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Abstract

This effort describes an innovative framework to couple and trim Computational Fluid Dynamics (CFD) and Computational
Structural Dynamics (CSD) solvers. A kriging-based controller has been developed to create a computational simulator that
more accurately approximates true flight and trims concurrently with CFD/CSD simulations. Acceptable training points for
the controller can be obtained from either initial CFD/CSD coupling (open loop) or from a trimmed CSD solution alone. An
optimization of the tight coupling approach shows that initialization of the tight coupling for a fraction of a revolution, followed
by another short period before the controller updates the solution, provides an efficient implementation. Results for two level flight
rotor cases indicate that this tight coupling approach is computationally comparable to a loose coupling approach. In the case of
simulations that include dynamic stall, some variations were observed between the two approaches, but further investigation of
the numerical options needs to be completed before any conclusions may be drawn.

NOMENCLATURE

rotor blade chord length, ft
covariance vector
covariance matrix

pitching moment coefficient
normal force coefficient
chord force coefficient
gain matrix

indices

Jacobian matrix

Mach number

integer

number of rotor blades in a rotor
rotor radial location, ft
vector of free parameters
rotor tip radius, ft

vector of trim targets

test point

response at the test point
dimensionless wall spacing
dirac function

control angle, deg
covariance function
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INTRODUCTION

As early as the 1980s, engineers have sought to capture the
effect of rotor aeroelasticity by coupling computational fluid
dynamic (CFD) and computational structural dynamic (CSD)
methods. Initially, full-potential aerodynamic methods were
coupled with comprehensive codes (see for example, Ref.
[1]), however poor moment correlations limited the useful-
ness of these coupled methods. Smith [2], as well as Bauchau

and Ahmad [3], explored the first aeroelastic simulations with
Reynolds-averaged Navier-Stokes (RANS) CFD solvers and
nonlinear CSD methods in the 1990s. During the first decade
of the new millenium, intense interest in CFD/CSD coupling
revived with the development of a loose coupling approach to
CFD/CSD by Potsdam et al. [4]. Reviews of some of these
methods can be found in Strawn et al. [5] and Datta et al. [6],
along with more recent developments including unstructured
meshes, for example Refs. [7, 8].

The de facto standard for coupling in the aforementioned in-
stances has to date focused what is known as loose coupling.
In loose coupling, data for an entire rotor revolution is ex-
changed between the CFD and CSD codes at some n/N frac-
tion of a revolution, where N are the number of rotor blades,
and n is an integer typically between 1 - N. This data exchange
is termed a coupling iteration. Blade loads and moments are
provided to the comprehensive code along a predetermined ra-
dial reference line (such as the quarter-chord) to compute the
spanwise blade deflections and any control changes needed
to meet user preset trim convergence criteria (e.g., thrust and
hub moments). The chord of the rotor blade is assumed to
be rigid at each data station. These deflections and control
changes are provided back to the CFD code to compute a new
set of periodic blade loads. These coupling iterations con-
tinue until a converged (trimmed) solution has been obtained.
Trimming is achieved via the control algorithm resident within
the comprehensive code, using what has become known as the
delta airloads approach [4]. This approach determines the dif-
ference between the CFD-computed and CSD-computed air-
loads. CSD methods run singly (without CFD coupling) typ-
ically use finite-state or another aerodynamic methodology of
similar fidelity. This delta is frozen and added to the changing
airloads of the comprehensive code as part of the trim pro-
cess until the trim variables are within a prescribed tolerance



of the target trim. Most of the published correlation analyses,
including the UH-60A flight [9-11] and HART wind tunnel
test [12, 13] data, include a priori known estimates of the con-
trols needed to achieve level flight. If the initial deflections
computed by the lower-fidelity aerodynamics within the com-
prehensive code are not close to the final trim controls, then
convergence problems may also be encountered.

CFD/CSD tight coupling is defined when data between the
CFD and CSD codes are exchanged at each CFD time step.
Trim is an integral part of even level flight rotor simulations
to achieve the correct thrust while zeroing the hub moments.
Using the loose coupling process, obtaining trim at each cou-
pling iteration is straightforward as the CSD method is run
(and trimmed) independently from the CFD solver. However,
achieving trim within tightly-coupled analyses is much more
problematic. Nygaard et al. [14] first demonstrated CFD/CSD
tight coupling. They applied CFD/CSD loose coupling to
reach a trimmed state before the maneuver, applied tight cou-
pling for 1/N (1/4) revolution without changing the estimated
controls, and then ran the simulation using a priori defined
control changes without feedback to the controller during the
maneuver. Other applications [15] of this tight coupling ap-
proach simply update the trim after each revolution once pe-
riodicity is obtained (or some n/N revolution for a N-bladed
rotor), resulting in the requirement that the rotor be run for 15-
20 revolutions or more to obtain a steady, level flight conver-
gence. Using these paradigms, tight coupling is not practical
for engineering analysis due to its high cost.

