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Abstract

Actively controlled trailing-edge flaps (ACFs) have been extensively studied for vibration and noise con-
trol in rotorcraft using various approximate aerodynamic models. In this study, two-dimensional unsteady
airloads due to oscillating flap motion obtained from computational fluid dynamics (CFD) are compared
with approximate unsteady loads. The approximate loads are obtained from the Rational Function Ap-
proximation (RFA) model developed for use with comprehensive rotorcraft simulation codes, which is a
state-space, time-domain model that accounts for unsteadiness, compressibility and time-varying freestream
effect. Unsteady compressible Reynolds-averaged Navier-Stokes computations are based on an overset mesh
that accounts for oscillatory flap motion. The comparison is conducted over a wide range of unsteady flow
conditions representing combinations of parameters such as airfoil angle of attack, flap deflection ampli-
tudes, reduced frequencies, and freestream Mach numbers. The comparison between the RFA model and
CFD based calculations illustrates the limitations of the approximate theory, particularly at transonic Mach
numbers and high angles of attack where nonlinear effects dominate. Nevertheless, the RFA model yields a
good approximation for the unsteady effects of the blade section/trailing edge flap combination, for condi-
tions representative of rotorcraft aerodynamic environment. An improved drag model for flapped airfoils is
developed using surrogate based approximation. This new drag model can be implemented in comprehensive
rotorcraft simulation codes to predict performance penalty associated with active flap deflections.

Nomenclature

A Amplitude of flap deflection

b Airfoil semi-chord = c/2

c Airfoil chord
C0,C1,
...,Cn+1

Rational function coefficient matrices

Cl Lift coefficient

Cm Moment coefficient

Chm Hinge moment coefficient

Cd Total drag coefficient

D0, D1 Generalized flap motions
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D,E,R Matrices defined in the RFA model

f(x) Function for global behavior in kriging

f Generalized load vector

G Laplace transform of f(t̄)U(t̄)

h Generalized motion vector

H Laplace transform of h(t̄)

k Reduced frequency = 2πνb/U

M Mach number

nL Number of lag terms

Ntp Number of test points

p̄ Nondim. surface pressure distribution

Q Aerodynamic transfer function matrix

Q̃ Approximation of Q

s Laplace variable
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s̄ Nondim. Laplace variable = sb/U

t Time

t̄ Reduced time = 1
b

∫ t

0
U(τ)dτ

U(t) Freestream velocity, time-dependent

W0,W1 Generalized airfoil motions

x(t) Aerodynamic state vector

y(x) Unknown function to be approximated

ȳ Mean response value for all test points

y(i) Direct CFD results at ith test point

ŷ(i) Surrogate prediction at ith test point

Z(x) Stochastic realization in kriging

α Airfoil angle of attack

γn Rational approximant poles

δe Flap deflection angle

∆Cd,flap Additional drag due to flap deflection

∆Cl,∆Cm,
∆Chm,∆Cd

Half peak-to-peak values of unsteady
force coefficients

ν Frequency of flap oscillation in Hz

ω̄ Nondim. normal velocity distribution

Introduction and Background

With the advent of actively controlled trailing
edge flaps (ACFs) as a viable control device for
vibration and noise reduction in helicopters [1–9],
the ability to accurately model aerodynamic effects
due to unsteady flap motion has gained importance.
The first studies on ACFs have employed classical
quasisteady Theodorsen type aerodynamics to rep-
resent the effect of the flaps for active vibration
reduction [3]. Subsequently, more refined aerody-
namic models were developed for use in compre-
hensive rotorcraft simulation codes, as the impor-
tance of unsteadiness, compressibility, as well as
time-varying freestream effects in rotorcraft was rec-
ognized. An example of such models is that de-
veloped by Leishman based on indicial aerodynam-
ics [10]. Approximate unsteady airloads due to ar-
bitrary airfoil and flap motion were obtained via
Duhamel superposition integral using Wagner’s in-
dicial response functions. This model accounts for
compressibility and can be extended to time-varying
freestreams. The Leishman model has been incorpo-
rated in a comprehensive rotorcraft code (UMARC).

The Rational Function Approximation (RFA) ap-
proach is an effective approach, developed for fixed

wing applications, for generating a Laplace trans-
form or state variable representation of the un-
steady aerodynamics of a wing section [11–14]. Myr-
tle and Friedmann used this approach to develop
an unsteady compressible aerodynamic model based
on the RFA approach that also accounts for time-
varying freestream effects, and is suitable for ro-
tary wing applications where one needs to rep-
resent a two-dimensional blade section or blade
section/trailing-edge flap combination [5]. An ad-
vantage of such an aerodynamic model is its com-
patibility with equations with periodic coefficients
that govern the rotary wing aeroelastic problem in
forward flight. The principal advantages of the RFA
model are: 1) it facilitates the combination of the
aerodynamics with the structural dynamic model;
2) it yields a solution procedure of the combined sys-
tem based on numerical integration; and 3) it affords
a degree of computational efficiency required by the
implementation of active control techniques such as
trailing edge flaps. The RFA model has been im-
plemented in a comprehensive rotorcraft simulation
code, called AVINOR (for active vibration and noise
reduction), used in several computational studies
demonstrating the effectiveness of active flaps on
helicopter vibration and noise reduction, as well as
performance enhancement [5, 6, 8, 15, 16]. The RFA
model has been extended to compute chordwise
pressure distribution that are required for aeroa-
coustic computations, and it has produced results
which correlate well with experimental data [8, 17].

