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Abstract 
Subspace identification uses well-understood techniques based on linear algebra and numerical methods. 
However, the state space model matrices which are obtained from conventional subspace identification 
algorithms are not necessarily associated with the physical states. This may be evaluated as a deficiency for 
the area of helicopter flight dynamics where physical parameter estimation is mainly conducted for 
mathematical model improvement, aerodynamic parameter validation and flight controller tuning. There are a 
limited number of studies in literature, which tackle this problem. Some of these studies are based on 
nonlinear optimization. However this optimization problem may have infinitely many solutions if we do not 
define well-founded constraints. It may be possible to estimate the real physical parameters by establishing 
the constraints which compatible with practical values. This study focuses on to the determination physical 
constraints for the parameters which are confined to the problem described here. For this purpose, the 
subjected parameters are examined according to their physical meaning. Both the expected theoretical 
values and the experimental knowledge are evaluated to determine the constraints. Then, many runs are 
conducted for these predefined constraints with randomly selected initial conditions.  
 
 

1. NOMENCLATURE 

N4SID : “Numerical Algorithms for 
Subspace State Space System 
Identification” 

MOESP :“Multivariable Output-Error State 
Space”. 

      
:translational velocity components 
(longitudinal, lateral, vertical),       

      :angular velocity components (roll, 
pitch, yaw),       

    : Euler angles (roll, pitch),     

        
:state space matrices found by    
subspace identification 

            
:state space matrices found by 
physical subspace identification 

           :force to translational velocity 
derivatives,     

           :force to angular velocity derivatives, 
           

           :moment to translational velocity 
derivatives,            

           :moment to angular velocity 
derivatives,     

              :force to control input derivatives, 

          

              :force to control input derivatives,  
           

  :gravity force,        

  :air density,           

   :main rotor lift curve slope,       

  :advance ratio 

  :main rotor speed 

  :main rotor radius,    

   :blade area,     

   :mass of helicopter,    

  :rotor solidity 

NA :Not Applicable 

2. INTRODUCTION 

The interest of helicopter design society on 
subspace identification methods arise in the last 
decade [1]. Until now, some variants of subspace 
identification algorithms like N4SID and MOESP 
([1] – [10]) were applied on a number of 
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helicopters by using simulation or flight test data. 
However, the state space model matrices which 
are obtained from conventional subspace 
identification algorithms are not necessarily 
associated with the physical parameters [1]. 
Physical parameter estimation based on 
subspace identification for helicopter systems is 
still being investigated. There exist studies on this 
problem in the area of helicopter flight dynamics 
([11] – [13]). These studies utilize Laguerre filters 
to convert the discrete time state space models 
into continuous models. Another approach for 
finding the physical parameters from subspace 
identification results is optimization. Similarity 
transformation of a discrete LTI system         
which leads to a new set of state space matrices 
is used for this purpose (Eq (1)-(3)). 

(1)          

(2)         

(3)       

The aim is to find the          matrices with the 

similarity transformation matrix   which lead us to 
the physical parameters. The objective function is 
defined as the sum squares of the difference 
between the right and left side of the similarity 
transformation equations Eq. (1)-(3) where the 
equality and the inequality constraints are 
determined with physical insight.  

 

There are a limited number of studies in the 
literature which tackle with this problem ([14]- 
[19]). These studies propose basic methodologies 
like least square or quadratic optimization and 
most of them are applied for relatively simple 
systems. Helicopter identification requires far 
more variables to be solved. Therefore it may 
require more advanced optimization algorithms. 
The preliminary study is tackled in [20] to estimate 
the helicopter physical parameters from subspace 
identification. In [20], it is assumed that all of the 
stability and control derivatives are known with 
±20% error. The initial values of these parameters 
are selected as randomly. The aim of this study to 
enhance the methodology given [20] by setting 
the constraints with more specifically selected 
values. For this purpose, the constraints for the 
stability and control derivatives are chosen 
regarding the well-known dynamics and the 
measurable properties of the helicopter.  