A typical rotor trim procedure is formulated to determine the
collective and cyclic inputs to the rotor that will generate a
given thrust and moments on the system. Peters and Barwey
[16] have discussed a general theory of rotorcraft trim and re-
viewed the many algorithms that have been used for this pur-
pose. However, when using very complex models such as
finite-element-based multi-body dynamics in CFD/CSD ap-
plications, far fewer approaches to trim are practical, and the
recommended approach [16] is the autopilot procedure, which
is a very simple control algorithm. The first step of the pro-
cedure is to identify the trim matrix, a linearized relationship
between the inputs (collective and cyclic controls) and outputs
(rotor thrust and moments) of the system. In the second step,
this trim matrix is used as a simplified feedback model to drive
the actual rotor thrust and moments to their target values. This
approach has many advantages as it requires no other knowl-
edge other than the input values to achieve the outputs. How-
ever, it can be expensive to identify the trim matrix, especially
if the gain matrix, which drives convergence is not optimized.

This current effort addresses the development of a new control
algorithm for use with loose and tight CFD/CSD coupling, as
well as an initial assessment of tight coupling for simulation
of level flight conditions. A new kriging-based controller has
been developed and optimization of the use of this algorithm
is examined.

COMPUTATIONAL METHODOLOGY

The CFD structured overset solver, OVERFLOW, has been
coupled with the multibody dynamics solver, DYMORE, to

provide a database for correlation of this effort. The OVER-
FLOW/DYMORE loose coupling has been shown to be suc-
cessful and comparable to other coupled CFD/CSD methods
for the test cases examined in this effort. As OVERFLOW
and DYMORE are well documented, the discussion will fo-
cus on the new trim controller and only descriptions related to
the cases examined in this effort are included.

Steady-State Trim Algorithm

The classical autopilot control law constructs a map relating
the inputs and outputs of the system, based on a static approx-
imation to its behavior. It is then easy to compute suitable
filter time constants and control gains such that a closed loop
controller will steer the system to its trimmed configuration
with some desired performance. However, when this control
law is used to steer complex rotorcraft models, such as those
used in comprehensive analysis codes, stable behavior is only
observed for judiciously chosen values of the controller pa-
rameters. Three major sources of error are responsible for the
observed discrepancy, as identified by Peters et al. [16] in
the design of the controller: 1) the dynamic characteristics of
the plant are ignored, 2) the non-linear behavior of the plant
is not taken into account, and 3) the Jacobian of the system
is assumed to be known exactly. The first part of this effort
has focused on the implications of these three assumptions on
the behavior of the classical autopilot, by studying their effect
through both numerical closed-loop experiments on a realistic
UH-60A multi-body rotor model (the plant), and eigenvalue
analysis of the closed-loop characteristics of different reduced
order models of the full plant.

The trim process has two phases, identified as the reference
and adjustment phases. The trim module first computes the
adjustment to the control settings at the beginning of the ad-
justment phase using the expression A8 = J7'G(T — Tiarget)
where J is the Jacobian matrix, J = %, as described above.
The behavior and convergence characteristics of the trim algo-
rithm are strongly affected by the diagonal gain matrix, G, and
the individual gains should be adjusted to obtain the best con-
vergence characteristics. It was observed that high gain values
may render the closed-loop system unstable. In addition, even
moderate gain values can lead to instabilities because the trim
controller does not account for system dynamics. To over-
come this problem, an adaptive gain selection strategy was
introduced such that when the difference between the input
and its target value becomes small, the gain is gradually de-
creased to zero using a hyperbolic tangent function. Results
have been obtained that imply that the inaccurate determina-
tion of the Jacobian matrix is responsible for the observed lack
of stability of the autopilot algorithm at high gains. This work
has been summarized by Riviello et al. [17].

