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SUMMARY 

Linearised mathematical models of the Puma helicopter operated by RAE Bedford have 
been identified from flight tests conducted in the hover. The test database includes collective 
pitch frequency sweep and step inputs. The aim has been to identify a 3 degree-of-freedom 
model of coupled body/coning/inflow response to collective. Two frequency-domain 
identification methods have been used with the data, and the paper explores how the 
identified stability and control derivatives vary with method, frequency range, parameter 
constraint, a priori estimates and test run. It is concluded that models of helicopter behaviour 
that include higher order dynamics can be identified successfully from flight, but care is 
required in the application of the methods and particularly in the interpretation of the results. 

l. INTRODUCTION 

Mathematical modelling of helicopters for handling qualities, performance and flight 
control has always been a cha11enging area, and is one which continues to demand increasing 
attention from the community. This is because deficiencies in fidelity are widespread, 
affecting the validity of piloted simulation and control law design, hence potentially 
increasing the cost of developing new aircraft. System identification is proving to be a 
powerful tool for assisting in the validation of rotorcraft mathematical models, including 
those which incorporate higher order dynamics associated with rotor flapping and air mass 
behaviour. Recent work at RAE Bedford and the University of Glasgow, has made 
significant contributions in this new area [1,2,3,4,5,6] and has highlighted potential 
difficulties associated with the identifiability of such models, which could conceivably limit 
the usefulness of system identification as a model validation tool. This Paper seeks to address 
these issues by example. 

2. BACKGROUND 

RAE Bedford and the University of Glasgow have been involved in the identification of 
helicopter mathematical models that incorporate higher order dynamics, for over two years. 
RAE have recently focussed on the vertical response to co11ective in the hover, [1,2,3,4], 
while Glasgow have examined forward flight cases in the mid-speed range [5,6]. Both 
organisations have had considerable success in identifying higher order effects, particularly 
inflow and flapping dynamics, to the extent that the results have been used to support the 
development of the RAE generic helicopter model HELISTAMIELISIM [7]. The theme 
common to all of this work however has been a concern over model identifiability and 
robustness. Ref 8 reviews what is meant by the terms 'identifiability' and 'robustness' in the 
context of rotorcraft system identification, and what consequently may be required of an 
identification strategy. In general terms, identifiability may be thought of as indicating 
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whether or not a given model can be derived from the test data using a given identification 
method, and if it can, the term robustness can be applied to assess the degree to which the 
model parameters exhibit variation with method, data set frequency range, etc. These 
variations arise of course because of the uncertainty associated with experimental data and 
model structure, but are widened by the freedom to use engineering judgment at every stage 
in the identification process. 

3. THEORETICALMODELLING 

The response of the helicopter to collective pitch inputs in hovering flight, can be 
described by a model incorporating those higher order dynamics of concern in this paper. 
The model incorporates first order inflow and vertical velocity response, together with 
second order coning. The model structure is written in constant coefficient, state-space form 
as 

X = Ax + B !L (l) 

where 

ivi 0 ij3o iw iao 

0 0 I 0 0 
A= B = (2) 

fvi f[lo f[lo fw fso 

Zvi Z[lo Z[lo Zw Zso 

and 

x = [ vi [lo [lo w ]T , y = So (3) 

A is the system matrix, B the control matrix, xis the state vector, y the control vector, ivi• 

fvi• Zvi are inflow, flapping and Z-force derivatives with respect to inflow, etc, So is the 
collective pitch angle (rad), w is the vertical velocity (rnls positive down), Vi is the induced 

velocity (rnls positive down) and [lo is the coning angle (rad). Chen and Hindson [9] provide 
analytical expressions for these stability and control derivatives, which exhibit the following 
relationships 

Zvi = -Zw; fvi = -fw; iw = -3/2 R i[l0 ; fso = -Of[l0 ; Zs0 = -0 Z[lo (4) 

R is the rotor radius (m) and n is the rotorspeed (radls). This model assumes constant 
rotorspeed, the derivatives do not take hinge offset into account, fuselage aerodynamics and 
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the interference between rotor and fuselage flowfields is neglected, the blades are assumed to 
be rigid and unsteady effects are not represented. This model formed the basis for the earlier 
RAE work in this area [1,2,3,4] which suggested that substantial improvements in the 
correlation between flight and theory could be obtained if some additional effects were 
included. These were: 

a). empirical correction of the momentum-derived uniform component of inflow, to account 
for the real non-uniformity, tip loss and root cutout effects; 
b). inclusion oflift deficiency factors to account for unsteady effects in the real wake; 
c). reduction of blade first moment of mass, so that the rigid blade model made some 
approximation to the hub inertia force reactions experienced with real, fle:xible blades. 

