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Abstract. 'Tile application of LQG optimal control theory to active control of vibrations in helicopters is not 
~traightforward due to the pre~ence, in the rotor model, of persistent periodic disturbances which are not included 
in a standard LQG problem tCnnulation.. The pnrpose of the paper is to show how the theory can be tailored to 
achieve rejection of multihannonic disturbances. TI1e basic idea is to augment the system state so as to incorporate 
a model of the main hannonics of the vibration too (LQG Disturbance }0odelling). The applicability and 
limitations of the theory are probed by means of sev~ral simulation trials on the linear dynamic model describing 
the int1uence ofthe swash plate collective cmmnand to the rotor hub vertical fOrce in the helicopter Agusta A129. 

I. Introduction 

Helicopter vibrations reduction is of central im­
portance not only for the improvement of the passengers 
comfort but also for a better behaviour of the machine. 

As is well known, [ 1], the induced vibration can be 
modelled as a periodic disturbance with fundamental 
frequency n.{) = nbnrot , where nrol is the rotor angular 
speed and nb is the number of blades. 

The application of active control techniques to 
helicopter vibratory problems is still under study in many 
companies and is carried over with different control 
strategies and mechanical devices. In the present work, 
we deal with a time domain control methodology 
developed for the four-bladed A~o•usta Al29 helicopter 
under a research contract between Agusta Spa and 
Politecnico di Milano (Dipartimento di Elettronica e 
Informazione). 

Making the reasonable assumption that the main 
source of vibrations are the loads transmitted from the 
rotating frame to the fuselage and that the vertical vi­
bration turns out to be the most disturbing one, the 
objective of the active control device is to cancel the 
vibratory components in the total vertical mast force. 
This can be achieved by superimposing an extra signal to 
the pilot's command at the swash plate. Precisely, for 
active control purposes we act on the collective command 
u/) by addillg a "small" variation ou(-) to it (Fig. 1). 
This is tantamount to superimposing an equivalent 
"small" variation &eo to each pitch angle 
characterizing the blades longitudinal rotation. The 
entity and frequency content of all this signals are 
constrained by the need of non-interfering with the pilot's 
c01mnands (up). 

Hg. 1 * up =pilot's collective :_ommand (mm), Ou=active control signal, 
u=total collective command, d=vihration (Nw), y=total vertical force at 

the hub (Nw) 

A well known technique for vibrations reduction in 
helicopters is the so-called Higher Harmonic Control 
(HHC), see [2) and [3). It is based on the estimation of a 
gain matrix (!) relating the harmonic components of the 
swash plate commands to those of the fuselage vibration. 
The control rationale is such that, at each rotor period or 
multiples, a small variation is superimposed to the blades 
conmmnds by simply inverting the algebraic matrix 
computed in the previous time period. This steady-state 
approach has the advantage of requiring only little 
knowledge of the dynamics underlying the influence of 
the swash plate commands on ti1e vibrations (just ti1e T­
matrix, gain at the frequency .r2

0
). On the oti1er side, tile 

lack of knowledge of the dynamics governing the above 
relationship, makes it quite difficult to evaluate tile sta­
bility margins and the response times of the overall con­
trol loop. Moreover, ti1ere is no guarantee that the control 
system does not interfere with tile machine guidance 
commands. 

Some novel model-based time-domain approaches 
have beell explored. These rely on a dynamic description 
of the influence of the collective coll\Illand on the total 
vertical force transmitted from the blades to the rotor 
mast, worked out. It turns out ti1at, for the A!29 
machine, an appropriate model is a Single Input Single 
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Output (SISO) syste!ll with input u(t) (collective swash­
plate command) and output y(t) (total vertical mast 
force). Its transfer function is given by: 

9 

TI<s-zi) 
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G(s) ·~ kG --'0:,"----

TI<s-p) 
j='l 

The poles P; and zeros z, of G(s) are graphically depicted 
in Fig. 2 and their nnmerical values are reported in Tab. 
I. Note that the transfer function is proper (numerator 
and denominator with equal degree), Hurwitz (all poles 
in the lef1 half plane) and non minimum phase (two zeros 
lie in the right half plane). 
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Fig. 2- Rotor tramjb'jimction poles and zeros 