The analysis of the classic autopilot algorithm underlined the
fact that the dynamics of the system are largely ignored in that
approach. This observation led to the elaboration of a new
strategy for trimming, called the quasi-steady trim algorithm.
The procedure for the proposed trim strategy is as follows:

1. Identify the Jacobian, J, and its inverse J -1

2. Obtain the initial guess for the control settings as yg =



J Ty, where Ty is the vector of target trim values
3. Run a static analysis with y, as control settings

4. Run a dynamic analysis with y, as control settings and
the configuration from the static analysis of step 3 as
initial conditions; the converged trim variables are ob-
tained as T

5. If||Ty —Tol| (k = 1,2,...) is less than the expected error
criteria, stop; otherwise, update the control settings :

@ yi =J7'[To - Tel +y;'
(b) Run a static analysis with y, as control settings

(c) Run a dynamic analysis with y; as control set-
tings and the configuration from the static analy-
sis (in step b) as initial conditions; the converged
trim variables are obtained as T

(d) Gotostep5S

Using the above procedure, studies to determine the sensitivity
of the Jacobian were performed with the UH-60A model. As
an example, consider two cases where the rotor speed is 27.02
rad/sec and the trim target thrust value is 17,944 Ib. Figure 1
illustrates the sensitivity of Jacobian quality with convergence
when using this approach for thrust, which is typically the
least sensitive trim parameter. Thus, a more accurate approxi-
mation of the system Jacobian should accelerate the trimming
process.
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= = Trim Target
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Coupling Iteration Number

Figure 1: Illustration of the sensitivity of the trimmer to Jaco-
bian quality using control settings at zero and predetermined
controls.

Kriging Control Algorithm

With an efficient trimmer in place, development focused on
the identification and creation of a neural network approach to
accelerate and enhance the trimming process for quasi-static
(e.g., level flight, steady turns) and dynamic (maneuvers, sta-
bility) simulations. The quasi-steady trimmer can be used to
generate a set of trimmed flight conditions for various advance
ratio and thrusts to construct a parametric study to facilitate
the selection parameters and type of the meta-model for the
system identification process.

A meta-model is an approximation of the input/output (I/O)
function that is implied by the underlying simulation model
that can be either deterministic or random (stochastic). Meta-
models may be used for validation and verification of the sim-
ulation model, sensitivity of the model, and optimization of
the simulated system. A deterministic simulation is a simu-
lation that gives same output for the same input. The linear
regression methods fit the data points to linear or non-linear
curve functions by minimizing the distances between these
sample points and the curve to fit the error.

In the case of the non-linear regression techniques like Artifi-
cial Neural Networks (ANN), the training points are fitted to
a complicated function with no easy way to predetermine the
character of the curve. That is, in the case of ANN, the curve
function is determined implicitly and not as a set of unknown
coefficients as is the case for linear regression techniques. A
Gaussian process (GP) does not require curve fitting; instead
GP uses the information in this data set to create a statisti-
cal prediction or estimate by incorporating Bayesian regres-
sion. Not all the predictions obtained by a Gaussian process
will have same measure of goodness (accuracy); the closer the
point is to one of the training points, the smaller the variance
of the prediction will be, until it reaches zero at a known train-
ing point.

Kriging as a meta-modeling technique is similar to Gaussian
processes in the local component, but does not typically make
use of the Bayesian step in the way that Gaussian processes
do. Kiriging provides a flexible means to construct meta-
models that accurately approximate highly non-linear behav-
ior. Kriging meta-models are typically applied in prediction
processes, sensitivity analysis and optimization. Their be-
havior entirely depends on the covariance function and the
training data. It is a necessary and sufficient condition that
a covariance function of a Gaussian random function be a
positive semi-definite function. For application in this effort,
an isotropic stationary covariance function that has a set of
(n + 2) free parameters, ® = (6}, 63, r), for a function of m in-
put directions and is infinitely differentiable (and thereby very
smooth) has been used. That is,