Correlation studies in which results from the com-
prehensive rotorcraft simulation code using the RFA
aerodynamics [6, 17] have shown that despite its
relative simplicity the RFA model produces good
agreement with experimental data. Ideally the ac-
curacy of RFA aerodynamics for blade/flap combi-
nation should be validated by comparison with ex-
perimental data. However, experimental data on
blade and oscillating flap combinations are not avail-
able. Therefore, a viable alternative is to generate
data for effect of unsteady flaps using a CFD based
approach. Such an approach allows direct compar-
isons between RFA and CFD based aerodynamics
for any flow conditions and active flap configura-
tions that are representative of rotorcraft applica-
tions.

The last two decades have produced remarkable
improvements in algorithms and techniques suit-
able for unsteady flow simulations. These advances
combined with rapid increases in computing power
allow one to conduct Navier-Stokes simulations of
time-dependent flowfields around complex geome-
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tries including the effect of various flow control de-
vices. A fairly comprehensive overview of the ca-
pabilities and limitations of current unsteady CFD
approaches for active flow control was provided in
Ref. 18. Among the various approaches, unsteady
Reynolds-averaged Navier Stokes (RANS) equations
have been used to simulate a broad range of time-
dependent turbulent flows, by taking advantage of
the reduced computational cost at high Reynolds
numbers. Furthermore, the RANS based CFD re-
sults have shown good agreement with experiments
for many different types of unsteady flow prob-
lems, including those involving unsteady leading-
edge or trailing-edge control surfaces [19]. It should
be noted that the time-averaging nature of the
methodology can encounter difficulties when deal-
ing with massively separated flows. Furthermore,
the approach requires a turbulence model that has
to be selected from a number of available turbu-
lence models, and in some cases different turbu-
lence models can produce significantly different re-
sults. In Ref. 19, pressure distributions on a wing
surface with a statically or dynamically deflected
spoiler and aileron were calculated at a Mach num-
ber of M=0.77, using two compressible RANS codes,
CFL3DAE and ENS3DAE. The computational re-
sults were compared to test data obtained from
the Benchmark Active Control Technology (BACT)
program at NASA Langley [20]. Deforming mesh
option was used to simulate the oscillatory aileron
motion, and a continuous surface approach was em-
ployed where the hinge gap of the aileron was ne-
glected. The CFD based results obtained reason-
ably good agreement with the experiments, for both
steady and unsteady cases. Another study [21] com-
pared unsteady pressure distributions obtained for
the BACT wing due to trailing-edge flap deflec-
tion, using the CFL3D code with a doublet lattice
method (DLM) solution. The overall pressure dis-
tributions obtained by DLM produced acceptable
correlation and outperformed the CFD predictions
near the hingeline. This was attributed to inad-
equate meshing in the vicinity of the hinge. The
pressure predictions by DLM were less accurate on
the control surface, near the airfoil leading edge and
around the shock regions, due to the limitations of
the linear potential theory.

The actively controlled flaps, used for vibration
or noise reduction, may incur a performance penalty
due to the unsteady drag associated with flap deflec-
tion, a cause for concern when the practical use of an
ACF device is sought. Thus, the estimation of this
drag penalty is important. An approximate drag

correction due to flap deflections based on limited
experimental data was obtained in Ref. 15. How-
ever, this approximate model has not been validated
by comparing it to CFD data. Accurate unsteady
drag prediction on a blade/oscillating flap combi-
nation by CFD is a fairly complex task which is af-
fected by several factors such as mesh sizing and tur-
bulence models [22]. Recent experience with drag
predictions for three-dimensional wing and wing-
body configurations [23] suggests that drag obtained
based on current CFD methodologies is useful.

The principal objectives of this paper are: (a)
to provide a careful comparison of the approximate
RFA unsteady aerodynamic model with CFD based
results for lift and moment, and (b) to provide a
good approximation to unsteady drag on an air-
foil/oscillating flap combination. The specific ob-
jectives of the paper are:

1. Compare two-dimensional unsteady lift, mo-
ment and hinge moment obtained from the
RFA model to CFD computations, on an airfoil
with an oscillating trailing-edge flap;

2. Determine the effect of compressibility and os-
cillating flap reduced frequencies for a practi-
cal range of flap motions and free stream Mach
numbers that are representative of rotorcraft
applications;

3. Compare aerodynamic drag due to flap ob-
tained from CFD computations with a simpli-
fied drag model, used in earlier research [15];

4. Develop an improved drag model based on CFD
results, suitable for use with comprehensive ro-
torcraft simulation codes for performance en-
hancement studies.

