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Abstract 
 

A reduced order methodology, based on Proper Orthogonal Decomposition (POD) and multidimensional interpolation, is 
proposed for the parametric study of rotor flows under hovering conditions. The POD-based methodology makes no 
simplification of the complexity of the three-dimensional, viscous turbulent flow generated by the rotor but still yields 
accurate solutions at a fraction of the time required by standard CFD. The use of interpolation techniques other than 
projection operators allows dealing in a unified manner with experimental data, CFD computations or a combination of 
both. The method provides fast and accurate solutions for local flow details and integral quantities like aerodynamic 
coefficients. The POD-based methodology is demonstrated to have a multiplier effect on wind tunnel and CFD 
simulations of rotorcraft aerodynamics and as a potential powerful methodology to construct a new generation of 
rotorcraft simulators. 

  

1. INTRODUCTION  

The evaluation of the aerodynamic performance of 
an isolated rotor is a critical step in the design 
process of a rotorcraft. The main rotor is the only 
source of thrust; it is the means by which a 
horizontal propulsive force can be generated and it 
allows creating forces and moments to control the 
attitude and position of the rotorcraft [1,2]. Many 
decisions at the design level depend on the 
assessment of the rotor aerodynamics and in order 
to gather as much information as possible, the rotor 
flow has to be evaluated for many different 
geometrical configurations and operating conditions. 
The complexity of the rotor’s flow field makes 
experiments difficult, expensive and limited to a 
narrow operational matrix [3-5]. Numerical modeling 
is a valid alternative/complement to wind tunnel 
tests. Unfortunately, Computational Fluid Dynamics 
(CFD) techniques, in the form of three-dimensional 
turbulent Navier-Stokes computations are, at the 
present time, still too demanding in terms of 
computing power to be used extensively in the 
design process [6-8]. 

Simplified analytical, semi-empirical and numerical 
methods have been proposed in the literature as an 
alternative to full viscous-turbulent CFD simulations 
[9-12]. These methods are loosely labeled Reduced 
Order Methods (ROM) to indicate the reduced 
computational complexity compared to standard 
CFD. Classical approaches based on momentum 
and/or blade element theory are often, if not always, 
used for preliminary estimates of thrust and moment. 
These estimates can be refined using vortex 
methods in conjunction with lifting-line, lifting-

surface, or panel methods to calculate the strength 
of the wake and other important aerodynamic 
parameters. Unfortunately, the majority of these 
simplified methods are not general enough to 
describe the complex three-dimensional viscous flow 
in the rotor wake and do not provide the required 
level of accuracy for the operating conditions that 
should be analyzed. 
 
In recent years, a new category of Reduced Order 
methodologies has become popular in the context of 
computational physics and engineering. This is a 
class of techniques that makes no simplification as 
to the geometry of the problem (1D or 2D) or the 
physics of the flow (inviscid, incompressible, etc.), 
but introduces the use of the eigenmodes of the 
viscous-turbulent flow field to reformulate the original 
system of PDEs in a computationally more tractable 
manner [13-15]. These techniques are generally 
referred to as Reduced Basis Methods (RBM), and 
their underlying principle is to obtain a simplification 
of the problem in terms of a reduction of the number 
of degrees of freedom rather than by sacrificing the 
physics of the problem. Reduction with RBMs is 
effective only when it is possible to identify, in a 
controlled manner, a limited number of eigenmodes 
(a few dozens or less) that allow representing if not 
all then at least most of the energy contained in the 
original system. 
 
The ROM methods based on flow modal analysis 
use a number of observations (snapshots) of the 
system computed (or measured) at different 
operating conditions to identify the dominant physics 
of the problem, i.e. its eigenmodes. These allow 
defining a vector space where the solution of the 
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system for an unsolved (or untested) condition can 
be obtained as a combination of these fundamental 
solutions. RBM methods can be classified into two 
different categories: intrusive and non-intrusive 
RBMs. Intrusive methods compute the coefficients of 
the combination for the unknown state by solving a 
reduced system of equations obtained by projecting 
in a (Petrov-) Galerkin sense the original PDEs on 
the eigenmodes [16,17]. Non-intrusive approaches 
on the other hand circumvent the projection phase 
by making use of other approaches to get the 
reduced solution [18,19]. A popular technique used 
in non-intrusive approaches is interpolation of 
coefficients. Originally proposed by Ly [20] and Bui-
Than [21], and recently developed by Fossati et al 
[22, 23], the RBM with interpolation (hereinafter 
RBMI) gets the coefficients for the solution at an 
unknown state by interpolating the known modal 
coefficients used to reconstruct the snapshots. 
 