1 1
(1) C(x;, xj) = e—lexp[—z(xi —x)’r] = 6, 65

for all i, j = (1,2,...) and where n is the number of training
points, 6, controls the overall scale variation of the function,
and 65 controls the scale of the input independent noise. The
vector of free parameters r = (ry,r2,...,In) represents the
measure of length scale of variation in each of the m input
directions. When the Gaussian process meta-model is used
to determine a deterministic computer experiment, there is no
noise in the measurement. These hyper-parameters are de-
termined by maximization of the likelihood of the observed
training data to find the Gaussian random function that best
approximates the training data. Once the meta-model data are
available, the covariance matrix, C, is formed by the evalua-
tion of the covariance function between the n training points.
The covariance vector ¢ is formed by the evaluation of the co-
variance function between the test point x* and the » training



points. The prediction of the response y* at a specified test
point x* is then computed by y* = ¢’ C~'y where y is the
response vector corresponding to the n training input points.
Since the prediction is based on a Gaussian random function,
it is then in a probabilistic form and its estimated value is its
mean value at the test point x*. The kriging method originated
in the field of geostatics and was popularized by G. Math-
eron [18]. Simultaneously, it was also developed in the field
of meteorology under the name optimum interpolation [19].
Additional details of the kriging development can be found in
Zaki [20].

COMPUTATIONAL CASE DESCRIPTIONS

The rotor configuration selected was that of the UH-60A flight
test [9—11] to emulate flight conditions for high speed (C8534)
and high thrust (C9017), as described in Table 2.

CFD Grid and Numerical Options

As the study required a significant number of simulations, a
relatively coarse mesh that has been successfully and exten-
sively utilized in loose coupling development and analysis was
chosen. Each rotor blade has 81 radial stations, which are
clustered at the root and tip with 105 surface nodes in the
chordwise direction at each radial station. Each blade has a
tip and root cap grid at each of the ends, however these grids
were not considered when integrating the forces and moments
due to their small size and effect. The complete overset mesh
contains all four blades and 44 grids for a total of 5.165 mil-
lion points. The spacing normal to the blade surfaces yield a
y* < 1 over the blade. While this is not the optimal grid for
determining in particular the drag of the system, it is sufficient
to demonstrate the ability of the CFD/CSD tight coupling with
the new controller. The simulations were run with 4th-order
spatial accuracy with time steps corresponding to a blade ad-
vancement of 0.05° azimuth. Subiterations to improve the
accuracy at each time step were also performed. Airstations
were located at the midpoint of the radial nodes, as is usual in
a structured grid for conservation [21].

Baseline analyses were performed with the Spalart-Allmaras
one-equation [22] and Menter’s kw-SST two-equation [23]
turbulence models, as well as a hybrid LES method [24].
OVERFLOW has four dissipation schemes, which smooth dif-
ferent variable combinations to achieve numerical dissipation.
During the simulations, it was found that the ARC3D dissipa-
tion scheme converged quickly on the thrust coefficient, but its
prediction of the moment coefficients fluctuated periodically
about the nominal trim values. Although this periodicity in
moments were observed, overall, it appears that the ARC3D
dissipation scheme may be a better option to apply rather than
the original TLNS3D scheme. The normal force and pitching
moment predictions with the TLNS3D scheme missed several
salient features of the simulation at various radial stations in
the fourth quadrant, and typically produced the third quadrant
pitching moment dip with a 40° phase lead over the flight test
data. The ARC3D dissipation scheme on the other hand did
not show as large of a phase lead (0° - 10°), but the magnitudes
of the features remained the same.

Structural Model

The DYMORE multi-body finite element analysis code, de-
veloped at Georgia Tech, provided the structural dynamics
module for this effort. DYMORE can be applied to arbitrary
nonlinear elastic systems, and has been previously utilized us-
ing OVERFLOW for CFD/CSD loose-coupling. DYMORE
includes an extensive library of multi-body components to
model the mechanical components of a rotor system so that
it can be applied to new topological designs with existing li-
brary elements or by the addition of new elements. For model-
ing flexible rotors, DYMORE uses geometrically exact finite
elements based on formulations developed by Simo [25].

The UH-60A rotor is a fully articulated system that exhibits
all possible motions and thus requires that all the hinge mo-
tions be modeled. The articulated motion consists of pitch,
flap, and lead-lag components with higher harmonic content
greater than zero, as well as hinge offsets and shaft tilt. This
effort required a detailed aeroelastic model of the UH-60A ro-
tor system shown in Fig. 2. The structural model includes
four blades connected to the hub through blade root retention
structures and lead-lag dampers. Each blade was discretized
by means of ten cubic finite elements. The root retention, con-
necting the hub to the blade, was separated into three segments
and modeled by one, two and two beam elements, respec-
tively, labeled segment 1, 2, and 3, respectively. Three rev-
olute joints connecting the first two segments of the root re-
tention structures described the flap, lead-lag and pitch hinges
of the blade. Prismatic joints were used to model the lead-lag
dampers, assumed to be dashpots with linear properties. The
complete structural model involved 5,656 states.