These goals constitute a valuable contribution to
the fundamental understanding of the aerodynam-
ics of airfoils equipped with oscillating trailing edge
flaps, and at the same time serve as a validation of
the approximate RFA model. Furthermore, an im-
proved drag model is essential for accurate assess-
ment of the ACF approach for rotor performance
enhancement.

Concise Description of the RFA Model

The RFA model developed in Ref. 5 is based on
Roger’s approximation [11] for representing aerody-
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namic loads in the Laplace domain

G(s̄) = Q(s̄)H(s̄), (1)

where G(s̄) and H(s̄) represent Laplace transforms
of the generalized aerodynamic load and general-
ized motion vectors, respectively. The aerodynamic
transfer matrix Q(s̄) is approximated using the
Least Squares approach with an expression of the
form

Q̃(s̄) = C0 + C1s̄ +
nL∑

n=1

s̄

s̄ + γn
Cn+1. (2)

where Eq. (2) is usually denoted Roger’s approxima-
tion. The nL terms in the summation are aerody-
namic lag terms associated with a number of poles
γn. These poles are assumed to be positive valued
to produce stable open loop roots, but are other-
wise not critical to the approximation. The arbi-
trary motions of the airfoil and the flap are repre-
sented by four generalized motions depicted in Fig-
ure 1. The normal velocity distributions shown in
Figure 1 correspond to two generalized airfoil mo-
tions, denoted by W0 and W1, and two generalized
flap motions, denoted by D0 and D1. In order to
find the Least Squares approximant for the aerody-
namic response, tabulated oscillatory airloads, i.e.
sectional lift, moment and hinge moment, need to
be obtained corresponding to the four generalized
motions. The oscillatory airloads in the frequency
domain are obtained from a two-dimensional dou-
blet lattice method (DLM) solution [24] of Possio’s
integral equation [25] which relates pressure p̄ to
surface normal velocity w̄ as shown below in Eq. (3)

w̄(x) =
1
8π

∫ 1

−1

p̄(ζ)K(M,x− ζ)dζ, (3)

where K is the kernel function. This approach is
suitable for generating efficiently a set of aerody-
namic response data for the airfoil/flap combina-
tion. The frequency domain information is gener-
ated for an appropriate range of reduced frequencies
and Mach numbers.

The state space representation of the RFA aero-
dynamic model requires a generalized motion vector
h and a generalized load vector f , defined as:

h =


W0

W1

D0

D1

 and f =

 Cl

Cm

Chm

 . (4)

Figure 1: Normal velocity distribution correspond-
ing to generalized airfoil and flap motions.

The Laplace transform representation in Eq. (1) is
related to the generalized motion and generalized
forces, through the following expressions

G(s̄) = L[f(t̄)U(t̄)] and H(s̄) = L[h(t̄)] (5)

where U(t̄) is the time-dependent free stream veloc-
ity. Here the reduced time t̄ is defined such that un-
steady freestream effects can be properly accounted
for [5], and may be interpreted as the distance mea-
sured in semi-chords. The rational approximant Q̃
in Eq. (2) can be transformed to the time domain
using the inverse Laplace transform, which yields
the final form of the state space model, given below

ẋ(t) =
U(t)

b
Rx(t) + Eḣ(t), (6)

f(t) =
1

U(t)

(
C0h(t) + C1

b

U(t)
ḣ(t) + Dx(t)

)
.

(7)

where the matrices D, R and E are given by

D =
[
I I . . . I

]
, R = −


γ1I

γ2I
. . .

γnL
I

 ,

E =


C2

C3

...
CnL+1

 .

Concise Description of the CFD Flow Solver

The CFD results generated in this study are ob-
tained using the CFD++ package [26, 27] devel-
oped by METACOMP Technologies. The CFD++
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code is a modern versatile tool capable of solv-
ing the compressible unsteady Reynolds-averaged
Navier-Stokes equations using a finite volume for-
mulation. The code has several advanced features
such as Large Eddy Simulation (LES) and hybrid
LES/RANS models. The CFD++ code supports
a variety of operating systems and multiple paral-
lel clusters, with input and output files compati-
ble across all platforms. It also provides a user-
friendly graphical interface for convenient problem
setup. An important feature of the code is a uni-
fied grid methodology that can handle a variety of
structured, unstructured, multi-block, and hybrid
meshes, including patched and overset grid capabil-
ities. Various cell types can be used within the same
mesh, such as hexahedral, triangular prism, pyra-
mid and tetrahedral elements in 3-D, quadrilateral
and triangular elements in 2-D, and line elements in
1-D. Spatial discretization is based on a second or-
der multi-dimensional Total Variation Diminishing
(TVD) scheme. For temporal scheme an implicit al-
gorithm with dual time-stepping is employed to per-
form time-dependent flow simulations, with a multi-
grid acceleration option for subiterations. Various
turbulence models are available in CFD++, rang-
ing from one to three-equation transport models.
The Spalart-Allmaras (S-A) turbulence model [28]
is chosen for the current study, and a fully turbulent
boundary layer is assumed.