In the context of rotorcraft engineering and design, 
approaches that use information from an available 
set of CFD solutions have been studied in the last 
decade. In the recent literature, these are referred to 
as surrogate methods and have been primarily 
adopted to get integral quantities like aerodynamic 
coefficients and loads [24-26]. These approaches 
are essentially based on response surface methods 
(RSM) and neural networks (NN). In other words 
these methods attempt to define an input-output 
mapping between the operating conditions (i.e. 
Mach number and/or the kinematic parameters of 
the rotor) and the desired output such as lift, drag 
and moment coefficients. A first attempt to use RBM 
in reproducing a 3D flow field is documented in the 
work of Tang [27]. In his work, the eigenvalues of 
the aerodynamic field were extracted from a 
simplified 3D representation of the rotor wake and 
only a few of them were eventually used to 
reproduce the complete induced flow from the rotor 
disk. To the best of the authors’ knowledge, no 
follow up to this work has been proposed in the 
recent literature. 
 
In the present work, a non-intrusive RBM approach 
is described and evaluated for its capability to 
address both local flow field features and integral 
aerodynamic quantities. It is applied to the problem 
of the steady flow through an isolated rotor in the 
context of a parametric analysis. The approach 
adopted here is the one proposed by Fossati et al 
[22, 23]. It had been originally developed for the 
parametric analysis of aero-icing problems, but has 
recently been successfully applied to unsteady 
vortex-dominated flows around fixed wing high-lift 
configurations [28]. The attractive feature of this 
non-intrusive approach is that it allows a “black-box” 
evaluation of aerodynamic data. This allows fulfilling 
two goals: 1) reduction will be realized at the CFD 
level by reducing the computational cost and at the 

experimental level by reducing the number of tests 
and/or the complexity of the mock-up in terms of 
areas to be instrumented, 2) it will permit keeping 
together experimental data and high-fidelity CFD 
simulations to get the most complete picture of the 
problem under investigation. 
 
The discussion is organized as follows. In the first 
section, the RBM approach based on Proper 
Orthogonal Decomposition and interpolation will be 
outlined. Starting from section three, the assessment 
of the method will be presented considering first the 
ability of the POD-based method to reproduce and 
enrich experimental data. Eventually, the 
performance of the ROM method will be validated 
against high-fidelity CFD simulations in terms of 
local flow features and integral quantities. 
 

2. REDUCED BASIS MODELING: POD AND 
INTERPOLATION 

A detailed description of the method is outside the 
scope of the present work where the focus is more 
on the application and assessment side. For self-
containment, a brief description is reported here. 
The interested reader is referred to [21-23]. 
 
The methodology is composed of three phases:  
 
1. Identification and computation (measurement) 

of the snapshots of the system 
2. Extraction of the eigenmodes of the flow via 

Proper Orthogonal Decomposition 
3. Computation of the coefficients for the 

combination of modes 
 
Phases 1 and 2 define what is referred to as the off-
line part. Snapshots are identified and computed (or 
measured) once and for all. This is the most cost-
intensive part since it requires high-fidelity CFD or 
wind tunnel data. Phase 2 is also an off-line part 
since once the set of snapshots is obtained, the 
eigenmodes can be uniquely computed and these 
will remain the same as long as the set of snapshots 
does not change. Note that at this point it could be 
possible to subdivide the snapshots in sub-sets and 
perform modes extraction separately for each one of 
these groups. This approach could result in 
increased accuracy since snapshots with similar 
behavior can be grouped together and provide a 
local RBM to account for small variations in limited 
regions of the parameter space. Nevertheless, the 
definition of a consistent method to select how many 
and which snapshots should be grouped together is 
a non-trivial problem, especially in cases where the 
snapshots are a combination of CFD and 
experimental data. In the present method, a global 
approach has been adopted instead, where a unique 
set of eigenmodes is obtained over the entire 
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parameter space using all the snapshots. 
 