3. SUBSPACE IDENTIFICATION 

For a given input output data set, subspace 
identification can find the state space matrices 
        and the hidden states   even if the 

dimensions of   is unknown. Out of many 
available subspace identification methods in the 
literature ([1]–[4]), the “Robust Subspace 
Algorithm” which proved itself in many industrial 
applications ([1] Chapter 4, Algorithm 3) is 
selected in this study. “Robust Subspace 
Algorithm” begins with the calculation of the 
oblique projection as given in Eq. (4). 

(4)            

   is the Block Hankel matrices of the future 

outputs.    is Block Hankel matrices of the future 

inputs.    is the Block Hankel matrices of past 

inputs and outputs. This operation projects    

along the row space of    on the row space of   . 

Singular Value Decomposition (SVD) of    is 
performed for model order reduction (Eq.(5)).  

(5)                     

  , which is now represented in the SVD form, can 
also be represented by the product of the 
extended observability matrix,    and the state 

sequence matrix     The proof of this is given in 
[1] 

(6)            

Another projection matrix is the prediction matrix, 
  . The prediction matrix,    is considered as an 

optimal prediction of the future output,    on the 

subspace formed by Block Hankel matrices of 
past inputs and outputs,    and the Block Hankel 

matrices of the future input,   . The 

corresponding formulation is shown in Eq. (7). 

(7) 
       

  

  
  

We have now defined all of the matrices required 
to calculate the system matrices   and   

according to the theory. System matrices   and   
can now be calculated from Eq. (8) using the least 
square approach (The related derivations are 
given in [1] Chapter 4). 

(8)  
    
     
    

   
 
 
   

        
  
  

 

 
where the intermediate matrix,   and the lower 

block triangular Toeplitz matrix,    are given in [1]. 
Here   ,   are the covariances of the process and 
measurement noise of the residuals. 

Then the remaining system matrices   and   are 
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calculated by solving the minimization problem 
shown in Eq. (9). The intermediate steps are 
explained in [1], Chapter 4 in more detail.  

(9)     

          
  
    
     
      

   
 
 
   

             
 

 

The system matrices         found through the 
above given formulation do not necessarily have a 
direct physical interpretation but they have a 
conceptual relevance, [1]. According to the 
similarity transformation theory [21], the state 
vector of a discrete LTI system can be 
transformed into another state vector. This is 
shown in Eq. (10). 

(10)           

Such an operation leads to a new set of state 
space matrices as shown in Eq. (11)-(13) 

(11)            

(12)           

(13)         

This will hopefully lead us to the physical 
parameters which take part in             and 

     matrices the with the corresponding similarity 

transformation matrix,  . Since both the physical 
system matrices and the similarity transformation 
matrix is lacking, a candidate solution is the 
minimization of the difference between the left 
hand side and the right hand side of Eq.(11)-(13). 
This can be achieved by an optimization that 
makes use of the lower bound of the sum squares 
of the difference between the right and left sides 
[17]–[19]. In order to reduce the nonlinearity of the 
problem we rewrite the equations as in Eq.(14) 
and Eq.(15), [17]. 

(14)          

(15)         

4. MODEL STRUCTURE 

The model structure of an aerospace vehicle is 
usually obtained from the governing 6-DOF flight-
dynamics equations. These equations inherently 
contain a substantial amount of parameters 
required for validating mathematical models, wind 
tunnel test results and for tuning the flight 
controller gains. 

The state space model structure derived for the 6-
DOF nonlinear equations of motion for a 

helicopter [22] can be written as in Appendix. The 
force derivatives are normalized by mass, and the 
moment derivatives are normalized by the 
corresponding moments of inertia. Moreover for 
the moment derivatives, a pre-multiplication by the 
inertia tensor has been carried out so that they 
implicitly include products of inertia terms (i.e. 
         etc.), [22]. The proposed model structure 

has 8 states and 4 inputs. These are given in 
Eq.(16)-Eq.(18) respectively. 