To simulate unsteady flap deflection, an overset
mesh option is employed where a separate body-
fitted mesh for the trailing-edge flap is generated in
addition to the airfoil mesh, as illustrated in Fig. 2.
An overset grid approach is convenient for mod-
eling arbitrarily large grid motions; however, non-
conservation of flow variables at the grid zonal in-
terfaces may affect the solution accuracy [29]. Sinu-
soidal flap motions about the hinge axis can be pre-
scribed in the CFD++ code. The relative motion
of the two grids requires re-computation of over-
set boundary zonal connections at each time step,
which is executed automatically by the code.

Drag Models for Flapped Airfoils

The RFA model, which is based on potential flow
theory, has no provision for drag calculation. How-
ever, accurate drag predictions are needed to assess
performance penalty due to active flaps. A simple
drag correction that accounts for additional drag
due to flap deflections has been suggested in Ref. 15,

Figure 2: Overset grid on a NACA0012 airfoil.

Figure 3: Gap between the airfoil and the flap sec-
tions of the geometry.

using static experimental data in a quasi-static man-
ner. In this study, the model will be validated by
comparing this approximate model with CFD com-
putations. Furthermore, a new approximate drag
model is also developed using CFD drag data, by
employing surrogate based approximation method.
The resulting reduced order drag model is capable
of providing the degree of computational efficiency
required by helicopter simulations, while taking ad-
vantage of the accuracy afforded by advanced CFD
techniques.

Simple drag model

The additional drag due to deflection of a 20%
plain flap is given by the following approximate
equation [15]

∆Cd,flap = 0.001|δe| (8)

This drag model has been used in our helicopter
simulations to estimate the effect of active flaps on
rotor performance.
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Surrogate drag model

Combining a comprehensive rotorcraft simulation
with a CFD code in order to carry out active con-
trol studies for vibration reduction would incur pro-
hibitive computational costs. Therefore, surrogate
based approximation techniques are employed to
construct a reduced order drag model. Surrogate
methods replace the “true” function with a smooth
functional relationship of acceptable accuracy that
can be evaluated quickly.

In order to construct the surrogates, the unknown
function must first be evaluated over a set of design
points. The surrogate is then generated by fitting
the initial design points. Drag for a two dimensional
airfoil/flap combination is first evaluated over a set
of specified flow conditions, characterized by three
flow variables, or design variables for the drag surro-
gate. These variables are: freestream Mach number
M , airfoil angle of attack α, and flap deflection angle
δe. Note that the choice of these three design vari-
ables implies a quasisteady drag model for flapped
airfoils. Subsequently, the surrogate is generated by
fitting the drag data over these flow conditions.

The kriging interpolation technique is used to
generate the surrogate drag model, because this
technique has been shown to perform well when fit-
ting highly nonlinear functions [30, 31]. In kriging,
the unknown function y(x) is assumed to be of the
form

y(x) = f(x) + Z(x) (9)

where f(x) is an assumed function (usually polyno-
mial form) and Z(x) is a realization of a stochastic
(random) process which is assumed to be Gaussian.
The function f(x) can be thought of as a global ap-
proximation of y(x), while Z(x) accounts for local
deviations which ensure that the kriging model in-
terpolates the data points exactly. In this study,
Z(x) is based on Gaussian spatial correlation func-
tions, and f(x) is assumed to be a second order
polynomial. Maximum likelihood estimation is used
to select the fitting parameters [32,33]. The kriging
surrogates were created with a MATLAB kriging
toolbox, which is free software [34].

Results and Discussions

The results presented in this section are for a
NACA0012 airfoil with an oscillating trailing edge
flap. The airfoil has a chord with a dimensional
value of c = 0.1m, and the flap has a chord of 0.20c

±e

αU

Figure 4: Airfoil with a trailing-edge flap.

and is hinged at the 0.80c location. These dimen-
sions are chosen to match the experimental studies
described in Ref. 35. A hinge gap of 0.01c is mod-
eled as shown in Fig. 3. The simulations were car-
ried out for two mean airfoil angles of attack, α = 0◦

and 5◦, respectively. The majority of the results are
for a specific Mach number M = 0.6, unless other-
wise stated. Additional calculations were conducted
at various free stream Mach numbers ranging from
low subsonic to transonic to study the effect of Mach
numbers. The Reynolds number is 4.86× 106 based
on airfoil chord. The unsteady flap motion is given
by Eq. (10),

δe = A sin(2πνt) = A sin(kt̄) (10)

where k is the reduced frequency. The geometry of
the airfoil/flap configuration is shown in Fig. 4.

The domain for the CFD computations is de-
picted in Fig. 5, and the far field boundary extends
to 50 chord lengths. The details of the grid near
the airfoil and the flap are given in Figs. 2 and 3.
The grids for the airfoil and the flap are structured
grids with quadrilateral elements, generated using
the ICEM-CFD software and converted into the na-
tive format in CFD++. The grids are refined at
the solid wall boundaries so that the equations are
directly solved to the walls and wall functions are
not used. Two grids representing different levels
of mesh resolution are generated for grid conver-
gence studies. A medium resolution grid contains
90,000 grid points, as shown in Figs. 2, 3 and 5;
while the finer grid has 244,000 points. The flow is
first allowed to reach steady state, before the time-
dependent results due to flap deflections are gener-
ated using the overset mesh approach that was de-
scribed earlier. The time-accurate simulations uti-
lize time steps such that at least 250 points are used
per cycle. The computational cost of the CFD sim-
ulations was approximately 1 hour for each cycle
on the medium grid and over 2 hours on the finer
grid, using four CPUs on a Linux cluster of Opteron
processors with speeds of 1.8–2.4GHz.