For this Paper the stability and control derivatives in the A and B matrices were obtained by a 
numerical forward and backward differencing of the full nonlinear equations (incorporating 
these additional features) which are as follows. The momentum expression for thrust, is 

T = mavi + 2p(3.142R2)C'tvilk(vilk- w + 213R~o) (5) 

where Tis rotor thrust (N), rna is the additional air mass (kg), p is the air density (kgtm3), 
C't is the thrust deficiency factor and k is the momentum empirical correction factor. From 
Johnson [10], C't is 

1 
C't = (6) 

1 + acr/( 16vi) 

where a is the blade lift-curve slope ( Vrad), a is the rotor solidity and vi is the induced 
velocity normalised by the rotor tip speed. The blade element expression for rotor thrust, to 
balance that given by equation (5) is 

T = V4ilRpacr(3.142R2)(213!lR8o- vi+ w -213R~o) (7) 

Again from Johnson [I 0 ], the equation for blade flapping is 

~~~o + ynii)"8C'1~o- kbM~w = -I~yilC'l/(6R)vi- I~n2v~2~ 

+ 1~ v !lC'J 1 (6R) w +I~ n2v cys eo (S) 

where I~ is the blade flap inertia (kgm2), y is the Lock number, M~ is the blade first moment 

of mass (kgm), kb is a factor on blade first flap moment and v~ is the flap frequency ratio. 
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The hub force equation is 

N I13 Oy I (6mR) 130 + Nlq, Mj)fm 13 0 - w = -N I13y .nl (4mR2) vi+ N I13 y .nl (4mR2)w 

+N I13 y .n2 I (6mR) 80 - g (9) 

where N is the number of blades, m is the mass of the helicopter (kg) and g is the 
acceleration due to gravity (9.8lrn!s2). C'1 is the lower harmonic loading limit of Loewy's 
lift deficiency function, given by 

1 
C'l = (10) 

1 + 3.142 o /(4vi) 

With k = Iq, = C't = C'1 = v132 = 1.0, this model in linearised form is identical to that given 

in Ref 9. When configured as a Puma and trimmed in the hover and Jinearised with k = 1.4 
and kb = 0. 7, (values suggested in Ref 4), the thrust and lift deficiency terms are C't = 0. 72, 
C'1 = 0.55 and the A and B matrices corresponding to equation (2) are 

A= 

-9.197 

0 

0 

0 

-2.294 -821.9 

0.755 -102.3 

-36.54 

1 

-18.75 

2.868 

7.311 

0 

3.317 

-0.628 

B = 

589.0 

0 

517.5 

-79.14 

(II) 

Note immediately, that two of the relational constraints shown in equation (4), specifically 
fvi = - fw and Zvi = - Zw, are no longer valid. This is because C'1 is a function of vi. 
Equation (12) shows the equations of motion when Chen and Hindson's original model is 
configured as a Puma. Note that the modelling enhancements outlined above substantially 
modify the values of most of the derivatives. In particular, note that all bar one of the Z-force 
derivatives have opposite signs. 

A= 

-11.44 

0 

0 

0 

-5.692 -848.6 

-0.168 -177.8 

-39.27 

1 

-32.16 

-1.618 

7.856 

0 

5.692 

0.168 

B = 

589.4 

0 

887.7 

44.66 

4. THE FLIGHT TEST DATABASE AND IDENTIFICATION METHODS 

(12) 

The test database available contained pilot-generated frequency sweeps of the collective 
lever, conducted in a free·air hover. These were used for identification. Additionally, 
collective step inputs were used to provide a dissimilar input type for use in verifying the 
models identified from the sweeps. Seven separate frequency sweep runs were available for 
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analysis. The multiblade collective pitch and coning were derived from the individual 
measurements available from each blade. Except where indicated in the Paper, one of the 
seven sweep datasets available was used to illustrate the point under discussion. The dataset 
used is shown in Figure 1 which illustrates the pilot collective lever sweep, the multiblade 
coning and collective angles and the vertical acceleration. 

multi blade 

008~ 
0.06 

0.04~ tCsl 
0 125 

-12.0 

multiblade 

vert. acc'n 
(m/s 2 l 

Figure 1 Collective lever frequency sweep and resulting aircraft response. Puma XW241, 
flight 7 57, run 10. Mass 5250kg, hover 3000ft. 

The two identification methods used in this Paper were frequency-domain-based. The first 
method uses an output-error approach, where the outputs are based on the coning and vertical 
acceleration information. The state-space model is represented in terms of 
Fourier-transformed quantities, and an appropriate output-error identification carried out to 
determine the matrix coefficients. Details of this approach, in general, can be found in Ref 
11, whilst mathematical details relating to this particular application can be found in Ref 12. 
The second method involved using time series analysis techniques to derive frequency 
responses representing transfer functions for the system, which were used with a 
model-matching process to find model parameters that allow the model structure to fit, in a 
least squares sense, the derived frequency responses. The latter approach which has been 
used at RAE is described in Ref [ 13]. Its application to this problem is detailed in Ref 2. 

5. RESULTS 

5.1 Comparison of transfer function matching and output-error method 

With regard to the transfer function fitting approach, Figure 2 shows the flight-derived 
coning and vertical acceleration to collective frequency responses, together with the 