(16)                      

(17)                          

(18)                           

When the rest of the state space matrices are 
concerned, with the assumption that all of the 
system states are perfectly measurable, the 
associated      is an identity matrix and 

according to our problem formulation      is equal 

to zero. 

Since all of the states are assumed to be perfectly 
measurable, the total number of parameters to be 
estimated in the     ,      and   matrices are 36, 

24 and 64 respectively. Therefore altogether there 
are 124 unknowns. Such a problem can be 
classified as an optimization problem with large 
number of variables. The solution methodology is 
explained in the following paragraph. 

5. PARAMETER ESTIMATION 

Consider an optimization problem; 

(19) 
               

             
 

 

The real-valued function         which is 
desired to be minimized is named as an objective 
function. The vector   is an vector with n 

independent variables:                  
  

  . The set   is a subset of    called the 
constraint set or feasible set. In our problem, the 
objective function shown in Eq. (20) is the sum 
squares of the difference between the right and 
left side of the similarity transformation equations 
Eq. (13), Eq.(14), and Eq. (15), [17] – [19]. 

(20) 

   
 

     

    
 

                    
 

                
 

                
 
  

Due to the nonlinear characteristics of the 
objective function, this problem can be handled by 
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NonLinear Programming (NLP), [14]–[16]. In the 
literature, there exist a number of algorithms for 
solving NLP problems. In our case, we decided to 
concentrate on “large-scale” NLP algorithms 
where the total number of variables is greater than 
one hundred. In this problem we selected the 
Sequential Quadratic Programming (SQP) which 
is well-known algorithm for large scale problems. 

6. CONSTRAINT SELECTION 

From infinitely many state space model, it may be 
possible to find a solution set which consists of 
physical parameters. One way to estimate 
physical model is constraint selection. Defining a 
proper constraint values may ensure as to 
estimate the physical parameters. For this 
purpose, following subjects are examined to 
determine the constraints.  

6.1. “insignificant” derivatives 

As it is mentioned above, there exists 60 
parameters to be estimated (36 parameters in 
     and 24 parameters in     ) in our problem. 

However, they are not all the same in the sense of 
significance. Some of them are quite insignificant 
compare to the others. In this study, the 
insignificant parameters are set to zero as it is 
common practice. In fact, these “insignificant” 
parameters vary from helicopter to helicopter due 
to their dynamic characteristics. Flight region is 
another condition which affects the elements of 
the “insignificant” parameters set. For common 
practice, the stability parameters                 

            and the control parameters          

            
      are assumed as “insignificant”. 

Therefore these parameters are set to zero.  

Considering the high forward velocity flight 
conditions where the inertial velocities are so 
dominant, the aerodynamic effects may be 
negligible (e.g.,        ), [22]. 

6.2. Stability derivatives 

Some parameters implicate powerful information 
about the helicopter stability. These derivatives 
are tabulated in Table 1 with the expected values 
regarding stability, [22]. 

Table 1 Derivatives with Expected Values to Ensure 
Stability 

Stability Criteria Expected Value 

Dihedral effect      

Roll damping      

Yaw to roll coupling      

Static speed stability      

Incidence stability      

Pitch damping      

Weathercock stability      

Adverse yaw      

Yaw damping      

Drag damping      

Side Force Damping        

Heave Damping      

 

Prior stability knowledge about the helicopter 
which is under examination may give some hint 
about the sing of these derivatives.  

6.3. “Quantifiable” derivatives 

Some derivatives can be formulated in terms of 
quantifiable parameters. For example, 
approximation for heave damping derivative can 
be written as in Eq. (18) for forward flight 
condition, [22]. 

(21)      
          

   

 
 

      
  

The derivative of thrust with main rotor collective 
(     ) and longitudinal cyclic (     ) which can be 

obtained from the thrust and uniform inflow 
equations can be formulated as in Eq. (22) and in 
Eq. (23), [22]. 