6



Figure 5: Grid for a NACA0012 airfoil with flap

The results presented are organized in the follow-
ing manner. First, a grid sensitivity study is con-
ducted on the medium and fine grids. Next, un-
steady values of the lift coefficient Cl, moment coef-
ficient Cm, and hinge moment coefficient Chm due
to oscillatory flap motion are presented, comparing
the RFA and the CFD results. Note that the mo-
ment coefficient Cm is defined about the quarter
chord point, and the hinge moment Chm is mea-
sured about the hinge axis. The effects of freestream
Mach number on predicted unsteady airloads are
also discussed by comparing the RFA and CFD re-
sults. Subsequently, the drag coefficient Cd is com-
pared for the CFD and approximate drag models.

Grid convergence

The sensitivity of CFD calculations to grid res-
olution is considered first, shown in Fig. 6. Lift,
moment, hinge moment and drag coefficients versus
flap deflection are shown for the case where airfoil
incidence α = 5◦ and the flap deflection magnitude
A = 4◦, for the medium and fine grids. The simula-
tions on the two grids produced very similar results,
as evident from Fig. 6, which implies low sensitiv-
ity to grid resolution for the particular case consid-
ered. Based on this comparison, the medium grid
is deemed to be adequate for resolving the flow fea-
tures and will be used for the results presented in
this section.

−4 −2 0 2 4
0.005
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0.015

0.02

0.025

±e (deg)

C
D

0.5

0.6

0.7

0.8

0.9

C
L

−0.002

−0.001

0

0.001

−4 −2 0 2 4

C
H

M

±e (deg)

−0.02

0

0.02

0.04

0.06

C
M

Medium
Fine 

Figure 6: Comparison of force coefficients with the
medium and fine grids; A = 4◦, k = 0.0624, M =
0.6 and α = 5◦.

Unsteady lift, moment and hinge moment

To study the effect of oscillating flap on unsteady
airloads, pressure contours are first shown in Fig. 7
at four instantaneous flap deflection angles during
one oscillatory cycle, i.e. at δe = 0◦, 4◦, 0◦ and −4◦.
The flap reduced frequency is 0.0624 and flap de-
flection amplitude A = 4◦. Unsteady flap motion
clearly has a significant effect on overall pressure
distribution as can be seen from the variation of the
pressure contours during the cycle.

1) ±e   = 0°

3) ±e   = 0° 4) ±e   = -4°

2) ±e   = 4°

Figure 7: Pressure contours at four instantaneous
flap angles; A = 4◦, k = 0.0624, M = 0.6 and α =
5◦.

Next, results from the CFD are obtained and
compared to the RFA model, for flow conditions
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representative of practical active flap applications.
Typical active flap frequencies used for noise and vi-
bration control on a four-bladed helicopter rotor are
in the range of 2-5/rev, which correspond to reduced
frequencies of approximately 0.05–0.20. Therefore,
unsteady airloads are generated for flap frequencies
ν = 20, 40, 80, 120 Hz, corresponding to reduced fre-
quencies between 0.031–0.187, at freestream Mach
number of 0.6.

The time history of the lift coefficient Cl is shown
in Figure 8, for 2◦ flap deflection. Figure 8 im-
plies that the RFA model consistently overpredicts
the unsteady lift compared to the CFD results by
approximately 20-30% at all four frequencies. The
same lift coefficient data is also plotted versus flap
deflection angle δe, and is given in Fig. 9. The char-
acteristic loops in Fig. 9 are indicative of a time lag,
which is similar for the RFA and CFD results.

The unsteady lift due to the flap motion at zero
airfoil incidence α = 0◦ is presented in Figs. 10 and
11 to serve as a comparison to the earlier results
presented for α = 5◦. The results display the same
trends that have been noted for the case with an
incidence of α = 5◦, which implies that the trends
observed are not sensitive to the incidence setting
on the airfoil.

The oscillatory portion of Cl, denoted by ∆Cl,
due to flap deflection amplitudes of A = 2◦ and 4◦,
is compared in Fig. 12. Figure 12 indicates that the
difference in ∆Cl between the RFA and CFD predic-
tions increase as the flap deflection angle increases.
This behavior is reasonable since the nonlinear flow
effects are enhanced as the flap deflections increase.
Similar to the 2◦ case, the RFA model overestimates
∆Cl at 4◦ as compared to the results generated from
the CFD code. Generally, the amplitudes of ∆Cl di-
minish as the flap oscillation frequency ν increases,
reflecting the unsteady effect of the flap. This trend
is captured by both the RFA model and CFD re-
sults. However, ∆Cl predicted by the CFD code
starts to increase slightly at frequencies above 80Hz.
The maximum error in ∆Cl is 45% and the mini-
mum error is 21%, for the cases considered here.