corresponding input-output coherences. Also shown is the best fit of this data in a 
least-squares sense, to the model structure given by equation (2). Any point with coherence 
less than 0.8 is not, however, used in the fitting process. All 14 derivatives were identified 
without constraint. Note that both coherence plots are very close to unity across most of the 
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frequency range, falling below 0.8 only at the first few frequency points, a region where the 
pilot's input has low content. Note also that the fit offered by the coupled 3 DOF model 
structure is excellent, again across the frequency range, with the exception of a few points at 
the very low frequency end of the response. Figure 3 shows corresponding results, to those 
illustrated in Figure 2, from the output-error approach, giving similarly good fits (phase 
comparisons have not been shown). It should be noted that some convergence difficulties 
were encountered with the output-error method, when attempts were made to estimate all 
fourteen parameters independently, and it was found to be necessary to fix the derivatives in 
the dynamic inflow equation. No measurements were available for the induced velocity vi, 
present as a state in the model. Alternative approaches include the use of a rank-deficient 

Gain Gain 
10 3 (m/s2 /radl 10 1 Crad/radl 

10 2 10° 
~ 

~ 
~ , ~ 

10 1 

10-3 10-1 10 1 
10 - 1 

10-3 10-1 10 1 

Phase Cdegl Phase Cdegl 
80 50 ' 

0 0 
1 -3 10 - 1 

1 
-80 -50 

coherence coherence 
1 1 

0 
10-3 10-1 10 1 

0 
10-3 10-1 10 1 

wCHzl 111 CHz l 

flight-derived 
------ fitted 3DOF model 

al. acc'n/collective b). coning/collective 

Figure 2 Frequency responses derived from collective sweep input, with best least-squares 
match given by 3 DOF model structure 
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Figure 3 Comparison of measured and predicted magnitudes of the Fourier- transformed 
measurements 

information matrix [ 14], or the incorporation of defined relationships into the model. Since 
the identified derivative values varied with the constraints used, the values identified by 
transfer function matching were used to fix the dynamic inflow equation derivatives in the 
output-error method, in order to lend consistency to the comparison between the two 
approaches. 

TABLE I --COMPARISON OF DERIVATIVES IDENTIFIED BY FREQUENCY 
RESPONSE AND OUTPUT-ERROR METHODS 

Derivative Theoretical Value Frequency response I Output-error2 

ivi -9.197 -9.147 (0.0472) -9.1473 

iPo -36.54 -40.76 (0.5602) -40.763 
iw 7.311 6.703 (0.0892) 6.7033 

iao 589.0 599.4 (3.0945) 599.43 

fvi -2.294 -4.245 (0.0248) -4.706 (0.28) 

fpo -821.9 -836.7 (1.5973) -857.1 (8.55) 

tj)o -18.75 -24.4 7 (0.0855) -25.15 (0.48) 

fw 3.317 4.635 (0.0443) 3. 701 (0.88) 

fao 517.5 682.8 (1.3974) 699.8 (12. 7) 

Zvi 0.755 0.54 7 (0.0056) 0.291 (0.07) 

Zpo -102.3 -96.46 (0.4640) -101.1 (8.09) 

Zpo 2.868 1.393 (0.0164) 4.833 (0.61} 

Zw -0.628 -0.474 (0.0315) -0.532 (0.11) 

Zao -79.14 -48.87 (0.3510) -35.26 (6.95) 
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I parameter standard deviation in parentheses 
2parameter standard deviation in parentheses 
3values fixed at frequency-response method values 

It can be seen that there is fairly good agreement between theory and experiment, and with 
only a few exceptions, that both identification methods give very similar derivative values. It 
would appear that the preferred approach to use is that of trnnsfer function matching, since no 
constraints need to be applied for a viable solution to be obtained, unlike the output-error 
approach. However, with the use of appropriate constraints the output-error approach may be 
equally preferred. The question of the use of constraints, with output-error and transfer 
function approaches, is addressed in section 5.5 of the Paper. 

5.2 Parameter sensitivity to test run 

For illustrative purposes, the identification results presented so far, have focussed on 
only one of the seven sets of test data available. However, the other six sets do allow 
corresponding models to be identified, which in tum allows an assessment of the impact of 
any random run-to-run effects on the derivative values. This in tum gives an indication of 
how confident one might be in the results from any given single run. Should scatter be 
apparent, then the derivatives can be combined by an averaging process into a single model, 
to try and accomodate in a statistical way, the effects that have led to the variation in the 
derivative values. Run-to-run differences amongst the derivatives could be due to various 
things, but those of concern here are due to differences in rotor operating state and flight 
condition, or holes in the spectra of the particular sweep input that lead to frequency regions 
of poor coherence. In the approach used at RAE, the frequency response fitting process will 
discard such points, and it is this identification approach that was used to generate the results 
for this section. 

The seven individual values for each derivative, available from each of the seven 