Phase 3 is the actual on-line step. This is the part 
where the unknown solution is computed by 
interpolation of the modal coefficients. For all the 
tests presented in the later sections of the paper an 
indication of both the off-line and on-line time will be 
provided, with two observations: 1) in the case of 
experimental data, no information was available to 
the authors to assess the time required to perform a 
single wind tunnel test, 2) the time required for the 
eigenmodes extraction is typically a few seconds if 
not a fraction of a second, hence it does not provide 
any kind of overhead to the global cost. 
 
In the following two sections, phase 2 and 3 will be 
described. Phase 1 can be recast as a problem in 
the area of the Design of (Computer) Experiments 
and it deals with the problem of identifying the best 
sampling of the parameter space for which the 
problem has to be analyzed. In the case of 
experimental data, the authors had no choice other 
that to take the snapshots as these were defined in 
the original experiments. In the case of the CFD-
based RBMI, a technique based on Centroidal 
Voronoi Tessellation [30] could be adopted to cluster 
the samples (i.e. the points for which a CFD 
solutions had to be computed) in the regions of 
supposed high nonlinearities. 
 

2.1. Eigenmodes extraction: Proper Orthogonal 
Decomposition 

Proper Orthogonal Decomposition (POD) is referred 
to in different ways according to the context where it 
is introduced. Common identifiers are: the Singular 
Value Decomposition or the Karhunen-Loëve 
decomposition [31]. The method can be applied to 
non-linear problems and its ability to isolate the 
dominant features of complex dynamical systems 
has been exploited in fundamental studies of the 
dynamics of fluids [32,33]. The attractive feature of 
POD in the context of RBMs is its ability to provide 
explicit control on the minimum number of modes 
required to represent most, if not all, of the energy of 
the original full-order system. This “error-bounded“ 
truncation of the POD modes to the most energetic 
ones has made this technique very popular in the 
engineering context and it constitutes the basis of 
many RBMs. POD processes a set of available 
observations of the system and for highly nonlinear 
problems it can require a significant amount of 
computational resources [31]. Since computational 
complexity is of main concern in any ROM 
technique, the method of snapshots proposed by 
Sirovich is used to perform the eigenmodes 
extraction [33]. 
 
Let us assume the existence of an ensemble of 𝑁! 
observations 𝑼 ∈ ℝ!!  x  !!. Each observation of the 

system can be written as 𝑼! ∈ ℝ!!   𝑗 = 1,⋯ ,𝑁!, 
where 𝑁! is the number of points for which the 
observation is defined, i.e. the number of grid points 
in the case of a CFD solution or the number of probe 
points in an experiment. The target is to find a set of 
basis vectors 𝝓 ∈ ℝ!!  x  !! that best represents the 
snapshots, according to the following maximization 
problem: 
 
(1) Max

𝝍   〈(𝑼,𝝍)〉/(𝝍,𝝍) = 〈(𝑼,𝝓)〉/(𝝓,𝝓) 
 
where the square brackets 〈·〉 indicate time 
averaging and the operator (·,·) indicates an inner 
product. It can be shown that the desired 
eigenfunctions 𝝓 can be computed as a combination 
of the snapshots 𝑼! of the system, i.e. 
 
(2)                 𝝓! = 𝜷!!

!!
!!!   𝑼!                             𝑖 = 1,⋯ ,𝑁! 

 
and as a result, the problem of finding 𝑁! functions 
𝝓! can be recast as an eigenvalue-eigenvector 
problem 𝑅𝜷 = 𝜆𝜷, where 𝑅 is a correlation matrix 
defined in terms of the scalar products between 
snapshots 
 
(3)               𝑅!" = 𝑼! ,𝑼! 𝑁!                       𝑖, 𝑗 = 1,… ,𝑁! 
 
The eigenvectors 𝜷 give the POD modes via 
equation (2), while the eigenvalues 𝝀 give the 
fraction of total energy associated to each mode 𝝓! 
 
(4)                𝐸! =   𝜆! 𝜆!!"

!!!  
 
The POD prediction of the state of the system at any 
unknown condition will read 
 
(5)                𝑽 = 𝛼!

!!!!
!!! 𝝓! 

 
where 𝑀 indicates the truncation of the expansion at 
the desired level of energy content. 
 