The pitching moment coefficients Cm are shown
next for an airfoil incidence of α = 5◦ and flap am-
plitude of 2◦. The variation in Cm is plotted versus
time in Fig. 13, and subsequently Cm versus flap
deflection angle is shown in Fig. 14. There is a sub-
stantial difference between the average values of Cm

predicted by the RFA and the CFD code as evident
from the figures. The value of Cm obtained from the
RFA model oscillates about zero, whereas Cm from
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Figure 8: Time history of Cl at various reduced
frequencies; A = 2◦, M = 0.6 and α = 5◦.
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Figure 9: Lift Cl versus flap deflection δe at various
reduced frequencies; A = 2◦, M = 0.6 and α = 5◦.
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Figure 10: Time history of Cl at various reduced
frequencies; A = 2◦, M = 0.6 and α = 0◦.
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Figure 11: Lift Cl versus flap deflection δe at various
reduced frequencies; A = 2◦, M = 0.6 and α = 0◦.
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Figure 12: Oscillatory amplitude of lift ∆Cl as a
function of flap oscillation frequency; M = 0.6, α =
5◦, k = 0.031 – 0.187.
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Figure 13: Time history of Cm at various reduced
frequencies; A = 2◦, M = 0.6 and α = 5◦.

CFD computations oscillates about a non-zero av-
erage value of approximately 0.02. The RFA model
predicts a zero average value of pitching moment
about the quarter-chord point as the result of linear
thin-airfoil theory, whereas the CFD based results
show non-zero average Cm due to viscous flow ef-
fects.

The moment coefficient Cm versus time and flap
deflection, at zero incidence α = 0◦, is shown in
Figs. 15 and 16. With α = 0◦, the offset between the
average Cm predicted by RFA and CFD vanishes,
due to the symmetry of the flow. The agreement
of Cm obtained by the two methods is quite good
at α = 0◦, both in the oscillatory magnitude and
the phase lag. This implies that the accuracy of
the RFA model is better at smaller airfoil angles of
incidence, which is to be expected.

The amplitude of the oscillatory portion of Cm,
denoted by ∆Cm, is shown in Fig. 17 for various flap
frequencies at flap deflection angles A = 2◦ and 4◦,
and α = 5◦. For flap deflection angles in this range,
the value of ∆Cm varies almost linearly with the
amplitude of flap deflection, and increases slightly
with flap frequency. The RFA model consistently
overestimates the pitching moment due to flap de-
flection, which resembles the results shown earlier
for the lift coefficient. The maximum error in ∆Cm

is 34% and the minimum error is 8% for the cases
considered.

Results for the hinge moment coefficient Chm

plotted versus time and flap deflection δe are shown
in Figs. 18 and 19, respectively, for 2◦ flap deflec-
tion at various frequencies and α = 5◦. Again, re-
sembling previous results shown for Cm, an offset
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Figure 14: Moment Cm versus δe at various reduced
frequencies; A = 2◦, M = 0.6 and α = 5◦.
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Figure 15: Time history of Cm at various reduced
frequencies; A = 2◦, M = 0.6 and α = 0◦.
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Figure 16: Moment Cm versus δe at various reduced
frequencies; A = 2◦, M = 0.6 and α = 0◦.
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Figure 17: Oscillatory amplitude of pitching mo-
ment ∆Cm as a function of flap oscillation fre-
quency; M = 0.6 and α = 5◦.
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Figure 18: Time history of Chm at various reduced
frequencies; A = 2◦, M = 0.6 and α = 5◦.

exists between the average value of Chm that is ob-
tained from CFD and the RFA model. Figures 20
and 21 show the hinge moment coefficient Chm plot-
ted versus time and flap deflection at zero incidence
α = 0◦. In this case, there is no offset between the
average Chm values. The amplitude of the oscilla-
tory component of Chm, denoted by ∆Chm is shown
in Fig. 22 for flap deflections of 2◦ and 4◦. These fig-
ures indicate that the RFA model significantly over-
predicts the hinge moment. This behavior is not
surprising because the flap is immersed in relatively
thick boundary layers where linear aerodynamic as-
sumptions may not be valid. These findings are also
consistent with the conclusions presented in Ref. 21.
The maximum error in ∆Chm is 71% and the mini-
mum error is 17% for the cases considered here.
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Figure 19: Hinge moment Chm versus δe at various
reduced frequencies; A = 2◦, M = 0.6 and α = 5◦.
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Figure 20: Time history of Chm at various reduced
frequencies; A = 2◦, M = 0.6 and α = 0◦.
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Figure 21: Hinge moment Chm versus δe at various
reduced frequencies; A = 2◦, M = 0.6 and α = 0◦.
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Figure 23: Time history of Cl at various Mach num-
bers; A = 2◦, k = 0.031, and α = 5◦.

