorithmic dissipation of
the integration scheme has been noticed. The use
of an implicit integration scheme with algorithmic
dissipation allows to damp the oscillatory response
known as Gibbs phenomenon, that is related to the
high stiffness of the discretized problem.

4.2 Integrated Analysis

A simple servomechanical system, which has been
presented in [7], is considered first. It is composed
of a straight, uniform beam, pinned at one end and
actuated by a hydraulic actuator attached to a sim-
ple hydraulic circuit; a sketch is shown in Figure 4.
The beam is 2 m long, with linear density and in-
ertia moments m = 13 kg/m and pIy = 1.7e-3
kg-m. An axial stiffness EA = 3.36e8 N has been
considered, together with shear and bending stiff-
nesses GA = 1.47e8 N and EJ = 8.96e3 N-m?. The
circuit is represented by a 20 m long pipeline that
brings the hydraulic fluid to one chamber of the ac-
tuator; an orifice is placed just before the actuator.
The properties of the circuit are reported in Ta-
ble 1. No external forces are considered; the system
is loaded by assigning the flow at the beginning of

Pressure, MPa

1,

Figure 3: Pressure Waves in a Pipe

L/4

Po o o

D|C
O
S

Figure 4: Integrated Analysis: Model

the pipeline, which is linearly increased from zero to
2.e-3 m? /s in one second, and then goes back to zero
in the following second. As a result, the tip of the
beam is raised. All the hydraulic components ac-
count for fluid compressibility and for the Reynolds
number in computing the viscous losses, and the
transition from laminar to turbulent flow is con-
sidered as well, as opposed to Reference [7] where
the fluid was supposed to assume laminar and tur-
bulent behavior in the pipeline and in the orifice,
respectively. The beam has been modeled with fi-
nite volume beam elements; the resulting bending
moment at midspan is reported in Figure 5, while
Figure 6 presents the movement of the beam with
a 0.2 s sampling rate. Figure 7 shows the pressure

150

100

Bending Moment, Nm
o

Time, s
Figure 5: Integrated Analysis: Midspan Bending

distribution in the pipe. Some differences in the dy-
namics of the system with the results reported in
[7] can be appreciated, but the overall agreement is
fairly good. The solution is nearly insensitive to the
time step and to the algorithmic dissipation level;
a spectral radius of p = 0.6, which proved to be a
good compromise between stability and accuracy of
the computation, has been used. The analysis has
been performed with a 5.e-3 s time step, which is
slightly longer than the average (supposedly vari-
able) one used in [7].

4.3 Tiltrotor Control

A multibody model of the WRATS tiltrotor wind-
tunnel model is considered next [2, 8]. It is cur-
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Time, s 4 0

Figure 7: Integrated Analysis: Pressure Distribu-
tion in the Pipe

rently used al the NASA Langley Research Center
to investigate the tiltrotor technology after serving
in the past for the development of the V-22 Osprey
[9]. The analytical model uses beam elements to
model both the flexible wing and the rotor blades.
The conversion mechanism, the hub with the gim-
bal joint, the swashplate mechanism and the kine-
matics of the blade pitch are modelled by means of
algebraic constraints. The strip theory is consid-
ered for the aerodynamics of the wing and of the
blades, with a dynamic inflow model. The swash-
plate is actuated by means of three high-frequency
hydraulic actuators, whose behavior has been pre-
viously simulated by variable length joints; the de-
sired lengths were filtered by means of a transfer
function [8]. The numerical model has been up-
graded by adding hydraulic actuators controlled by
servovalves; thanks to the integrated modeling of
the hydraulics, more realistic dynamics of the ac-
tuators have been achieved. A multilayered control
scheme has been implemented. The hydraulic com-
ponents of the flight control system, namely the
actuators, the control valves and the pipelines, are
separately modeled. A set of PID controllers takes
care of enforcing the desired position of the actua-

tors, based on the errors between their desired and
measured elongations. A picture of the model, elab-
orated with ADAMS/View, is shown in Figure 8,
while Figure 9 contains a detail of the controls.