identified models, were treated as a sample set of data for which average, spread and sample 
standard deviation (SSD) were calculated. These results are shown in Table 2. Spread and 
SSD are expressed as a percentage of the average value. Perhaps the spread is hardly 
surprising, given that the sum of the squares of the mismatch between the fitted model's 
frequency response and that identified from flight, was for the poorest fit, almost three times 
that of the best fit. (No attempt has been made to explore correlation between the estimates, 
which could help to explain the spread). 

In the case of each individual identified model, the variances associated with the 

derivative values were small, with the exception of that for ieo· The frequency responses 

however, although each had the same form, had differences of detail. These were usually 
associated with regions of poor coherence which was itself a feature of the run-to-run 
comparisons. The spread in Table 2 above has to be viewed first of all in this context of 
differing run-to-run coherence, before any other contributions to the variability of the 
derivatives with run used, are considered. An additional point to note is that in general, the 
parameter standard deviations (being very small) do not reflect the actual spread among the 
seven identified models. This is consistent with other parameter estimation experience; the 
reader is referred to the work of Iliff and Main [15]. 

Analysis of the seven vertical acceleration to collective results in particular, revealed in 
four of the seven cases, that 15 to 25% of the points in the frequency response had coherence 
values less than 0.8 ie, played no part in the fitting process and the determination of the 
derivative values. By contrast, less than 5% of the points in the other three had coherence 
values less than 0.8. Accordingly, average, spread and SSD were recalculated using only 
these latter three cases. The results are shown in Table 3. Note that both the spread and SSD 
are considerably reduced in comparison with those given in Table 2. The spread of only one 
derivative out of the three models exceeds 30% of the average value, most being within 20%. 
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TABLE 2 SUMMARY OF DERIVATIVES IDENTIFIED FROM SEVEN TEST RUNS 

Derivative Theoretical value Identified value! Spread(%) SSD (%) 

ivi -9.197 -8.842(0.057 I) -21.6;+ 17.8 14.2 

itlo -36.54 -46.27(0. 7113) -11.9;+29.8 14.7 
iw 7.311 6.941(0.0900) -7.1;+9.4 5.5 

iao 589.0 593.07(3. 7095) -2. 7;+2.8 2.1 

fvi -2.294 -4.015(0.0247) -3 1.0;+45.9 27.0 

ft)o -821.9 -819.77(2.7015) -5.4;+7 .2 4.5 

ft)o -18.75 -23.48(0.1385) -23.9;+30.2 17.7 

fw 3.317 4.30 1(0.0426) -21.5;+34. 7 19.7 

feo 517.5 645.8(1.4591) -15.1;+17.7 11.6 

Zvi 0.755 0.409 (0.0055) -110.9;+56.1 53.6 

Ztlo -102.3 -110.2(0.5260) -38.1;+69.9 33.8 

Zf3o 2.868 2.339(0.0300) -62.0;+83.6 59.5 

Zw -0.628 -0.402(0.0099) -95.5;+43.9 45.2 

Zeo -79.14 -39.61(0.3980) -158.6;+76.0 73.7 

I Avernged parameter standard deviation in parenthesis 

TABLE 3 SUMMARY OF DERIVATIVES IDENTIFIED FROM 3 BEST DATA SETS 

Derivative Theoretical Value Identified value Spread(%) SSD (%) 

ivi -9.197 -8. 797(0.0387) -2.1;+4.0 3.4 

itlo -36.54 -45.63(0.5702) -10.7;+5.7 9.2 
iw 7.311 6.595(0.0812) -2.2;+0.6 2.0 

ieo 589.0 593.90(2.7173) -0.7;+0.9 0.8 

fvi -2.294 -3.963(0.0200) -6.8;+7.1 6.2 

ftlo -821.9 -813.06( 1.4626) -1.8;+2.9 2.6 

ftlo -18.75 -23.42(0.0725) -2.3;+4.5 3.9 

fw 3.317 4.307(0.0380) -9.1;+7.6 8.4 

feo 517.5 648.2(1.2174) -2.8;+5.3 4.6 

Zvi 0.755 0.553(0.0018) -14.5;+ 15.6 15.0 

Zf3o -102.3 -86.47(0.4097) -21.1;+11.6 18.3 

ztlo 2.868 1.780(0.0168) -21.7;+40 .9 35.4 

Zw -0.628 - 0.402(0.0084) -7.9;+6.4 11.0 

Zeo -79.14 -54.60(0.0943) -17.2;+27.7 24.2 
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Likewise only one SSD value exceeds 30% of the average, most being within 15%. Note 
however that the average values in Tables 2 & 3 are generally similar. A tentative conclusion 
from this analysis is that robust model parameters can be derived from data with less than 5% 
of the coherence values below 0.8. Conversely, if greater than 15% of the coherence points 
lie below 0.8, then the estimates are likely to exhibit wide spread in values. The results in 
Table 3 show that there is a slightly better correlation between theory and flight, than is 
displayed in Table 2, but for model validation, the true benefit of the results in Table 3 is that 
the spread in the identified values is much less. This gives a more robust set of derivative 
values which gives increased confidence in the use of the average values for the comparison 
with theory. 

5.3 Parameter sensitivitv to a priori estimates 

In this section, a specific case is used to illustrate how different a priori estimates (that 
is, the starting guess used for the iterative parameter searches) of some derivatives can 
influence the identified values, and the resulting validation of the theoretical model. The 
transfer function matching approach is used, and the particular case involves the terms in the 
dynamic inflow equation 

vi = ivi vi + i[3o f3o + iw w + ieo eo (13) 