Effect of freestream Mach number

The effect of free stream Mach number on the
accuracy of the predicted unsteady airloads is con-
sidered next. Four different values of the free stream
Mach number are chosen, namely, M = 0.3, 0.6, 0.7,
and 0.85. Time history of the lift coefficient Cl is
shown in Fig. 23 for 2◦ flap deflection at reduced
frequency k = 0.031. At this airfoil incidence an-
gle, α = 5◦, the agreement in Cl between the two
models is reasonable until M=0.7, after which the
discrepancy between the two approaches becomes
quite large. At M=0.85 the RFA model predicts a
Cl value that is three times larger than the CFD
prediction.

Snapshots of Mach contours of the flow over a
NACA0012 airfoil at the instant when δe = 0◦ are
shown in Fig. 24 for M = 0.7 and 0.85. A strong
shock on the airfoil ahead of the flap is evident for
the M = 0.85 case and it produces massive shock-
induced boundary layer separation as can be seen
in Fig. 24. The RFA model is not suitable for pre-
dicting airloads at such flow conditions.

Drag due to flap deflection

Drag has an important practical role in the imple-
mentation of ACF for rotorcraft, and the accurate
prediction of drag is essential for rotor performance
considerations. Drag predictions from the simple
drag correction given by Eq. (8), the CFD++ code,
as well as a CFD based surrogate drag model, are
presented in this section. Drag predictions from the

(a) M = 0.7

(b) M = 0.85

Figure 24: Snapshots of Mach contours of the un-
steady flow over the NACA0012 airfoil; α = 5◦ and
δe = 0◦.
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simple drag correction and the CFD code are eval-
uated and compared first, followed by the results
from the CFD based surrogate drag model.

Simple drag correction

Drag coefficients Cd obtained from the simple
drag model and CFD are plotted in Fig. 25, for the
case of α = 5◦ and flap deflection A = 2◦ at vari-
ous frequencies. A similar comparison of the drag
coefficients is also shown in Fig. 26, for the same
conditions as in Fig. 25 except for an incidence an-
gle of α = 0◦.

It is evident from Figs. 25 and 26 that predic-
tions from the drag model, Eq. (8), differ substan-
tially from the CFD results. The simple drag model
underpredicts the oscillatory drag at α = 5◦ and
overestimates it at α = 0◦. Furthermore, it is in-
teresting to note that for the case of α = 5◦, as
shown in Fig. 25, the drag predicted by the simple
model appears to oscillate twice as fast (or twice
as many times) as the unsteady drag predicted by
CFD. However, this difference in the number of os-
cillation does not occur for α = 0◦, as can be seen
from Fig. 26. This behavior is explained by recog-
nizing the fact that the absolute value of δe used
in Eq. (8) implies that flap deflections are always
assumed to produce a drag penalty in the simple
drag model. At α = 0◦ the drag increases during
both upward and downward strokes of the flap, as
can be expected from the symmetric mean flow and
predicted by both the simple model and CFD. The
drag still increases for the downward flap stroke at
α = 5◦; however, it is reduced when the flap de-
flects upward, as indicated by the CFD computa-
tions. This reduction in drag is due to the decreased
boundary layer thickness on the upper surface of the
airfoil, while the flap deflects upward. Such dissim-
ilar effects of flap deflection on Cd are illustrated in
Fig. 27 where unsteady drag Cd is plotted against
flap deflection angles, at both α = 0◦ and 5◦. The
simple drag model is clearly an oversimplification of
the drag due to flap deflections, in particular when
viscous effects are significant.

The drag responses at various flap reduced fre-
quencies from the CFD calculations are shown in
Figs. 28 and 29. The Cd versus δe curve in Fig. 29
exhibits a butterfly shape, different from Fig. 28,
due to the reason explained earlier. The drag re-
sponses shown in Fig. 29 for the α = 0◦ have been
filtered to eliminate high frequency variations that
may be associated with the non-conservation condi-
tion at the overset mesh boundaries which assumes
a more significant role at smaller drag values near
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Figure 25: Time history of Cd at various reduced
frequencies; M = 0.6, α = 5◦, and A = 2◦.
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Figure 26: Time history of Cd at various reduced
frequencies; M = 0.6, α = 0◦, and A = 2◦.
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Figure 28: Cd versus δe at various reduced frequen-
cies; A = 2◦, M = 0.6 and α = 5◦.

zero incidence angle.

CFD based surrogate drag model

Since the simplified drag model represented by
Eq. (8) is inaccurate, a new CFD based drag model
has been developed, so as to enable one to predict
drag penalty associated with active flaps in a more
reliable manner. The new drag model was con-
structed using a surrogate based approach described
earlier. The fitting ranges of the three design vari-
ables for which the surrogate based drag model is
generated, namely M , α, and δe, are given below

0.2 ≤ M ≤ 0.95
−10◦ ≤ α ≤ 30◦

−5◦ ≤ δe ≤ 5◦
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Figure 29: Cd versus δe for A = 2.0◦ at various
reduced frequencies; M = 0.6 and α = 0◦.