Figure 8: Tiltrotor Model

Some maneuver simulations have been performed,

Figure 9: Tiltrotor Controls Detail

to exemplify the flexibility and the completeness
of the analyses that can be performed. It is worth
stressing that, due to the sophistication of the mod-
elling, the direct computation of a trimmed flight
condition is hardly achievable. As a result, steady
state conditions are reached by simulating a com-
plete test session, consisting in the wind-up of the
rotor, during which both the collective controls, and
the tunnel airspeed in case of forward flight analy-
ses, are raised to their nominal value. The actual
simulation follows, during which controls or exter-
nal excitations are applied, and the response of the
system is evaluated. A collective sweep, and a cyclic
fore/aft pitch control are applied to the model in
hover flight conditions. The results in terms of ro-
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tor thrust and of wing internal couples are reported
in Figures 10 and 11. Figure 12 shows the pres-

S

S " Thrust

f» 200 + Roll Moment -

& Pitch Moment -~

£

=
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Figure 10: Thrust and Aerodynamic Moments
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Figure 11: Wing Root Internal Couples

system. Such limit speed has been substantially
confirmed when the hydraulics are modelled.

The stability augmentation system is based on the
measure of the strains at the root of the wing that
correspond to in- and out-of-plane bending and tor-
sion, plus the fore/aft, normal and twist accelera-
tions at the pylon. The controls are directly added
to the desired elongations of the three swashplate
actuators, which are fed to the valve controllers.
The model has been trimmed in forward flight to
a speed of 172 Kts with 52 deg of collective pitch;
the system has been identified for a total time of
10 s, and during the last 5 s the controller has been
activated. Then the tunnel speed has been raised
at a 1 Kts/s ratio up to 212 Kts (123% of the flut-
ter speed), together with the baseline collective to
maintain about zero thrust, without any loss of sta-
bility of the system. Figure 13 shows the resulting
wing out-of-plane bending, while Figure 14 contains
the desired and measured elongations of one actua-
tor during the simulation. Notice that the actuator

100
sure in the two chambers of an actuator during the 0 -t
maneuvers. The oscillations during the transients
are related to the dynamics of the control of the £ 100
valves, which are required to supply very small dis- 2 200 |
placements and thus are working in a range of high g
nonlinearity, as can be noticed from Equation 4. 5 80
2 a0 Wit
. TS T o . — — [
s 56 Lower Chamber ——— 1 -500 f
g 55 Upper Chamber -
g -600
g 54 5 10 15 20 25 30 35 40 45 50
53 e Time, s
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Figure 12: Pressure in an Actuator

A high-level Generalized Predictive Control scheme
[10] accounts for superimposing a control signal on
the open-loop controls set by the pilot, to alter the
flight performances of the system. The GPC con-
troller has been implemented in an adaptive scheme
that aims at stabilizing the system with respect to
the rotor-pylon flutter mode. Both gust load reduc-
tion and system stabilization have been addressed,
and interesting results have been recently achieved
with the transfer function models [8]; they are sub-
stantially confirmed by the present work in case of
detailed modelling of the hydraulics. The stability
augmentation of the system in forward flight has
been addressed in the subsequent set of analyses.
A flutter speed of 173 Kts with 52.5 deg collective
has been found for the model without the hydraulic

Out-of-Plane Bending
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Figure 14: Tiltrotor Flutter Suppression, Actuator
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is shortening to yield a higher collective because
the pitch horn has been placed behind the blade,
in order to obtain a negative pitch-flap coupling
(63 = —15 deg). The comparatively high noise
level is related to the persistent excitation that the
adaptive controller requires to identify the system
while the airspeed and the baseline collective pitch
change. The effort required to stabilize the system
is thus of the same order of magnitude of the dis-
turbance that the controller introduces to be able
to identify the system.

5 Concluding Remarks

The modeling of hydraulic components, and the ca-
pability to model the detailed dynamics of the hy-
draulic controls of a rotorcraft have been added to a
multibody, multidisciplinary code developed at the
Department of Aerospace Engineering of the Po-
litecnico di Milano. The formulation has been pre-
sented with details of the modelling of the pipelines
by a finite volume approach. A complete set of
hydraulic components has been discussed, and de-
tailed where required, to illustrate the capabilities
of the proposed formulation. Significant examples
from the literature have been discussed, and some
analyses performed on a model of the WRATS
tiltrotor test stand have been presented, illustrating
how the hydraulic formulation fits in the multibody
analysis of complex, multidisciplinary problems in-
volving the control of rotorcrafts in critical con-
ditions. Future developments will involve the use
of the proposed modeling to determine the system
properties in terms of transfer functions to be used
in the preliminary design of the control system, and
the introduction of more sophisticated constitutive
laws to allow the detailed analysis of transient phe-
nomena, including the deformability of the pipes.
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