(22)         
 

 

         
        

          

 

(23)          
         

   

          

 

7. IMPLEMENTATION 

The method described on the previous sections, is 
implemented to flight simulation data. For this 
purpose we used a nonlinear model of multi role 
combat helicopter which was developed in 
FLIGHTLAB. The main rotor has a fully articulated 
model which includes the associated aerodynamic 
database, structural dynamics, induced velocity 
and interference effects. Tail rotor module uses 
“Actuator Disk Model”. Airframe model is 
comprised of fuselage, horizontal tail and vertical 
tail components. All of the associated 
aerodynamic data belongs to wind tunnel test 
results and numerical analysis performed in 
FLUENT environment. The flight stability 
augmentation system model is embedded in the 
flight control module. Rate feedback stabilization 
systems for roll, pitch and yaw channels are 
enabled to increase system stability. These 
stabilization systems also include the main rotor 
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and tail rotor actuator models. Actuator models 
are linear. 

 The nonlinear model of multi role combat 
helicopter is linearized around a specific trim point 
(level flight at 70 knots, 2000 ft MSL). 
Linearization is performed by using the 
linearization feature of FLIGHTLAB. In this 
process, inputs are selected as lateral cyclic, 
longitudinal cyclic, pedal and collective; states are 
selected as translational velocity components 
(longitudinal, lateral and vertical velocity), angular 
velocity components (roll, pitch and yaw rates), 
roll angle and pitch angle; the outputs are 
assigned to the states. The obtained linear model 
is transferred to MATLAB environment to utilize 
for the rest of the analysis. 

Now we shall proceed by generating input and 
output data required for identification. One of the 
most optimal input signal types which meet the 
well-known requirement of persistently exciting 
[8], [25] is 3-2-1-1. This input sequence is 
sequentially applied for each channel during the 
same identification test. Signal to noise ratio is 
taken into account while selecting the amplitudes 
of the input signals. Moreover, helicopter is not 
allowed to drift away from the trim condition too 
much [25]. For this purpose input signal 
amplitudes are limited in such a way that the 
helicopter attitude angles stay in the range of      
deg around the specific trim point and the 
helicopter angular velocity components shall not 
exceed      deg/s. These considerations about 
the input design are expected to ensure the 
quality of identification. Constructed signals for 
each input channel are shown in Fig. 1. These 
inputs are fed to the linear model in MATLAB 
environment to generate the outputs required for 
identification. The corresponding outputs are 
presented in Fig. 2. 

Fig. 1 Input Signals (3-2-1-1) 

Since we have an input and output set, we can 
initiate the identification process. The “Robust 
Subspace Algorithm” ([1], Chapter 4, Algorithm 3) 

is utilized to estimate the system matrices in state 
space form. These matrices which are 
represented in discrete time linear model are then 
converted into their continuous time counterparts 
using “d2c” command of MATLAB. This operation 
is required since we are seeking for the 
continuous time form of the system model in order 
to access to the physical parameters. According 
to the similarity transformation theory (Eq.(13)-
(15)), the objective function presented in Eq. (20) 
is symbolically generated for our problem. 
MATLAB symbolic toolbox is used for this 
purpose. 

There are infinitely many numbers of solutions for 
this minimization problem. However, our aim is to 
reach to a solution that corresponds to the 
physical domain. In this study, we propose two 
complementary approaches about constraint 
determination. In the first step, the constraints are 
established by referencing the true model data.  
As in [20], the constraints are selected 
considering linearized outputs of FLIGHTLAB with 
suitable error margins ([-20% 20%]). These error 
margins are expanded to [-50% 50%] in this 
study. Then, as a second step, the constraints are 
reshaped according to physical content of the 
relevant parameters. For instance, if we have a 
priori information about the stability characteristics 
then we can estimate the sign of the stability 
characteristics more or less. More specifically, if 
we have an idea about the pitch damping 
characteristics of the system for predefined flight 
condition, we can set a sign constraint for the 
relevant derivative (  ). All of the stability related 

parameters which are listed in Table 1 are 
bounded due to stability characteristics of our 
system which is under examination. Then, we 
eliminate the insignificant parameters which are 
already mentioned in paragraph 6. In addition to 
all these, the constraints for some derivatives (  , 
      and      ) are set by calculating the 

approximations equations (Eq.(18)-(20)) for this 
study. The constraints for all of the stability and 
control derivatives defined in the first step are 
combined with the constraint values for the ones 
specified in the second step. The final constraints 
are set to a confined space which is acquired by 
intersecting of these values.  