Root retention
H;b segment 1

(N Elastomeric bearing

4
5

Root retention
segments 2, 3

Figure 2: Schematic of the UH-60A rotor system.

RESULTS

The tightly-coupled CFD/CSD process was first verified using
the 8534 test case for the UH-60A using OVERFLOW and
DYMORE. This was accomplished by reproducing the last it-
eration of the loosely-coupled simulation. The results were
observed to be identical when the loose-coupling simulation
was truly converged, and in the interest of page limitations are
not shown.

Restarting a tightly coupled solution from a fully-converged
loosely coupled result is not efficient. Therefore, an optimiza-



Table 1: UH-60A Test Cases.

Case Rotor Speed  Density = Temperature Airspeed Pitch Sideslip Thrust Roll Moment Pitch Moment
(RPM) (slug/ft®) F) (ft/s) (deg)  (deg) (Ib) (ft-1b) (ft-1b)

c8534 258.1 0.0020823 71.814 266.5 -4.31 1.27 16602 6042 -4169

c9017 255.8 0.0013242 24.761 170.2 2.85 -1.59 16452 379 -138

tion of the tight coupling CFD/CSD process is provided, fol-
lowed by a few typical results that illustrate the new algorithm
using the optimized initialization.

For the tight coupling process, the CFD and CSD modules are
integrated in time using the same azimuthal increment (0.05°),
and data are transferred between the modules at each time
step. The initial control settings are initialized by a CSD simu-
lation, using a training database with the kriging meta-model.
These are held fixed until tight coupling begins, at which point
the controls are updated to continuously drive the system to a
trimmed state using adjustments from the kriging meta-model
based on the updated CFD loads at some azimuthal increment.

Optimization of the Tight Coupling CFD/CSD Process

The initial CFD simulation, whether or not it includes com-
ponent motion, is characterized by large flow field transients.
The addition of component motion during this transient pe-
riod can compromise the stability of the simulation for some
flight conditions. Therefore, the question arises with regard
to the most efficient method to initialize the tight coupling.
To evaluate this, the C8534 UH-60A flight case was restarted
from various loosely-coupled solutions obtained for various
increments between 0 and 1 revolution. The thrust was used
as the parameter to determine the efficiency and stability dur-
ing the transfer between the loose and tight coupling. Figure
3 illustrates the behavior of the simulation at each of these
initializations.

Convergence is defined as the first instance in which the er-
ror between the computed thrust and target thrust drops below
1% and remains for a full revolution. Cold starting the tight
coupling without initializing from a loosely-coupled result is
not efficient, as it requires a significant number of revolutions
before the error remains below the 1% threshold. Immediately
upon restarting from some fractional portion of a loose cou-
pling revolution (which used the initial kriging estimate for
the controls), the errors rapidly drop below 5% towards the
1% demarcation point. Thus, some level of loose coupling is
recommended prior to starting a tightly-coupled simulation.
Various loose coupling initializations were examined for their
convergence characteristics, the details of which are provided
in Table 2. When the results are examined and the error be-
havior is evaluated (Fig. 4), the optimal restart from a loose
coupling solution appears to lie between 1/4 and 1/2 rotor
revolution. Similar behavior was observed for the C9017 case.

T
Mo Loose Coupling
=TT Rev LT
T N4 Rev LT

=T li2RevlC
S Rev LC

Ceivieane 5% error

Thrust Difference (lbs)

Revolutions

Figure 3: Summary of thrust errors during different tight cou-
pling starts from loose coupling.

Table 2: Optimization of convergence using kriging to trim
during tight coupling.

Total Time Loose Tight Kriging CPU
Required  Coupling Coupling Trim On
(revs) (revs) (revs) (revs) (hours)
>6 0 6.0 5.0 2814
3.6 1/8 3.5 2.5 1728
24 1/4 2.2 1.2 1166
2.7 12 2.2 1.2 1306
5.1 1 4.1 3.1 2432
2.5 512 0.0 0.0 1453

3000 -

2500 1

2000 -

CPU Hours
-
un
=]
=

1000 4

500 4

0 0.2 04 0.6 0.8 1
Loose Coupling Initialization (Revs)

Figure 4: Revolutions needed to reach thrust convergence (1%
error) based on loose coupling initialization.