which will take substantially different values depending on the value of the additional air 
mass rna that is used. Throughout this paper the value of air mass, rna, used is that due to 
Carpenter and Fridovitch [16] - equation (14) shows the values of the dynamic inflow 
equation derivatives thus derived. The work of Pitt and Peters [ 17] gives a lower air mass 
value and the corresponding values are shown in equation (15). 

vi = -9.197 vi 36.54 f3o + 7.3llw + 589.0 eo (14) 

vi = - 14.347 vi 57.002 [30 + 11.405 w + 9 I 8.840 e0 (15) 

ie relative to equation (14), the derivatives are all increased by a factor of about 1.56. The 
derivatives identified using each set of a priori estimates are 

vi = - 8.797 vi 45.631 f3o + 6.595 w + 593.896 60 (16) 

vi = - 9.229 vi - 51.653 f3o + 9.643 w + 911.012 60 (17) 

where the former is that obtained with a priori values shown in equation (14), the latter using 
the values in equation ( 15). The results shown are based on the average of the three best 
datasets as defined in the previous section. The quality of fit of the transfer functions is the 
same in each case. This is an important result, and significant from the point of view of 
model validation. This is because with the exception of the derivative ivi• the identified 
results are inconclusive regarding which value of rna ought to be used in the theoretical 
model, the only compelling evidence to support the Carpenter and Fridovitch value, in both 
cases, being the term ivi· This sensitivity to a priori estimates is undoubtedly due to the fact 
that the identification is performed without the aid of any inflow information. It is 
emphasised that these results are not the result of a convergence problem with the algorithm 
used to fit the 3 DOF model structure to the flight-identified frequency responses. The 
corresponding transfer function polynomials are identical in each case. The nature of this 
difficulty then is that the problem is underdetermined, having only two frequency responses 
(and hence transfer functions) with which to determine a state-space model that is actually 
fully described by three transfer functions. 
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This result implies that if the model is to be validated by comparison with identified 
derivatives, then the selection of the a priori estimates takes on some importance. The impact 
of this robustness issue on model validation can be assessed by examining the transfer 
function characteristics of the theoretical model, with both values of rna· The value of rna 
chosen for the theoretical model has a significant impact on the transfer function poles and 
zeros. Table 4 compares the poles of the theoretical model configured with both Carpenter 
and Fridovitch's as well as Pitt and Peters' value of rna· In the case of the former, the inflow 
mode is considerably less well damped, although the coning mode is slightly better damped. 

Table 5 compares the corresponding transfer function zeros. Perhaps the only important 
difference, (since they lie in the right-half, unstable part of the s-plane) is in the complex pair 
in the vertical velocity to collective transfer function. 

TABLE 4 --COMPARISON OF THEORETICAL MODEL TRANSFER FUNCTION 
POLES 

Mode 
inflow 

coning 
heave 

Carpenter-Fridovitch 
-11.558 

-8.411± 25.344i 
-0.196 

Pitt-Peters 
-18.417 

-7 .565±24.908i 
-0.202 

TABLE 5 COMPARISON OF THEORETICAL MODEL TRANSFER FUNCTION ZEROS 

Transfer function 

vi/Bo 

j)o/9o 

w/8o 

Carpenter-Fridovitch 

(0. 752);(6.480±27. 723i) 

(0.094);(-6.800) 

( -4.991);(0.608±39.016i) 

5.4 Parameter sensitivity to frequency range 

Pitt-Peters 

(0. 752);( 6.480±27. 723i) 

(0.095);( -1 0.506) 

(-7 .65l);(0.876±39.385i) 

Figure 4 shows how all fourteen derivatives in the model vary with the frequency range 
used, when identifying models using the transfer function matching approach. In all cases, 
the lowest frequency point forms the start of the frequency range, and each derivative is 
plotted against the upper limit in the frequency range. For convenience, the derivatives have 
all been normalised by the corresponding theoretical value given in equation (II). 
Normalised values of I indicate that theory and flight correlate identically- any value less 
than zero would indicate that theory and flight derivatives had opposite sign. The agreement 
between theory and experiment is discussed later; in this section, the important feature 
examined is the point at which the derivative values cease to vary significantly with 
increasing frequency. With the coning and inflow derivatives, there is a definite trend with 
increasing frequency, and in these cases the identified derivatives cease to vary significantly 
with increasing frequency above about 3Hz. Such a trend is not as obvious in the Z-force 
derivatives, and it is here that evidence suggests that the derivatives are still changing and 
therefore that even 3.5Hz is an insufficient frequency range for robust identification of these 
derivatives. Perhaps such a result is not entirely surprising- it is the experience with these 