2.2. Solution of the reduced order model: 
Interpolation of coefficients 

Equation (5) can be used to compute the state of the 
system at a specific location 𝜹 in the parameters 
space. The modes are known from equation (2) and 
the only unknowns left are the 𝑀   ≤   𝑁! coefficients 
𝜶𝜹 = 𝜶 𝜹 . Since the snapshots can themselves be 
written as a combination of the eigenfunctions 𝝓!, it 
is possible to compute the coefficients 𝛼! associated 
to each snapshot as follows 
 
(6)                 𝛼! =    𝑼! ,𝝓!                                       𝑗 = 1,⋯ ,𝑁! 
 
The desired 𝜶𝜹 can be obtained by creating a 
multidimensional response surface having as input 
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the parameters (i.e. the operational conditions) of 
the analysis and the 𝛼!   coefficients as output.  
 
Different interpolation techniques are considered: 
the Akima interpolation method [34] and techniques 
based on the Kriging method [35]. Akima is a very 
efficient method but is practical only for a maximum 
of two parameters. Kriging, on the other hand, can 
be used with more than two parameters and 
performs well with non-smooth functions. The 
Ordinary Kriging formula reads 
 
(7)     𝛼! 𝛅 =   𝛾 + 𝝍!𝚿!! 𝛂 − 𝟏𝛾         𝑗 = 1,… ,𝑀 ≤ 𝑁! 
 
where the matrix Ψ!,! =   𝜓 𝒙! ,𝒙! = exp − 𝜽!(𝒙! −
𝒙!)!    , 𝛾 = 𝟏!𝚿!!𝜶 𝟏!𝚿!!𝟏  and 𝒙𝒊 represents 
the location of the 𝑖!! snapshot in the parameter 
space. The Ordinary Kriging formula (7) represents 
the unknown coefficients as a sum of a constant 
global model 𝛾 plus a perturbation based on 
Gaussian statistical considerations [23,35]. The 
interpolation formula filters the assumption that 
“vicinity in the parameter space implies similarity of 
the coefficients” on the basis of the weight 𝜽. The 
vector 𝜽 ∈ ℝ!! with 𝑁! equal to the number of 
parameters, is an unknown model parameter 
determined by maximizing the likelihood function 
[35] 
 
(8)        𝐿𝑛 =   − !

!
   𝑁! ln 𝜎! + 𝑙𝑛 𝚿  

 
Here 𝜎! =   1 𝑁!   𝜶 − 𝟏𝛾 !   𝚿!! 𝜶 − 𝟏𝛾 . 
 
A recent variant of the Ordinary Kriging method, 
referred to as Bayesian Kriging [36], has also been 
considered for its ability to deal with highly nonlinear 
response surfaces. Bayesian Kriging generalizes the 
Ordinary Kriging method by adding nonlinear terms 
to the original interpolation formula, i.e. 
 
(9) 𝛼! 𝛅 =   𝒗(𝜹)!𝛄! + 𝝍!𝚿!! 𝛂 − 𝑽!𝜸!    
 
Here 𝒗(𝜹) =    1, 𝑣!(𝜹),… , 𝑣!(𝜹)  are 𝐵 + 1 unknown 
scalar functions whose form and number (𝐵) will be 
determined on the basis of Bayesian statistics 
considerations. 𝑽! is a 𝑁!  ×  (𝐵 + 1) matrix whose 
first column is 1 and the b-th column is made by the 
evaluation of the b-th unknown scalar function for 
each snapshot’s location 𝑣!(𝒙!). The scalar constant 
model 𝛾 is replaced by a non-constant vector term 
𝜸! 
 
(10)       𝜸! = 𝑽!!𝚿!!𝑽! !! 𝑽!!𝚿!!𝜶  
 
The number of new terms (𝐵 + 1) and their form 
(𝒗(𝜹) =    1, 𝑣!(𝜹),… , 𝑣!(𝜹) ) are defined according 
to the highest probability (in the Bayesian sense) of 
improving the accuracy of the interpolation [23,36]. 

3. RBM BASED ON EXPERIMENTAL DATA 

Precise and accurate measurements of the rotor 
flow have become more and more common in the 
last years. However, the amount of data to be 
processed in this activity is staggering and moreover 
the complexity of wind tunnel models and the cost of 
these experimental campaigns are not always 
affordable. In this section, the RBMI methodology is 
applied directly to data acquired in wind tunnel tests. 
The goal is to assess the method’s efficiency 1) in 
reducing the number of probes to be placed in the 
model and 2) in limiting the number of operational 
conditions to be tested. 
 