In the previous analysis the controls were fixed for one revo-
lution after switching from loose to tight coupling. This ap-
proach was found to be necessary as an additional transient
when switching from loose to tight coupling appears. If the
kriging is used immediately upon the transfer to tight cou-
pling, then large transients, such as the example in Fig. 6
will appear. Using the same process for the initialization, the
amount of time needed to maintain fixed controls was exam-
ined. It is clear that while immediately starting the kriging
process upon tight coupling causes instabilities, only a frac-
tion of a revolution at fixed controls is needed before the sim-
ulation is stabilized, as seen for a switch at one revolution in
Fig. 5. 1/N revolutions at fixed controls appears to be suffi-
cient to stabilize the simulation before kriging begins.

% errar

1% error

Thrust Difference {percent)

144 Rev Fixed Controls
= = 712 Rev Fixed Controls

: "~ " 1 Rew Fixed Controls
10 | | Bd1 1 I

L
i 08 1 15 2 25
Revolutions

Figure 5: Impact of fixed control interval after commencement
of tight coupling on thrust convergence (1% error).

=10
26 T T T T T T

245

221

Thrust (lbs)

0z 0.4 06 08 l 1.2 1.4 1.6 18 H
Revolutions

Figure 6: Example of the large transients that occur when krig-
ing is applied immediately upon transfer from loose to tight
coupling at revolution 1.

Optimization of the Training Database

Due to the large cost of developing CFD/CSD training points,
it was investigated if efficient trimming could be achieved via
kriging using a far less costly CSD training point database.
The CSD training databases examined for the C8534 database
had very good correspondence (less than 5% error) with the
controls predicted by OVERFLOW loose coupling. C8534
tightly-coupled simulations were performed using both a
twelve point CSD and the nine point CFD/CSD database (Fig.
7). As it was previously noted that initialization from a quar-
ter revolution of loose coupling speeds up convergence, both
cases used this value to optimize the simulation. The results
indicate that, at least for some conditions, comparable conver-

gence behavior can be obtained with the significantly reduced
training cost using a database where the training points are
extracted directly from a comprehensive code.

10 T T T
Triming with CSD database
7 " Trining with CFD-CSD database

... 5% eror. . ]

. ..’a._i?-:e\‘.‘. A% ermor |

Thrust Difference {Ibs)

.
0 0.5 1 1.5 2 2.5 3
Revolutions

Figure 7: Summary of thrust errors during tight coupling with
CFD/CSD training points and CSD-based training points.

UH-60A C8534

This high speed case was examined to verify that the tight
and loose coupling would result in identical airloads. Both
loose and tight OVERFLOW/DYMORE coupling were ap-
plied to the flight condition and run to convergence, as de-
fined in the previous initialization discussion. The predicted
airloads for both coupling approaches are compared with ex-
periment in Fig. 8. These figures indicate that the difference
in the loose and tight coupling converged results show little
to no discernible differences. This is also true for the struc-
tural moments (for example, in Fig. 9) and the predicted tip
deflections (not shown). The differences between the simula-
tions and experimental data are comparable to those predicted
by loose coupling using OVERFLOW from other researchers,
such as Potsdam et al. [4], as illustrated by a typical radial
station in Fig. 10. Minor differences arise because of the use
of a different CSD solver (CAMRAD).

The application of the kriging control estimates to start the
CFD simulation (CFD/CSD iteration 0) may result in trimmed
loads at the first iteration that are less accurate than the initial
estimates with the known flight test control settings. However,
kriging estimated controls for the loosely-coupled simulations
trimmed more rapidly than the original autopilot algorithm us-
ing the known flight test controls. The larger error observed
at the first CFD iteration is due to the use of initial estimates
of the CSD trim without feedback from the delta airloads and
rapidly adjust in subsequent coupling iterations.

UH-60A C9017

The UH-60A C9017 high thrust case poses a more interest-
ing case for loose and tight coupling, as dynamic stall occurs
on the retreating side of the rotor. Since dynamic stall is very
sensitive to simulation parameters, the impact of tight cou-
pling on the predictions has been a topic of speculation. For
this case, the coarse grid was again used to minimize compu-
tational time, but the hybrid RANS-LES (HRLES) turbulence



model was selected to help quantify differences in the cou-
pling approaches. Loose coupling was started after one revo-
Iution and updated every quarter revolution until convergence.
Tight coupling was started after 1/4 revolution and controls
were updated every timestep during the revolution, with the
Jacobian updated every 36°.
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Figure 8: Comparison of loose and tightly coupled OVER-
FLOW/DYMORE airloads for the UH-60A high speed case
C8534 using the coarse grid and the HRLES turbulence
model.