Transfer con:>'tant Zeros Poles 
[Nw./mm.] 

f.:() =2.47646'10~ 94.096-83.551} -8.56-42.82; 

94.096+83.55lj -8.56+42.82} 

-9.8987-42.274) -34.48-100.98} 

-9.8987 +42.274 j -34.48+ l00.98j 

-29.189 -42.256 

-28.841-94.871 i -19.509-107.!6 j 

-28.841 +94.871 j -19.509+ 107.16} 

. 70.667-158.55 i -25.299-40.070 J 

-70.667+ 158.55 j -25.299+40.070; 

Tab. 1 

For a control system to embody sinusoidal dis­
turbance rejection capabilities, it is necessary that a 
dynamic block, called Harmonic Integrator, appears in 
the feedback loop, [ 5]. The latter has to incorporate two 
purely imaginary poles at the disturbance frequency so 
that an N!rev counter-vibration signal is generated within 
the control loop. Many disturbance rejection design 
techniques automatically lead to controllers incorporating 
harmonic integrators. This is the case of the Observer 
Based Control approach adopted in [6]. This approach 
consists in building a suitable model of the disturbance 
(vibration) of known frequency and to usc an observer to 
produce a real time estimate of its amplitude and phase. 

In this paper, we explore the possibility of using 
Optimal Control methods for helicopter vibration re­
duction. Such an idea has already been considered by 
various authors, see e.g. [7] and [8]. In [7], a solution to 
the narrow-band disturbance rejection problem can be 
found by resorting to the so-called Frequency Shaping 
control, which amounts to introducing a frequency 
dependent weighting of the state in the cost functional so 
as to impose an infinite weight in correspondence of the 
disturbance frequency. In [8], the idea is to augment the 
system with a dynamic model of the disturbance and 
perform estimation of the augmented state vector. The 
estimate of tile disturbance state is then used to produce 
the necessary counter-vibration. Though the idea 
underlying this method (called Disturbance Modelling) 
is effective in principle, the mathematical formulation of 
the overall problem given in [8] suffers of some serious 
weak points, which look as major obstacles to the 
practical usc of the approach. This is discussed in [9], 
where a more refined Disturbance Modelling approach 
has been proposed. Herein, the method is tested in the 
Al29 case, by also taking into account some of the 
primary helicopter requirements such as the non­
interaction with the pilot's commands. 

The paper is organized as follows. In Sect. 2., the 
theoretical background of the proposed methodology is 
sketched for the user. Sect. 3. deals with the application 
of the above technique to the rejection of the no and 2n, 
harmonics of the vibration induced by Ute blades rotation 
in the helicopter fuselage. Sect. 4. contains some 
concluding comments on the paper. 

2. The LQG Disturbance Modelling 
methodology for multiharmonic disturbance 
rejection 

2.1. The theoretical background 

As is well known, standard optimal control 
techniques, relying on U1e miniinization of a quadratic 
performance index, give rise to stabilizing compensators 
whose performance can be tuned by choosing few design 
parameters. However, in order for the controller to ensure 
rejection of persistent harmonic disturbances, some 
further modifications are needed in the design procedure. 
To this purpose, several contributions are worth 
mentioning for the attenuation of constant and periodic 
disturbances, see e.g. [10] and [11]. Each of the these 
works explores a facet of the problem and a 
comprehensive analysis of the subject can be found in 
[ 12]. 

In this section, we will give a brief outline of the 
formulation and solution of the disturbance rejection 
problem via Linear Quadratic Gaussian Disturbance 
Modelling (LQG-DM). The general methodology will be 
then adapted to the particular problem of vibrations 
rejection in helicopters. 
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Consider a state-space realization of a single in­
put-single output system subject to an output additive 
disturbance 

{x(t)~ A x(t) + !3_ u(t) 
y(t)-- C x(t) + d(t) (II) 

where x is the 11-dimensional slate vector, while u andy 
are the system input and output respectively. In our ease 
this system represents the rotor dynamic behaviour, u(l) 
being the collective swash plate command, y(t) the total 
mast force and d(t) its vibratory component. More in 
detail, we will suppose that d(l) is a periodic function 
with frequency no~ nbnwt, i.e. 