The range of parameters encompasses all practical
flow conditions encountered by an active flap sys-
tem in rotorcraft applications. A smaller parame-
ter range may also be considered for constructing
the drag surrogate, and therefore it will require less
computational effort to generate. However, it will
be limited in its range of applicability. In this study,
a total number of 3000 fitting points are generated
using Optimal Latin Hypercube (OLH) sampling
technique [36]. The CFD++ code was then used
to obtain converged drag solutions at the flow con-
ditions defined by these 3000 points, employing par-
allel computations. Subsequently, kriging is used to
generate the drag surrogate for these sampling data.
In order to quantify the accuracy of the surrogates,
an additional 300-point OLH space was generated
as testing points at which the errors of the surro-
gate predictions were evaluated against direct CFD
computations (true responses). The absolute errors
are defined by

ε
(tp)

i
=
|y(i) − ŷ(i)|

ȳ
(11)

The average and maximum errors are

ε
(tp)

avg =

∑Ntp

i=1
ε
(tp)

i

Ntp
(12)

ε
(tp)

max = Max
{

ε
(tp)

1
, . . . , ε

(tp)

Ntp

}
(13)

At these 300 test points, the surrogate drag model
generated with the 3000 fitting points has an av-
erage error of 1.7%, while the maximum error is
19.5%. The small average error for the surrogate in-
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Figure 30: Variation of drag to flap deflection for
NACA0012 airfoil with a 20%c flap; α = 0◦ and 5◦,
M = 0.6.
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Figure 31: Drag polars for NACA0012 airfoil with-
out flap deflection; δe = 0◦, M = 0.3 and 0.6.

dicates that the model is very accurate over the en-
tire range of interest. Next, the surrogate is used to
generate drag plots at specific flow conditions to fur-
ther examine the accuracy of the surrogate model.
First the variation of drag against flap deflection δe

is shown in Fig. 30, for two airfoil incidence angles
α = 0◦ and α = 4◦, at Mach number of 0.6. The
predictions of the surrogate model are shown in the
figure by the solid and dashed lines, along with di-
rect CFD calculations indicated by the circle and
diamond symbols. The surrogate model accurately
predicted the drag variation at both airfoil incidence
angles. For further comparison, the drag polars are
also shown in Fig. 31, for zero flap deflection. The
surrogate model compares very well with the drag
polars calculated by the CFD code.

The surrogate drag model was generated from
CFD drag predictions at steady flow conditions,
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Figure 32: Time history of Cd at various reduced
frequencies; A = 2◦, M = 0.6 and α = 5◦.

therefore this model only accounts for drag in a
quasisteady manner. Comparisons of drag obtained
from this model to fully unsteady drag computed by
CFD are shown in Figs. 32 and 33. Compared to
the results obtained using the simple drag model, as
given earlier in Figs. 25 and 26, the surrogate model
clearly represents a significant improvement. Note
that the surrogate model also predicts the same
number of oscillation as the CFD predictions, for
both α = 0◦ and 5◦. However, the surrogate drag
model also substantially underpredicts the magni-
tudes of unsteady drag, particularly at higher re-
duced frequencies. This implies that flow unsteadi-
ness needs to be taken into account for future stud-
ies.

Concluding Remarks

Two-dimensional unsteady airloads due to oscil-
lating flap motion predicted by the Rational Func-
tion Approximation (RFA) model are compared
with CFD based calculations. The comparison was
conducted for a representative range of flow condi-
tions and combinations of parameters such as the
airfoil angle of attack, flap deflection amplitudes,
reduced frequencies and freestream Mach numbers.

The RFA model consistently overestimates un-
steady lift, moment, and in particular hinge mo-
ment, which is attributed to viscous effects, nonlin-
earity, thickness, and possibly the hinge gap that
is modeled only in the CFD approach. The dis-
crepancy between the RFA and CFD predictions
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Figure 33: Time history of Cd at various reduced
frequencies; A = 2◦, M = 0.6 and α = 0◦.

increases at high Mach numbers, i.e. M > 0.7.
Overall, the oscillatory components of the unsteady
airloads are reasonably well captured for most cases
considered in this study, thus establishing the valid-
ity of the RFA model for its use in comprehensive
rotorcraft simulation codes and preliminary design
trend studies. Furthermore, the overall accuracy
of the RFA model can be improved by introducing
empirical coefficients, as is done also in Leishman’s
model [10].

A simplified drag model, Eq. (8), used in ear-
lier studies to account for additional drag due to
flap motion was found to be inaccurate. Therefore,
a surrogate based drag model was developed and
shown to be capable of improved drag predictions.
This new improved model will facilitate future stud-
ies involving the evaluation of performance penalty
associated with active flaps.

It is important to note that despite its relative
simplicity, the RFA model provides a good esti-
mate of unsteady effect of the trailing-edge flap,
at Mach numbers below 0.70 and the reduced fre-
quency range representative of practical implemen-
tation for vibration reduction. The applicable Mach
number range depends also on the airfoil incidence
angle and magnitude of flap deflection. The esti-
mates are good in the case of smaller mean air-
foil angles of incidence and smaller flap deflections.
Compared to the CFD approach, the computa-
tional efficiency of the RFA approach provides a
distinct advantage for computationally intensive ap-
plications such as rotorcraft simulations with active
control.
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