GO0
400 . .
200

-200r| *  Experiment [y . J
Tight Coupling

— —-Loose Coupling
600 | . | |
] 50 100 150 200 250 300 350 400

Azimuth Angle (deg)

-400

Flap Moment [ftlb)
o

400

-200H *  Experiment q
Tight Coupling
— ~-Loose Coupling

Torsion Moment (ft.lb)

-400 |

0 50 100 150 200 250
Azimuth Angle (dedg)

300 350 400

Figure 9: Comparison of loose and tight coupling structural
moments at #/R = 0.9 for the UH-60A high speed case C8534
using the coarse grid and the HRLES turbulence model.

Once again convergence behavior (Fig. 11) for both the loose
and tight coupling approach appears to be very similar, de-
pending on the point at which the solution is deemed to be
converged. Similar to the 8534 case, the loose and tight cou-
pling airloads for the 9017 case for the most inboard radial
sections show comparable predictions (Fig. 12 (a) and (b)).
Correlation with experiment is mixed, but it is consistent with
other predictions using grids of this size. As one moves out-
board, however, significant differences in the predictions ap-
pear, in particular for the retreating side of the rotor(Fig. 12 (c)
and (d)). Phase and amplitude differences result, with loose
coupling results providing more accurate correlation to exper-
iment in some instances, while tight coupling results are more
accurate in other locations. There is significant unsteadiness
in the flow during the fourth quadrant, which manifests it-
self as a stall phenomena in the first quadrant as well. This
is a likely combination of the hybrid turbulence method and
coarse grid, so analysis using a refined grid and different tur-
bulence model is underway. No conclusion can currently be
drawn as to the cause of these differences between the loose
and tight coupling approaches due to the plethora of numer-
ical options that may affect this simulation (grid fidelity, tur-
bulence model, time step/subiteration, etc.), and so a series of
evaluations are planned to better understand the cause of these
differences.

CONCLUSIONS

A tightly-coupled computational fluid dynamics and com-
putational structural dynamics (CFD/CSD) technique with a
kriging-based trim controller provides the tools to accomplish
aeroelastic analysis of a time-accurate rotor system. The ap-
proach has been demonstrated for a structured CFD method
using the UH-60A rotor to demonstrate the validity of this
method.

A number of technical observations can be concluded with re-
spect to this research:



e A trim controller based on kriging provides a viable al-
ternative to the classic autopilot controller for use in
CFD/CSD simulations, in particular for tight coupling.

e Moderate numbers of CFD/CSD data can be used to
train the metamodel of the new trim algorithm. CSD
data can also be used to train the metamodel of the krig-
ing algorithm for the configurations and flight condi-
tions examined thus far in this effort.
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Figure 10: Comparison of OVERFLOW/DYMORE airloads
against results from Potsdam et al. [4] for the UH-60A
high speed case C8534 using the coarse grid and the Spalart-
Allmaras turbulence model.

o Initialization of the tight coupling from loose coupling
results improves the convergence of the tight coupling
algorithm for level flight cases. Optimization indicates
that 1/4—1/2 revolution of an initial (zeroth) loose cou-
pling iteration is sufficient to remove transients that af-
fect the stability of the tightly-coupled simulation.

e Updating the controls via the kriging algorithm immedi-
ately upon commencing the tight coupling also creates
instabilities, so a short period of fixed controls (approx-
imately 1/N for the configuration examined) is neces-
sary prior to updating.

e Tight coupling yields comparable results to loose cou-
pling when dynamic stall is not present. Further anal-
ysis into the influence of numerical parameters (turbu-
lence model, grid, time step) is warranted to determine
if the origination of these differences lie with the cou-
pling approach or from the CFD numerical options.

e Tight coupling, when optimized and used with the krig-
ing controller, appears, within the context of the test
cases, turbulence methods, and grids examined in this
effort, to converge in approximately the same number
of total revolutions as loose coupling.
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Figure 12: Comparison of OVERFLOW/DYMORE airloads at typical stations for the UH-60A high thrust case C9017 using the
coarse grid and the HRLES turbulence model in both loose and tight coupling.
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