N 

d(f) ~ ,L; a, sin krlj + j3, cos kO,t (1.2) 
k=l 

where only N harmonics are taken into account. Since 
the rotor angular velocity is known, the disturbance 
consists of a sum of sinusoids with known frequency and 
unknown amplitude and phase, i.e. n, is fixed and 
known, wltile Cik and j3k are unknown. 

One of the main objectives of the control system is 
to make y(t) insensitive to d(t). 

In order to simplify the subsequent analysis it is 
advisable to move the disturbance from the output to the 
input of the system, i.e.: 

{x(f)~ A x(t) + B [u(t) + d(t)] 
y(I)~C x(t) (2) 

where the d(t) is an "equivalent" disturbance acting 
on the input of the system. Under weak assumptions on 
poles and zeros of the system, models (I) and (2) are 
input-output equivalent [12]. 

Notice that tile d(t) can be modeled as the output of 
an autonomous system with purely imaginary eigen­
values at frequencies kil,, k-1, 2, ... N: 

{suJ- w e;uJ 
d(t)~H (;(I) (3) 

where 

[~ -~,'] 0 
H=[[IQO] OoJ w~ 

0 [~ -Nn,'] [1 
() 

The overall system, consisting of the rotor and UJC 
distmbance (eqs. (2) and (3)), can be written in a 
compact state space form: 

. [x(t)] 
With xDM(t)~ Wl and 

To cope with uncertainty in modelling and output 
measurement, a more refined model should also consider 
state and output disturbances, i.e.: 

{x(t)~ A x(l) + B [u(l) + H (;(I)]+ v11 (1) 

(;(t)- w s(t) + vl,(l) 

y(t)~ C x(t) + v2(t) 

or, in compact form, 

{
xDAf..t) -ADMXDA.ft) + BDMu(t) + vDAf..l) 

(5) 
,Y(/) "~ C0Mx0Af,.t) + v2(t) 

vvAf..l) ~ [v11 (1)' v12(t)1' being the state disturbance and 
v ,(t) the measurement disturbance. 

It is assumed that vvJI) and v2(1) are zero-mean 
independent whi;e noises with intensities 

and V2 = var[v2(")]. Matrices f/11 and V12 are positive 
sentidefinite, f/11:20, V12<:0. Matrix V2 is assmned to be 
positive definite, V2>0. We will come back on the 
structure of f/12 in Sect. 2. 2. 

Finally, as in any optimal control context, one has 
to choose the performance index. Asymptotic rejection of 
the disturbance d(t) can be achieved only if the input 
signal u(t) converges to -d(t), so that { u(l) + d(t)} 
asymptotically vanishes. Therefore a reasonable cost 
functional should weight the energy of the term 
{ u(l) + d(t)} rather than the sole energy of u(t) as it is 
usually done in standard LQG problems. Hence, an 
appropriate quadratic criterion for the problem at hand 
is: 

J DM = E { lim fl J\(1) 'Qx(t)+ 
to-7-«> I o 

ro-7 += to 

+ [u(t)+HC;(t)]'R[u(t)+H(;(t)] dt} · (6) 

2.2. Non-Interaction 

{xDAf..~),~ADMxDI,i.f) + BDMu(l) 

y(t)-(DMXDM(t) 

Since the active control signal is superimposed to 
the pilot's guidance commands, most care has to be taken 

( 4 J to avoid any perturbation on the pilot's action. This can 
be achieved by guaranteeing that the active control signal 
does not have frequency content at low frequencies. Tltis 
goal can be acltieved in the LQG-DM context by a 
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suitable choice of the (fictitious) covariance matrix 
Indeed, take as f/12 the following matrix: 

[

y 1
2
l!

4
GG' 0 l 

Vlz = 
0 YN 2(Ni!)4 GG' 

(7) 

with G~[g 1 g2]' and 'Yk?: 0, k~l,2 .. N. This means that the 
disturbance d(t) is modeled as the sum of the outputs of N 
dynamical systems fed by uncorrelated white noises and 
characterized by the transfer functions 

Parameters g 1 and g2 determine the position of the zero 
of Gk(s). A good choice is g 1=0 and g2=l. 
Correspondingly, the spectral density of the k-th 
component of the disturbance is represented in Fig. 3 

!' i 

' 

~- -- ·-

... rr•- x_; 
' / " ~ 

~ 
/ 

v .. - .. 

