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ABSTRACf 

The demands of modem agile rotorcraft necessitate the use of high-bandwidth control 

and actuation systems. The models currently used for simulation and flight control system 

design must therefore be extended to cover the range of frequencies which encompass the 

rotor dynamics, including the dynamics of induced flow. The basic models of inflow using 

local momentum theory and simple vortices have been examined over a range of 

frequencies using parameter identification techniques and have been found to be 

inadequate. This paper presents a model incorporating a Glauert type of augmentation 

and uses flight data to justify its validity. 

NOMENCLATURE 

A 
B 
c 
D 
E 
H 
Di,D~ 
H>-
He 
H'7 
F/1 

F 11' 

System matrix of rotor 
Effective control matrix for state-space representations 
Coefficient matrix of 11' in flapping equation 
Coefficient matrix of 11 in flapping equation 
Co.efficient matrix of !' in modified state equation 
Measurement matrix 
Diagonal matrices of induced-flow time constants 
Coefficient matrix for 1 in flapping equation 
Coefficient matrix for p_ in flapping equation 
Coefficient matrix for 11. in flapping equation 
Coefficient matrix for 11 in non-dimensional dynamic 
induced-flow equation 
Coefficient matrix for 11' in non-dimensional dynamic 
induced-flow equation 
Coefficient matrix for p_ in non-dimensional dynamic 
induced-flow equation 
Coefficient matrix for ll in non-dimensional Jynamic 
induced-flow equation 
Coefficient matrix for !. in non-dimensional dynamic 

17-1 



:!!. 
!! 
fl. 
ft. 
1 
11 

.f. 
a 
R 

"' r 
v 
\'. 
L 

Jlx•Jly 
Jl 

induced flow equation 
State vector 
Control vector 
Vector of harmonic components of blade flap 
Vector of harmonic components of blade pitch 
Vector of harmonic components of non-dimensional induced-flow 
Vector of non-dimensional pitch and roll accelerations 
~ o;:;:(.,l.IJ.l U! 11UH -U11ucll::,iuua1 iuiiuw Oue to hub motion 
Non-dimensional inG.~..:..:~ f!vy.; ~ii.ii.i: i:VtJ.itant 

Non-dimensional time constant associated with >-0 dynamics 
Non-dimensional time constant associated with >-c and As dynamics 
~easurement vector 
~easurement noise vector 
Cost function 
Vector of residuals (frequency domain) 
Angular rotor speed 
Blade radius 
Blade azimuth angle 
Normalised radial blade position 
Resultant air speed through rotor disc 
Aerodynamic force and moment vector 
Aerodynamic coefficient matrix 
Non-dimensional longitudinal and lateral components of rotor hub velocity 
Non-dimensional velocity in the plane of the rotor disc 
(Jl2 = lli + Jl 2) 
Non-dimensiona1 component of rotor hub velocity normal to the rotor plane 

Non-dimensional component of blade velocity normal to the blade 

Inertia number 
Normalised flapping irequency 
~atrix of Glauert-type constants for empirical model 
Glauert-type constants for extended theoretical model 

Glauert-type constants and corresponding mean values for extended theoretical 
model 

1. INTRODuctiON 

The demands of the modern agile helicopter and other rotorcraft necessitate high 

bandwidth control and actuation systems. ~athematical models currently in use for 

real-time simulations and for flight control system design must therefore be extended to 

cover the range of frequencies which encompass the rotor dynamics, including the 

dynamics of induced flow. The dynamic modelling of induced flow in helicopter rotors is 

therefore a topic which is currently receiving much attention.'·2 

System identification methods provide the basis of one approach to the development 

and validation of improved rotor models and previous work carried out at the University 

of Glasgow has provided a general methodology based upon these techniques3-6. ~any 

models for induced flow effects have been suggested and the parameter identification 
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approach has been applied both to models based on local momentum theory and to 

models based on vortex theoryl. Within this identification-based approach the ability of 

the model to represent the important features of the real system is assessed not only in 

terms of the goodness of fit between responses predicted by the model and the equivalent 

measured responses from flight data but also from the estimated confidence levels 

associated with parameter values and the credibility of estimates in physical terms. 

The development of a practical model of induced flow through the rotor for 

application to real time helicopter simulation has to balance the need for fidelity with the 

exigencies of a real time environment. The compromise in complexity which this balance 

requires is often best approached by taking a basic simplistic model and subsequently 

introducing a phased enhancement until the point is reached where acceptable predictions 

are achieved. The preferred approach to model building is that based on physical 

principles rather than one which is directly heuristic, since an economy of parameters 

often results, and these parameters are usually physically meaningful quantities where a 

priori estimates are available. Further, the physical approach inherently incorporates 

simplifications which can point the way to later enhancements 

2. FIRST-QRDER BLADE-FLAPPING MODEL WITH BASIC INDUCED-FLOW 

DYNAMICS 

Although the most general form of model for blade flapping considered in the 

previous work involved retaining the second derivatives of the flapping components, it has 

been found that it is justifiable to neglect them to reduce the model to a first-order 

system that includes the dynamics of the induced flowl. The resulting equations have the 

following form: 

c 0 

] [ 
!l r [ 

-D H}. 