model-matching methods at RAE that resonant peaks, and just as importantly the following 
gain and phase 'roll-off, generally have to be included to define properly any model. In the 
particular case examined in this Paper, the resonant peak in coning and vertical acceleration to 
collective is around 3-3.4Hz, consistent with the result just observed. This tends to confirm 
then, that one ought to identify across a frequency range appropriate to the bandwidth of the 
model. This is 3-4Hz with this model because of the impact of the coning dynamics, which 
have a natural frequency just slightly in excess of 3Hz. 
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Figure 4 Sensitivity of parameter estimates to frequency range - transfer function matching 
method 

5.5 Parameter sensitivity to constraints 

Constraining parameters is a common feature of identification approaches. Sometimes it 
is done when limited information is available and the model has many parameters, and the 
method used may not converge onto a realistic solution, if at all. In such cases, a derivative 
may be fixed at a value that is theoretically based. Alternatively, the structure of the model to 
be validated may suggest some natural constraints that can be used to minimise the number of 
independent terms to be identified. Both types of constraint are explored in this section. 

Firstly, with reference to equation ( 4), it can be seen that there are five relational 
constraints. Previous work [21 however, showed that the constraints involving the control 
terms were not appropriate to invoke, (this was attributed to unmodelled engine/rotor 
governing dynamics) leaving three. Solutions based on this approach were obtained using the 
transfer function matching method, and the result is shown in Table 6. Note that there are 
some differences, but in general both models are very similar. In the context of model 
validation, the differences shown in Table 6 are not significant. 

Secondly, one of the derivatives was fixed at a theoretical value. Numerical constraint 
such as this are a common feature in identification, but is used here to illustrate that, across a 
broad frequency range, two very different solutions can have apparently very similar 
frequency responses. In addition, it is shown that choice of one of the models over the other 
has a significant impact on model validation. The results presented can be found in the earlier 
work [2,3 ,41 and are included in this Paper for completeness. The theoretical model 
derivatives are those given by Chen and Hindson's original model configured as a Puma ie 
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equation (12). Further, the identified models were derived using a different test run to that 
used elsewhere in this Paper. Finally, the three constraints fvi = • fw, Zvi = -Zw and i~0 = 
-312Riw were active in the identification. The results are given in Table 7. One of the models 

has been identified with Ze0 constrained at the theoretical value. This is compared with the 

solution obtained with Ze0 free where it took the opposite sign. It is clear that theory, as 
given by Chen and Hindson's equations, ie without any of the additional modelling features 
outlined in this Paper, displays much better correlation with the model identified with Zeo 
constrained, than it does with the other model. In fact, it could almost be argued from this 
result that the theoretical model does not need any improvement. 

TABLE 6-- COMPARISON OF SOLUTIONS- 3 RELATIONAL CONSTRAINTS VS. 
NO. CONSTRAINTS 

Derivative Theoretical Value Unconstrained 3 constraints 

ivi -9.197 -9.147 (0.0472) -9.271 (0.0500) 

ij3o -36.54 -40.76 (0.5602) -35.79 (0.2709) 

iw 7.3ll 6. 703 (0.0892) 7.161 

ieo 589.0 599.4 (3.0945) 578.2 (2.8634) 

fvi -2.294 -4.245 (0.0248) -4.866 

f~o -821.9 -836.7 (1.5973) -837.2 (0.3895) 

f~o -18.75 -24.47 (0.0855) -25.46 (0.1196) 

fw 3.317 4.635 (0.0443) 4.866 (0.0200) 

feo 517.5 682.8 (1.3974) 705.2 (1.5643) 
Zvi 0.755 0.54 7 (0.0050) -0.497 (0.0100) 

Z~o -102.3 -96.46 (0.4640) -102.5 (0.4709) 

Z~o 2.868 1.393 (0.0164) l.l31 (0.0100) 

Zw 0.755 0.547 (0.0315) -0.497 (0.0100) 

Zeo -79.14 -48.87 (0.3510) -43.28 (0.4254) 

(parameter standard deviation in parentheses) 

This assessment is reinforced by Figure 5, which appears to show that the model identified 
with Ze0 constrained gives, at least by visual inspection, just as good a fit with the 

flight-derived frequency response as the model identified with Ze0 free, certainly up to 3Hz. 
In this figure, the vertical acceleration to collective gain of both identified models shown in 
Table 7, is compared with the frequency response derived from the sweep data. (Here the 
analysis is optimised to focus on frequencies higher than the 3.5Hz used in the 
identification). However, differences become visually apparent beyond 3Hz and it can then 
be argued that the characterisation of the Puma obtained with Ze0 free is the more appropriate 
one for model validation. It is clear then, that the use of a constraint can substantially affect 
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the derivative values, and so care must be exercised if circumstances are such that this has to 