I'--

Fig. 3 ~ .\'pectral density of the k-th component of the disturbance 
modeled with the choice ofV

12 
given by (6). 

Witll such a disturbance modellization, the optimal 
control effort will concentrate mainly at those frequencies 
where the disturbance d(t) has high energy, i.e. w=ki2

0
, 

k=l,2 .. N. ln contrast, thanks to the zeros in tlle origin in 
each G k(s), the controller will not produce significant 
changes in the low-frequency behaviour of the closed­
loop system. In particular, it will be shown (Sect. 3.) that 
the open- and closed-loop gains are the same. 

As for parameters yk, it could be shown that each of 
them approximately determines how quickly the effect of 
the k-th component of the disturbance is attenuated: 
large values of yk result in rapid rejection transients. 

2.3. Final form of the optimal controller 

The optimal LQG problem stated above is non­
standard and calls for some care to be correctly solved, 
[9]. Herein, tl1e resulting control law is described: 

Kalman filter. The state of tile augmented system 
(5) is estimated by means of a Kalman Filter. As a result, 

estimates of tlle rotor state (;) and of tl1e equivalent 
input-disturbance (d = H ~)are available. 

Optimal Feedback Gain. An optimal feedback 
gain (K) is computed for the non-augmented system. The 
final overall optimal control law is 

.• 1\ 1\ 
u(t) = K x- d 

where K; can be interpreted as a stabilizing term. while 
A . 

- d performs the disturbance compensation. 

3. Application to the helicopter vertical 
vibrations reduction 

3.1. Compensator design 

From the above discussion, it follows that the 
structure of the control system for active control of 
vibrations is the one depicted in Fig. 4. 

For the compensator specification, the designer may act 
on the noise intensities f/1 P f/12 and V2, which affect the 
Kalman filter performances. As discussed in Sect. 2.2., 
V12 is chosen as in (7) with G = [0 1]. Hence, tuning V12 
means selecting yP y2, ... ,yN. The designer has also to 
select matrices Q and R appearing in tl1e performance 
index (6). By means of these matrices, tile stabilizing 
properties of the "LQ-regulator" part in Fig. 4 can be 
modified . 

PiJot:s 
coU.Uive 

Control vwiubl" 

u(t} 

Estimate of d{l) 

Kalman 
Filter 

··-~. · · .,. Compensator 

Fig. 4- Struciure of the controller 

3.2. Simulation tests 

In the simulations, a disturbance signal with two 
hannonics has been considered: 

where n, is the main vibration frequency at 4/rev 
(144.51 rad/sec) and 212

0 
is its first multiple 

(8/rev = 289.02 rad/sec). For the subsequent simulations, 
the numerical values of the parameters have been chosen 
as: 

a 1= 4000 Nw, 
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a2 ~ 2500 Nw, 

As a first step, we neglect the effect of the pilot's 
commands and we concentrate our attention just on the 
disturbance rejection capabilities of the closed-loop sys­
tem. The free parameters have been choosen as 
reported in Tab. 2, where l 9x9 denotes the identity matrix 
of dimension 9. The time behavior of the 

7 -y,~y 0.5 

v!l 3'104 
19119 

v 
' 

0.125 

Q J9x9 

R I 

Tab. 2 

corresponding output hub force and of the control 
variable (blade's collective pitch angle) can be seen in 
Fig. 5. 

~ 2000' 

~ 
<2 0 
~ 
0 
~ -2000. 
5 

" 

Fig. 5- Closed-loop pitch angle (control variable) and toial hub force 
(controlled variable) 

Despite a control effort of less than I deg. pitch angle 
imposed to each blade, the output hub force turns out to 
be, after about 3 rotor revolutions, almost totally insensi­
tive to the disturbance. Note that this behavior meets the 
constraint of achieving vibrations reduction with a lim­
ited effort (max. 3 deg.) of the control action. Thanks to 
LQG theory, it is guaranteed that the overall closed-loop 
system is asymptotically stable (Fig. 6). 