The initial values are randomly selected between 
the constraints. In order to assure that the solution 
is consistent, the optimizations are repeated for 
many times of randomly selected initial conditions 
in order to increase the confidence level. 

Until now, we define how we select the constraint 
and initial value determination for the stability and 
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control derivatives which compose the state and 
control matrices (         ). However, the T 

matrix whose elements are not physical do not 
have any constraints in our problem. Besides, 
considering Eq. (13), the initial value of T matrix is 
set to the inverse of the C matrix (obtained by 
subspace identification). This is not a compulsory 
practice; however a clever initialization of T that 
complies with the equations of the similarity 
transformation theory speeds up the 
computations. After setting up the constraints and 
the initial conditions, we continue with the 
optimization process. The fmincon solver of 
MATLAB is utilized as the optimization tool for our 
problem. The SQP algorithm is utilized here under 
a variety of initial conditions and constraints. The 
fmincon solver is externally assisted by the 
symbolic gradient of the objective function during 
the optimization process. This symbolic gradient is 
computed via the gradient command of MATLAB.  

The optimization results are presented in 
Appendix (Fig. 3 and Fig. 4) Iteration index versus 
minimization output curves gathered from all of 
the optimization runs are presented here 
respectively for each stability and control 
derivatives. Each figure contains 50 optimization 
runs that are initiated for different initial values. 
Each figure is normalized by the true value of the 
associated derivative (in other words if 
optimization outputs converge to 1.0 this would 
mean that the estimation is perfect).The percent 
estimation errors for each parameter are tabulated 
Table 2. The formula for the calculation of the 
percent estimation error is given in Eq. (24). 

(24) 
                    

  
                          

               
     

Another tool for the verification of the process is 
the comparison of time domain outputs of the true 
model and the estimated counterpart. For this 
purpose physical system matrices are constructed 
using the above presented optimization results. 
Then the true model and the estimated one are 
simulated with the same 3-2-1-1 excitation signals 
(Fig. 1). Afterwards, the Theil’s inequality 
coefficient (TIC) is calculated using the two time 
domain outputs according to Eq.(25) [26] – [28]. 

(25)  

   

  
                    

  
   

              
  

                  
  

   

 

As a rule of thumb, TIC values under 0.3 mean 
that the two models are complying [26]. In our 
case the TIC value is obtained as 0.21 verifying 
that the two models are highly complying and 
indicating that our estimation is quite accurate. 
The comparison of the true model outputs with the 
outputs of the model obtained through subspace 
identification and the outputs of the model 
obtained through physical subspace identification 
are shown Fig. 2. 

 

Fig. 2 Outputs for 3-2-1-1 Excitation Signals 

In order to verify that our identification is still valid 
under different inputs, a doublet input is applied in 
four channels sequentially in another single test 
case. The inputs and the outputs of this test case 
are given in Fig. 5 and Fig. 6 respectively. The 
corresponding TIC value for this test case is 0.08. 