3.1. Caradonna-Tung experiment 

A very well known experimental campaign on 
isolated rotors is the one from Caradonna and Tung 
[3]. An isolated rotor with untapered and untwisted 
blades of NACA0012 sections has been 
instrumented with pressure probes at multiple 
locations along the blade chord and at multiple 
sections of the blade (r/R). Each blade has been 
instrumented at five different sections: r/R = 0.5, 
0.68, 0.8, 0.89 and 0.96. A total of 32 different 
operating conditions have been tested for different 
values of the angular velocity (ω) and the collective 
pitch angle (α). A total of 32 x 5 = 160 observations 
are available form the Caradonna Tung campaign. 
The pitch varies from 0 degrees to 12 degrees and 
the rotational speed ranges from 650 to 2540 rpm. 
The Mach number at the tip of the blade for the 
tested conditions ranges from 0.226 to 0.815, that is 
from subsonic to transonic and, as a result, the 
snapshots are characterized by a sensible variability 
in the pressure coefficients curves, ranging from 
smooth distributions to curves with steep gradients 
as shock waves appears in the transonic regime. 
Figure 1 shows the geometry of the problem and the 
runs arrangement in the α-ω plane.  
 
The present RBM method can work only with data 
that has a homogeneous number of points (in this 
case pressure probes) among the snapshots. Since 
the number of probes used in the experiments is 
different at the different sections, the Cp profiles 
have been interpolated along each section to give a 
distribution of 320 points along each section and on 
the upper and lower surface of the blade. Akima has 
been used for the preprocessing of the data. 
 

3.2. RBM for mock-up simplification 

The first test is an assessment of the RBM approach 
to evaluate the possibility of reducing the number of 
instrumented sections along the blade. The Cp data 
along two of the five sections have been excluded 
from the available set, reducing the number of 
snapshots to 96. This approach mimics the case of a 



38th European Rotorcraft Forum, Paper 2012-129. 
September 4-7 2012, Amsterdam, The Netherlands 

blade that has been instrumented only along three 
sections instead of five. The data at r/R = 0.68 and 
r/R = 0.89 have been removed from the set. The 
omitted 64 Cp distributions have been obtained with 
the RBM method. Two arbitrarily selected operating 
conditions (indicated as targets of the RBM) are 
reported here to show the effectiveness of the 
method. These are summarized in table 1. The 
energy threshold adopted for the POD modes 
extraction is 99.9%resulting in the selection of 12 
modes for the upper surface and only 6 modes for 
the lower one.  
 
 r/R ω [rpm] α [°] MachTIP 

Target A 0.68, 0.89 1250 8 0.439 
Target B 0.68, 0.89 2268 5 0.794 

Table 1: Target solutions for the mock-up 
simplification test case. 

 
Figures 2 and 3 illustrate the comparison of the RBM 
solutions at the omitted sections with the reference 
experimental Cp data. A Bayesian Kriging method of 
order zero, i.e. Ordinary Kriging, has been 
automatically selected as the best interpolation 
formula and each target required few seconds to 
execute. 
 

3.3. RBM for reducing the number of wind 
tunnel tests 

The second test introduces an additional reduction 
of the problem by reducing the number of tests to be 
run in the wind tunnel. To this end, the entire row of 
runs corresponding to a pitch of 8 degrees has been 
removed from the data. This operation mimics the 
condition where, in addition to having only three 
sections instrumented instead of five; only 21 runs 
have been performed instead of 32. The total 
number of snapshots in this case is 63 (recall that 
originally these were 160). Two targets are reported 
here to show the performance of the method in this 
case. Operating conditions are indicated in table 2. 
 

 r/R ω [rpm] α [°] MachTIP 

Target C 0.68, 0.89 1250 8 0.439 
Target D 0.68, 0.89 2400 8 0.845 

Table 2: Target solutions for the wind tunnel runs 
reduction test case. 