be done, eg if an acceptable solution cannot be obtained because of insufficient state 
information, such as the case in section 5.3 above. In this case, the impact on model 
validation conclusions are significant. Where a fixed constraint has to be used, a potential 
way forward would be to identify a family of models, effectively attempting to validate 
theory in a parametric manner. 

TABLE 7 --USE OF NUMERICAL CONSTRAINTS- COMPARISON OF TWO 
IDENTIFIED MODELS WITH THEORY 

1 2 
Derivative Theory Identified value Identified value 

ivi -11.441 -9.809 -8.553 

ij3o -39.272 -41.955 -35.340 

iw 7.856 8.393 7.070 

iao 589.369 606.252 578.833 

fvi -5.692 -5.650 -4.107 

f[3o -848.588 -886.946 -803.720 

f[3o -32.162 -31.219 -22.517 

fw 5.692 5.650 4.100 

feo 887.682 764.270 638.582 

Zvi -0.168 -0.233 0.449 

Zf3o -177.799 -205.271 -109.410 

Zf3o -1.618 -0.436 2.619 

Zw 0.168 0.233 -0.449 

Zeo 44.655 44.655 -44.390 

1 Zeo fixed at theoretical value 

2Zeo free 

It is interesting to note that time-domain comparison of both models' prediction of the 
helicopter's response to a step input, is unable to resolve this potential robustness problem. It 
might be thought that this would be a particularly efficatious way of deciding which of these 
two models is the more appropriate representation of the Puma, because of the difference in 
their respective Ze0 derivatives. In response to a given step, one would give a positive 
increment in acceleration at time zero, as opposed to the other which would give a negative 
increment. Under ideal circumstances, this difference could be observed in the initial vertical 
response to the step input, and the more appropriate model would then be apparent. In this 
case however, two aspects of the problem mask this feature. Firstly, the differences between 
the two models manifest themselves only at very high frequency, which means that inputs 
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Figure 5 Vertical acceleration to multiblade collective frequency response- comparison of 
models identified with fixed and free Ze0 

other than pure steps are unlikely to have the frequency content required. Secondly, pilot 
neuromuscular- and actuation system lags do tend to result in 'nominal' steps actually 
appearing as ramps. Results to illustrate this are shown in Figure 6, which compares the 
vertical acceleration response to a nominal step input in collective, measured in flight, with 
that predicted using both identified models. The input only has the frequency content to excite 
both models at the lower frequencies where both models give an excellent match with the 
flight-derived frequency response. 
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Figure 6 Comparison of the prediction of the response to a step input given by both 
identified models - transfer function matching method 

t Csl 

The fmal example in this section concerns the output-error method. When a rank-deficient 
information matrix is used for the output-error method (indicating, on the basis of the data, 
implicit relationships between groups of parameters) convergence is obtained with 14 
parameters, Table 8. Theoretical flapping equation derivatives in fact, compare more 
favourably with this output-error set of estimates than with any other set in the paper. This 
result indicates that the 14 derivatives are not entirely independent, and that it is valid to 
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consider relationships within the model structure. It also serves as a reminder that 
engineering judgement (in this case, the incorporation of relationships into the model) is a 
key component in system identification. Results obtained using rank-deficient output-error 
solutions are fully discussed in Ref. 12. 

TABLE 8-- COMPARISON OF DERIVATIVES IDENTIFIED BY FREQUENCY 
RESPONSE AND OUTPUT-ERROR METHODS 

Derivative Theoretical Value Frequency response I 

ivi -9.197 -9.147 (0.0472) 

i~o -36.54 -40.76 (0.5602) 
iw 7.311 6.703 (0.0892) 

ieo 589.0 599.4 (3.0945) 

fvi -2.294 -4.245 (0.0248) 

f~o -821.9 -836.7 (1.5973) 

f~o -18.75 -24.47 (0.0855) 

fw 3.317 4.635 (0.0443) 

feo 517.5 682.8 (1.3974) 

Zvi 0.755 0.54 7 (0.0056) 

Z~o -102.3 -96.46 (0.4640) 

Z~o 2.868 1.393 (0.0164) 

Zw -0.628 -0.474 (0.0315) 

Zeo -79.14 -48.87 (0.3510) 

I parameter standard deviation in parentheses 
2parameter standard deviation in parentheses 
3values obtained using rank deficient information matrix (rank 9) 

6. DISCUSSION 

Output-error2,3 

-7.148 (0.38) 

-39.19 (0.50) 
8.360 (0.31) 

609.9 (0.03) 

-3.555 (0.13) 

-804.8 (0.18) 

-22.25 (0.18) 
3. 721 (0.57) 

638.0 (0.11) 

0.266 (0.06) 

-112.9 (1.33) 

3.766 (0.16) 

-0.627 (0.11) 

-47.33 (1.09) 

This Paper bas sought to illustrate, by example, some aspects of model identification that 
can give rise to concerns over whether or not the identified parameters can be used with any 
confidence for model validation. It is the case however that the key to successful 
identification in this context lies in the expertise of the user, not only with the identification 