8. CONCLUSION 

This study presents implementation of physical 
subspace identification for a realistic helicopter. 
The unphysical system matrices are obtained by 
subspace identification and physical parameters 
are estimated by nonlinear constrained 
optimization. However this optimization problem 
may have infinitely many solutions if we do not 
define well-founded constraints. This study 
defines a methodology for constraint 
determination of the physical parameters. The 
results shows that it can be possible to find a 
solution if the constraints are assessed with 
physical meaning even though the error bound of 
all parameters are set to very large values (±50% 
for this problem).  
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Fig. 3 Convergence of Stability Derivatives 
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Fig. 4 Convergence of Control Derivatives 
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Table 2 Estimation Errors of Stability & Control Derivatives 

 

x1 Xu 1/s -50 6.632 50 x31 Nu rad/(ft.s) -50 -2.510 50

x2 Xv 1/s NA NA NA x32 Nv rad/(ft.s) -50 6.457 50

x3 Xw 1/s NA NA NA x33 Nw rad/(ft.s) NA NA NA

x4 Xp ft/(rad.s) -50 19.656 50 x34 Np 1/s -50 0.973 50

x5 Xq ft/(rad.s) -50 -30.539 50 x35 Nq 1/s -50 -0.184 50

x6 Xr ft/(rad.s) -50 8.928 50 x36 Nr 1/s -50 -0.081 50

x7 Yu 1/s NA NA NA x37 Xδlat ft/(s2%) -50 -2.400 50

x8 Yv 1/s -50 -3.494 50 x38 Xδlon ft/(s2%) -50 -2.403 50

x9 Yw 1/s NA NA NA x39 Xδped ft/(s2%) NA NA NA

x10 Yp ft/(rad.s) -50 6.476 50 x40 Xδcol ft/(s2%) -50 16.211 50

x11 Yq ft/(rad.s) -50 -33.843 50 x41 Yδlat ft/(s2%) -50 1.204 50

x12 Yr ft/(rad.s) -50 -0.121 50 x42 Yδlon
ft/(s2%) -50 -8.352 50

x13 Zu 1/s NA NA NA x43 Yδped
ft/(s2%) NA NA NA

x14 Zv 1/s NA NA NA x44 Yδcol
ft/(s2%) NA NA NA

x15 Zw 1/s NA NA NA x45 Zδlat
ft/(s2%) -50 0.878 50

x16 Zp ft/(rad.s) -50 -1.353 50 x46 Zδlon ft/(s2%) -50 0.000 50

x17 Zq ft/(rad.s) -50 -0.293 50 x47 Zδped ft/(s2%) -50 50.000 50

x18 Zr ft/(rad.s) -50 -29.886 50 x48 Zδcol ft/(s2%) -50 0.000 50

x19 Lu rad/(ft.s) -50 -5.804 50 x49 Lδlat rad/(s2%) -50 0.100 50

x20 Lv rad/(ft.s) -50 -13.056 50 x50 Lδlon rad/(s2%) -50 2.532 50

x21 Lw rad/(ft.s) -50 44.509 50 x51 Lδped rad/(s2%) -50 -1.100 50

x22 Lp 1/s -50 0.022 50 x52 Lδcol rad/(s2%) -50 -5.346 50

x23 Lq 1/s -50 12.606 50 x53 Mδlat rad/(s2%) -50 3.360 50

x24 Lr 1/s -50 -2.390 50 x54 Mδlon rad/(s2%) -50 -0.032 50

x25 Mu rad/(ft.s) -50 12.714 50 x55 Mδped rad/(s2%) NA NA NA

x26 Mv rad/(ft.s) NA NA NA x56 Mδcol rad/(s2%) -50 2.756 50

x27 Mw rad/(ft.s) -50 13.706 50 x57 Nδlat rad/(s2%) -50 1.529 50

x28 Mp 1/s -50 3.964 50 x58 Nδlon rad/(s2%) -50 -1.579 50

x29 Mq 1/s -50 -0.039 50 x59 Nδped rad/(s2%) -50 -1.811 50

x30 Mr 1/s NA NA NA x60 Nδcol rad/(s2%) -50 1.641 50

error bound

(upper). %
parameter symbol units

error bound

(lower). %

estimation

 error. %
parameter symbol units

error bound

(lower). %

estimation

 error. %

error bound

(upper). %
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Fig. 5 Input Signals (Doublet) 

 

 

Fig. 6 Comparison of Outputs for Doublet Excitation Signals 

 