 
Target C is the same as target A and it allows 
showing the difference between the two different 
sets of data used to build the RBM model. Target D 
has been chosen instead to be close to the 
boundary of the parameter space such that the 
performance of the method in regions that are 

typically troublesome for interpolation techniques 
can be assessed. An energy level of 99.9% has 
been selected and 10 modes have been extracted 
for the upper surface while only 5 modes have been 
selected for the lower surface. Figures 4 and 5 show 
the results of the analysis. A comparison between 
figure 2 and figure 4 shows minor differences 
between the Cp curves, mainly in correspondence of 
the peak value of Cp. The entire RBM computation 
takes again few seconds on a single CPU. It is 
observed that for the subsonic regime the 
agreement between the RBM and the experimental 
data is very good, while in the case of transonic 
conditions a visible discrepancy is observed in the 
proximity of the shock wave. In this case the 
Bayesian Kriging of order three, i.e. with three new 
terms added to the Ordinary Kriging formula was the 
method capable of providing the most accurate 
results. 
 

4. RBM BASED OF HIGH-FIDELITY CFD DATA 

CFD modeling and simulation of rotor flow has given 
a great momentum to the analysis of the 
aerodynamics of rotorcraft, but require significant 
computational resources. That is why, still today 
approximate methods are widely used in many 
design phases. The coupling of the present RBMI 
method with CFD data is the natural environment 
where information about the entire flow field around 
a rotor can be obtained with good accuracy at a 
marginal computational cost. In this section the 
effectiveness of the RBMI in computing local 
phenomena as well as integral quantities is 
assessed. 
 

4.1. The CFD solver ROSITA 

The high-fidelity CFD solutions have been obtained 
using the solver ROSITA [6]. The RANS equations 
are integrated numerically over a system of moving, 
overset, multi-block grids. The one-equation Spalart-
Allmaras turbulence model is used. The equations 
are discretized in space using a cell-centered finite-
volume implementation of the Roe scheme [37]. 
Second order accuracy is obtained by MUSCL 
extrapolation supplemented with the version of the 
Van Albada limiter introduced by Venkatakrishnan 
[38]. The viscous terms are computed by the 
application of the Gauss theorem and using a cell-
centered discretization scheme. Time integration is 
carried out with a dual-time stepping formulation [39] 
that uses a second order backward differentiation 
formula and a fully unfactored implicit scheme in 
pseudo-time. The generalized conjugate gradient 
method is used to solve the linear system, in 
conjunction with a block incomplete lower-upper 
preconditioner. 
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The connectivity between the (possibly) moving 
grids is computed by means of a modified Chimera 
technique proposed by Chesshire and Henshaw 
[40]. The integration of the aerodynamic forces on 
overlapping surfaces is performed using the 
methodology proposed by Chan and Buning [41]. 
The parallel implementation of ROSITA is based on 
the message passing programming paradigm (MPI), 
and the parallelization strategy consists in 
distributing the overset blocks among the available 
processors to obtain an optimal load balancing. 

4.2. Parametric study of the ONERA-7AD rotor 

The parametric study of the steady flow around the 
four bladed ONERA 7AD rotor is addressed. Each 
blade has an aspect ratio of 15 and consists of 
airfoils of the OA2XX series, with parabolic taper at 
the blade tip and an anhedral angle [4,6]. Two 
parameters have been chosen for the analysis: 
Mach number at blade tip and collective pitch at r/R 
= 0.75. The operational range considered in the 
present analysis is summarized in table 3.  
 

Pitch @ r/R = 0.75 2.0 14.0 
Mach @ blade tip 0.5 0.7 

Table 3: Parameter space for the ONERA 7AD rotor. 
 
A matrix of 22 CFD tests have been identified 
adopting a sampling method called Centroidal 
Voronoi Tessellation [30]. Points have been 
clustered in the region of high pitch and high Mach 
number, since this is the region where complex flow 
features, like separation and/or strong gradients are 
expected to occur. The blades are assumed to be 
rigid bodies and for each one of the 22 different 
Mach and pitch values, a suitable flap angle has 
been defined on the basis of an estimated balance 
between the centrifugal force, the weight and the lift 
along the blade. No rotation has been applied 
around the lead-lag hinge. Symmetry has been used 
to reduce the cost and only one blade with periodic 
boundary conditions has been simulated. The multi-
block Chimera mesh is made of 1 single-block 
background mesh together with one multi-block (4 
blocks) mesh around the blade. Figure 6 shows the 
system of grids. The background mesh is made of 
1'624'320 elements while the multi-block mesh is 
made of 1'389'240 elements. Each CFD simulation 
required approximately 2 hrs on 72 Intel Xeon 
2.4GHz CPUs with infiniband connection. Figure 7 
shows the location of the CFD solutions in the 
parameters space. 
 