3.3. Compensator stability 

One should observe that the regulator itself turns 
out to be stable. Tltis is indeed a highly desirable 
property of the control design. Indeed, it guarantees tl1e 
boundedness of the control signal even in case of 
malfunctimting resulting in unexpected loop openings. 

tim 
··-r-----.-. ~--r-~~1 : * : 

* 
100 C- 0* -~.L .. 

of~·~~~~-···r-----=--"-~> 
0 

* 

0 

Fig. 6- Closed-loop poles 

The pole pattern of the designed regulator R(s) can 
be seen in Fig. 7. Note that, as expected, according to the 
Internal Model Principle (13], two pairs of imaginary 
poles at no and zno are present so as to force two 
corresponding pairs of imaginary blocking zeros in the 
transfer function from d(t) to y(t). 

Jm 

* 
100 

Re 
0 

-!00 

* 
-200 

Fig. 7- Regulator poles 

3.4. Non-Interaction 

Whatever values are chosen for the tnrting 
parameters, our compensator ensures non~interaction 

with the helicopter guidance commands. In fact, since 
the feedback control signal is added directly to the pilot's 
input (Fig. 4), tlte control frequency content should not 
embrace the low frequency range where most probably 
the pilot's signal takes place. Thanks to a particular 
choice of t11e disturbance model (Sect. 2.2.), it is possible 
to force the action of the compensator to be almost 
insignificant at low frequencies. 

To prove this, we have simulated the control loop 
when a step pitch angle of 3 deg. is imposed to each 
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blade by the pilot. The graphical results of the simulation 
are depicted in Fig. 8. 

By means of some trivial computations, one may verify 
that the regime value of the total hub force equals the 
product of the rotor gain and the pitch step, as desired to 
guarantee non-interaction. 

Remark 

Since now, we have supposed perfect knowledge of 
the model parameters (kci' pi, zi), Herein, it is analyzed 
what happens to the closed-loop performance when the 
actual dominant poles are slightly different from their 
nominal values. 

Suppose to perturbe the model dominant poles 

( -9.509±!07. !6j) so as to weaken their damping 
(increase their imaginary part of !5%). 

Fig. 8. c:tosed-loop pitch angle (wntrol variable) and total hub force 
("'onrrolled variable) 

The simulation performed under these conditions 
(Fig. 9) shows that the compensator has mantained its 
rejection capabilities but the transients are longer tlmn 
before. However, tlw fact tl1at both the closed-loop system 
and the regulator keep on being asymptotically stable, 
suggests that a fairly reasonable stability margin has been 
obtained. 

6000 

4000 f ~ 
(S 2000 1 v 
~ 

"' 0 

"" 1 -2000 
] 
2 

-4000 . !---

-6000 .. 

-8000 
0 0.2 0.4 0.6 0., 

Fig. 9. Closed-loop response with poles perttlrbation 

4. Concluding remarks 

In tltis paper, an optimal control technique for 
helicopter vibrations reduction has been outlined. 
Differently from widely known steady-state algoritluns, 
such as HHC, the proposed scheme is based on a suitable 
description of the main dynamics governing the rotor 
behavior. The vibration is described as a multiharmmlic 
signal and tl1en modelled as output of a suitable dynantic 
system. 

In the paper we have shown how a vibration 
rejection compensator can be designed by means of an 
LQG rationale. One has to solve a standard control 
problem to ensure stability of tl1e feedback system plus a 
filtering problem, for the whole augmented system, to 
estimate both tl1e umneasurable rotor states and tl1e 
disturbance. The control action is the sum of two 
different terms: the first one accounts for closed-loop 
stabilization and the second for the generation of a 
countervibration at the disturbance frequencies. Some 
tuning parameters are available to find the "optimal" 
trade-off between closed-loop stability degree, 
disturbance rejection time and control effort. 
Interestingly enough, tl1e designed controller is itself 
stable, which is a guarantee against possible faults in the 
closed-loop functioning. 

The effectiveness of this control technique has been 
analyzed by means of some simulation trials. Particular 
attention has been devoted to tl1e low frequency non· 
interaction between the compensator and the pilot action. 
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