] [ 
!l 

] 
-F 13' D 1 F/3 (F}. - I) 1 

T 

He H H 

[ 
fl. v ,., 

+ .!:. 

Fe F 0 21. v 
( 1) 
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where 

!l. = (q'w• P'w)T 

thP c.nmnonP:nt!': nf thP 

multiblade representation. 

are collective, lateral and longitudinal components 

of the blade pitch respectively in hub wind 

axes2. 

are the non-dimensional quantities: component 

of rotor hub velocity normal to the rotor plane, 

pitch and roll rates of the rotor in hub wind 

axes.2 

are the mean and harmonic components of the 

induced flow. 

are the non-dimensional pitch and roll 

accelerations. 

The matrices appearing in equation 1 have elements which depend upon the 

fundamental parameters '/..{3, the normalised flapping frequency, and n{3 the inertia number 

as follows: 

r n/3 0 2 p.n{3 1 >.2 0 0 1 3 {3 

c- 0 n{3 2 D- 4 'A 2- 1 n{3[ 1+~2 ] 3 p.n{3 {3 

i p.n{3 -2 n{3 0 -n{3[1-~2 ] 'A2- 1 
3 

{3 
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n
13

[1+/] 0 ~ 1'013 0 0 

H - 0 n13 [1+~
2 l 0 H 1 0 

8 '7 

~ 1'013 0 n/3[ 1+~1'21 0 1 

4 n/3 0 2 1'013 
3 3 

H 0 n/3 2 
v 

21'n
13 

-2 n/3 

4 0 3. I'O {3 - 3 n/3 3 

H -), 
0 - n/3 0 

- 21'n
13 

0 - n/3 

The non-dimensional component of hub velocity in the plane of the rotor, I'· also 

appears within these matrices, but in the absence of perturbations in I' the equation is 

line.•r and may be used for cases involving perturbations in {]., .§.., £., 1 2-!!d 11· 

2.1 The Basic Induced-Flow Model 

The dynamic model for the induced flow takes the general form: 

7 1' + 1 = L £ (2) 

where the forcing term involves a non-dimensional aerodynamic force and moment vector 

(3) 

The quantity CT is the normalised rotor thrust whiie Cmc and Cms are the normalised 

moments about the rotor y and x axes respectively. The quantities s and a0 are the 

rotor solidity and the blade lift slope. 
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The aerodynamic force and moments can be related to variables used in the model 

defined by equation 1 in the following wayl :-

(4) 

Here the matrices G(3'• G13, G 8, Gv and G;>.. all involve elements which are functions of 

p., the non-dimensional speed in the plane of the rotor disci. For the purposes of the 

work described the value of p. was assumed constant and was obtained from the flight data 

used in the system identification. 

The form of the matrix L is determined by the type of model adopted and one 

widely used form is derived from local momentum theory 7. By considering the force, 

dF, on an element of the rotor disc and by integrating this over the rotor-disc area with 

appropriate weightings it is possible to derive expressions for the rotor thrust and 

moments. These are the elements of the £ vector as defmed in equation 3. In the case 

of the thrust, for example, this can be show to give 

I 2... I R 

0 0 

2pv
1
Vrdrdf (5) 

where vi is the induced velocity through the rotor disc and V is the resultant speed of air 

through the disc. 

Different forms can be assumed for the induced velocity. The form chosen for the 

present work involves a radial variation2,8 as follows:-

flR 

;>.. 
0 

+ 

The resulting speed of air through the disc can be written in the form~: 
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v 
fiR 

+ 

(7) 

where p.z is the component of aerodynamic velocity of the rotor hub (non-dimensional) 

normal to the rotor plane. The factor !lR which appears in both equations 6 and 7 is 

introduced for purposes of normalisation. 

In previous work carried out at the University of Glasgowl the quantity Y/!JR was 

approximated by p. for fast forward flight. From integrals similar to that in equation 5 it 

was possible to derive a basic inflow equation in which the matrix L was of diagonal form 

with constant coefficients. Substitution of equation 4 into equation 2 allowed the 

induced-flow model to be incorporated. into the first-order blade flapping model and thus 

gave the combined form of model given by equation 1. 

2.2 The System Identification Method 

Equation 1 may be manipulated without difficulty into the standard state-space form. 