4.3. RBM for the entire flow field 

The RBM model is built by choosing a threshold of 
99.9% for the energy content. This led to the 
identification of 13 modes to be used in the definition 

of the reduced solution. In this case, the leave-one-
out methodology has been used for estimating the 
accuracy of the reduced model at the snapshots 
locations. Iteratively, each snapshot is excluded 
from the dataset used to build the RBM and it is 
subsequently adopted as a reference solution to 
compute the error of the RBM solution. The 𝐿! norm 
of the field error has been computed for the pressure 
(𝑃) and the components of the shear stress vector 
(𝜏! , 𝜏! , 𝜏!). The error at the snapshots locations is 
taken as the maximum of the error for each field 
 
(11)      𝐿! = max 𝐿!,! , 𝐿!,!" , 𝐿!,!" , 𝐿!,!"  
 
The choice of the static pressure and the shear 
stress vector as the variables to define the error is 
motivated by the interest using the RBMI approach 
to eventually get the aerodynamic loads on the rotor. 
The leave-one-out approach to error estimation does 
not give rigorous error bounds but provides only a 
gross estimate of the accuracy of the RBMI model 
on the basis of a depleted set of snapshots. RBMs 
based on projection allow for more accurate error as 
a consequence of the more rigorous mathematical 
reformulation of the PDEs [29]. The left part of figure 
8 shows the eigenvalue convergence with the 
threshold level selected. The right part of the figure 
presents the distribution of the error in the parameter 
space. A smooth distribution has been obtained by 
interpolating the error values of the snapshots. 
 
Two targets have been identified in the parameter 
space. The first one is the well-known HELISHAPE 
case [4,6] and the second one has been arbitrarily 
selected to be in a region of high error to assess 
more precisely the error on the reduced solution. 
Table 4 summarizes the conditions for these two 
targets and figure 7 shows their location in the 
parameter space. Two additional CFD runs have 
been performed with the solver ROSITA to get the 
reference solutions for comparison. 
 

 Pitch MachTIP 

Target E (HELISHAPE)  7.5 0.662 
Target F 13.0 0.654 

Table 4: Targets for the ONERA 7AD case. 
 
Figures 9 to 12 illustrate the comparison between 
the RBMI and the CFD solution for the selected 
targets. Remarkable agreement is observed in the 
case of the HELISHAPE conditions where the 
difference between the Cp profiles at r/R = 0.915 is 
hardly visible. A marked difference is instead 
observed for target F in figure 11. Each RBMI 
computation of the entire computational domain 
takes approximately 35 seconds on a single CPU 
where a CFD solution takes 2 hours on 72 CPUs. 
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Akima and Kriging interpolation methods are both 
applicable for this two-parameter problem. No 
significant differences have been observed between 
the methods; hence Akima has been used for the 
rest of the analysis due to its lower computational 
cost compared to Kriging. Figure 10 and 12 show 
the comparison of the tip vortex trajectory as 
visualized by the Q-criterion. The comparison is 
satisfactory. In the case of target F, some numerical 
artifacts are observed near blade tip and the tip 
vortex coming from the preceding blade is not 
reconstructed in its entirety. However, the fair 
agreement observed by the application of the Q-
criterion supports the adoption of the RBMI method 
for the identification of vortical structures that 
characterize the aerodynamic and aeroacoustics of 
the rotor in the context of parametric analyses. 
 

4.4. RBM for integral quantities 

As a final test, the ROM methodology is used to 
obtain information about integral quantities. It is 
important to observe that the natural context of the 
present ROM method is in the derivation of complex 
flow fields and the computation of integral quantities 
is intended as a post-processing of the “reduced 
fields”. This is worth noting because the present 
method, when applied directly to integral quantities 
like, thrust (Ct) or torque (Cq) coefficients, reduces 
to pure interpolation, so no marked advantage with 
respect to other surrogate methods (RSM, NN, etc.) 
is obtained in this case. On the contrary, if integrals 
are computed as a post-processing of reduced local 
flow field quantities, superior robustness and 
accuracy are expected due to the ability to 
incorporate the physics of the problem via the POD 
modes. 
 