tools available, but also coupled with a physical understanding of the nature of the model to 
be validated as well as the experimental data used. Engineering judgement plays perhaps the 
major part in 'robust' system identification. 

The results suggest that models incorporating higher order dynamics do not present any 
special difficulties in relation to identifiability, if state information is available, and its 
frequency content covers a range appropriate to the bandwidth of the dynamics of concern. 
The latter will have an impact on flight experiment design. For example, it could preclude the 
use of aircraft that cannot be excited by high frequency control inputs because of 
airworthiness considerations. The actuation system characteristics may be such that they 
attenuate important higher frequency content in the pilot's input. The aircraft itself may have 
natural dynamics that are outside the frequency range across which a pilot can apply inputs. 
This is almost the case for the model structure examined in this Paper, where the coning 
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mode natural frequency is approximately 3Hz. In the case of the Puma, this means 
conducting flight tests and identification above 3Hz. With a Lynx or Gazelle however, this 
figure would rise to 5Hz. It is intended to investigate such topics in the future with the RAE 
Bedford Lynx helicopter. 

Although the Paper's main concern has been the sensitivity of stability and control 
derivatives to the identification approach used, a model validation result inherent to the 
analysis of sensitivity, and further to that published previously, is of complementary interest. 
This concerns the inflow modelling implied by the use of the lift deficiency factor given by 
equation (10). While the flight results do confirm that the lift deficiency effects ought to be 
included in the theoretical model, the outstanding discrepancies between theory and flight in 
the coning and Z-force equation, indicate that the value for C'1 of 0.55 underestimates that 
implied by the flight results. A value of C'1 = 0.65 would resolve the remaining discrepancy 
between theory and flight. It could be the case that the analytical basis on which the lift 
deficiency factor (and therefore the inflow model itse!O is developed, is inconsistent with the 
real wake structure. At the relatively low thrust coefficients at which the Puma was flown for 
the experiments described in this Paper, strong tip vortex and tail rotor interaction effects are 
present [4]. These effects can be minimised if the rotor is operated at high thrust coefficient 
[18], and future work should re-examine the validation of a coupled 3 DOF (degree of 
freedom) model, and the lift deficiency factor given by equation (I 0), in such a regime. 

7. CONCLUSIONS 

The general conclusion is that linearised state-space derivative models of helicopter 
behaviour that incorporate higher order dynamics, can be identified from flight test data with 
sufficient confidence to allow the results to be used in model validation. While the identified 
coupled 3 DOF body/coning/inflow model does not exhibit complete robustness to the choice 
of approach available for this Paper, the use of engineering judgement and an awareness of 
the theoretical basis of the model to be validated, can minimise to an acceptable extent the 
specific identifiability concerns highlighted here. The following conclusions can also be 
made, and relate to the specific items addressed in the Paper. 

1. The output-error and transfer function identification and fitting approaches can be used to 
complement one another. They gave comparable results and either can therefore be used with 
confidence. 

2. The identified model parameters were sensitive to frequency range. This sensitivity tended 
to diminish above frequencies of 2.5Hz for the inflow and flapping derivatives, and 3Hz for 
the Z-force terms. 

3. The identified model parameters in the dynamic inflow equation are sensitive to variability 
in the corresponding a priori estimates used as initial guesses in the parameter estimation. 
This can affect the assessment of which value of air mass to use with the theoretical model. 

4. Constraining variables to reflect the similarity among derivatives in one of the theoretical 
models, has little effect on the values of the identified derivatives. However, constraining a 
variable at a theoretical value can have a substantial impact, that could influence model 
validation. Full and rank deficient output-error solutions do indicate that the 14 derivatives 
are not wholly independent, and that some form of relational constraint in the model 
structure, or constraint derived from the properties of the test data, would be appropriate. 
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5. With the transfer function matching approach, identified derivatives exhibited substanial 
sensitivity to test run. This was attributed to the use of identified frequency responses with 
poor coherence. Use of responses with good coherence, gave identified derivatives that were 
vastly less sensitive to test run. 
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