The integral quantity considered is the Figure of 
Merit (FoM). The FoM is a quantity that describes 
the ratio between the ideal power and the actual 
power necessary to obtain that thrust. The left part 
of figure 13 shows the contours of the FoM as 
obtained from ROSITA. The highest values of the 
FoM are obtained for high values of collective pitch 
and low-to-moderate values of the Mach number. As 
the Mach number (i.e. the rotational speed) gets 
higher, the increase in the aerodynamic drag 
becomes predominant over the increase in lift, and a 
reduction in the FoM is observed.  
 
To obtain a complete investigation of the rotor FoM 
on the parameter space, 1076 points, each 
corresponding to a specific pair of Pitch and Mach 
(and flap angle), have been identified via CVT. The 
set of 22 snapshots has been used to compute the 
1076 RBM field solutions along the blade only in 
terms of local pressure and shear stress vectors. 
The latter have been integrated to give the Ct and 
the Cq from which the Figure of Merit is obtained: 

 
(12)              FoM = 𝐶𝑡!.! 2  𝐶𝑞  
 
Each single point takes roughly 0.2 seconds on a 
single CPU. Figure 13 right illustrates the contours 
of the 1076 computed RBMI solutions. Table 5 
eventually illustrates the difference in terms of figure 
of merit for the two targets. The agreement is 
satisfactory. 
 

 ROSITA FoM RBMI FoM 

Target E (HELISHAPE)  0.5639 0.5604 
Target F 0.6316 0.6245 

Table 5: Comparison of CFD and RBMI solutions for 
the Figure of Merit. 

 

5. FINAL REMARKS 

The experimentation and numerical simulation of 
rotor flows are extremely challenging, time-
consuming, and costly. Research in rotorcraft 
aerodynamics tends to rely heavily on both 
experimental and computational components. In that 
perspective, the proposed ROM method may 
constitute a valid support and complement to wind 
tunnel tests and CFD computations. The 
assessment of the RBMI method has shown 
encouraging results in terms of evaluating the 
complete flow field around an isolated rotor in hover 
conditions. Even if restricted to steady flow 
simulations, the present analysis provides 
encouraging results in view of the application of 
RBM approaches for the more challenging 
parametric study of unsteady rotor wakes. Many 
issues remain open for future research. These 
involve the definition of more rigorous error 
estimation and a methodology that allows judicious 
positioning of the snapshots in the parameter space. 
From an engineering perspective, it is worth noting 
that other than giving valid support in the 
aerodynamic design of rotors, the present 
methodology may open the way to more refined and 
accurate flight simulators, where the aerodynamic 
behavior of the entire rotorcraft is modeled by a real-
time RBM computation. 
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Figure 1: The Caradonna-Tung test case (left), observation arrangement in the parameter space. 
 

Figure 2: Mock-up simplification. Cp distributions at virtually non-instrumented sections. Target A. 
 

Figure 3: Mock-up simplification. Cp distributions at virtually non-instrumented sections. Target B. 
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Figure 4: Mock-up simplification and reduction of wind tunnel runs. Target C. 
 

Figure 5: Mock-up simplification and reduction of wind tunnel runs. Target D. 
 

Figure 6: System of multiblock-chimera grids. Background mesh with blades blocks (left), multi-block mesh for 
the blade (right). Different colors indicate different blocks. 

  



38th European Rotorcraft Forum, Paper 2012-129. 
September 4-7 2012, Amsterdam, The Netherlands 
 

Figure 7: Snapshots arrangement (left), RBM targets (right). 
 

Figure 8: Eigenmodes convergence (left), Leave-out error estimation (right). 
 

Figure 9: Target E (HELISHAPE). Comparison of Cp distributions (left), Comparison of Cp curves (right). 
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Figure 10: Target A (HELISHAPE). Comparison of Q-criterion. ROSITA (left), RBM (right). 
 

Figure 11: Target B. Comparison of Cp distributions (left), Comparison of Cp curves (right). 
 

 

Figure 12: Target B. Comparison of Q-criterion. ROSITA (left), RBMI (right). 
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Figure 13: Evaluation of the Figure of Merit via RBMI. ROSITA solution (left), RBMI with 1076 solutions (right). 
 