However, to facilitate the direct estimation of physical parameters, such as 'A (3 and n (3• 

there are advantages in retaining the general form: 

E:!!;' = Al!_ + Bg (8) 

For the model structure of equation 1 it is possible to express equation 8 in partitioned 

form as follows:-

[ 
Ell 0 

] [ 
11. ]' [ 

All A12 

] [ 
11. 

] 
E21 E22 1 A21 A22 1 

[ 
811 812 B13 

] 
§. 

+ 
821 B 22 0 £. (9) 

.!}. 
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This equation retains the structural features of the theoretical model described by equation 

1 and provides a basis for the application of system identification and parameter estimation 

techniques. 

Estimation of parameters within the model given by equation 9 may be carried out 

conveniently in the frequency domain using an output-error approach. In the frequency 

domain equation 8 has the form: 

E ~'(w) = A ~(w) + B U(w) (10) 

The measured quantities, ;::;(w), are then related to the state variables ~(w) through the 

equation 

;::;(w) = H ~(w) + Y(w) (11) 

where y(w) is assumed to be band-limited white noise. Unbiased model parameters are 

obtained using output-error methods provided that there is negligible process noise and 

that the measurement noise band limit lies beyond the frequency range used in the 

identification. 

The cost function which is minimised in the frequency-domain output-error approach 

takes the form 

J 
-1 

S E 

(12) 

where s. represents the difference between the observations and the model output the 

frequency domain. S is the error-covariance matrix defining the noise st1 :,.;tics of the 

measured responses Z and [W]. wil represents the range of frequencies used in the 

identification. 
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For the case being considered the measured quantities are elements of the state 

vector l!. = (Ji, 1)T and thus the measurement transition matrix, H, is the identity matrix. 

Measurements of 11 are available and the elements of the error-covariance matrix S in 

equation 12 associated with this vector are also estimated as part of the identification 

process. Measurements of the induced flow states 1 are not available and the approach 

adopted involves fixing the corresponding elements of S at very large (effectively infinite) 

values. This indicates the uncertainty in the non-existent measured responses for 1 and 

enables the identification to proceed. 

Important features of the frequency-domain method for rotorcraft system identification 

which has been developed at the University of Glasgow3 include the ease with which the 

frequency range used for the identification can be controlled, the ability to estimate time 

shifts in the input and output vectors and a facility for defining relationships between 

different elements within the model structure. In the model given by equation 1 the 

matrix elements are functions of a few parameters and it is generally a sound principle to 

take full account of known relationships between elements of the matrices. The estimation 

of n/3 and is of particular interest in the current work and the ability to define 

relationships between parameters is therefore a particularly valuable feature of the 

identification method. 

2.3 Identification Results for the Basic Induced-Flow Model 

Results obtained from the use of the momentum-inflow model of equation 1 showed 

that although satisfactory fits could be obtained for {30 and 131 c the correspondence 

between the measured and predicted responses for i3Is was relatively poor1. This 

deficiency in the previously published results was particularly marked in terms of 

comparisons in the frequency domain which indicated significant differences, especie':1 in 

terms of phase. These earlier results are reproduced in Figure 1 with the corresponding 

estimates of parameters being shown in Table 1. The results show that a high value of 

normalised blade flapping frequency, >-13., was obtained, compared with theory. It can also 
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be seen that the single time constant r, associated with the induced-flow dynamics, was 

estimated with considerable uncertainty. The flight test data used in this work were 

obtained from a Puma helicopter flying at 100 knots with a rotor speed of 27.5 rad/s. A 

longitudinal-cyclic doublet input was applied by the pilot during the run. The frequency 

range used in the identification was 0.226 Hz to 1.60 Hz. 

As a first step in seeking an improved model, the longitudinal and lateral components 

of hub velocity, 1'-x and P.y respectively, were introduced within the induced-flow model. 

Such terms are included in other inflow models9 and their introduction, on a purely 

empirical basis, led to a new model for the induced-flow dynamics having the following 

form:-

where 

o* x• T-

K 

+ 1 = L£ + K~xy (13) 

In this equation o* r is a diagonal matrix involving two independent time constants: a 

time constant r 0 associated with the X0 dynamics and a second time constant r cs 

associated with both X1c and Xls· 

T 0 0 
0 

o* 0 T 0 T cs 

0 0 T 
cs 

The matrix Dr in equation 1 involves three equal time constants. 

The identification based upon the empirical model of equation 13 was performed 

using the same flight data and the same frequency range (0.226 Hz - 1.60 Hz) as for the 
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basic model. The identification included estimation of a bias term in the recorded blade 

azimuth position. This was estimated as a shift (in radians) in the measured responses for 

multiblade flapping, {i, and pitch, fl... The estimation process for these measurement 

system parameters made use of the facility within the identification software for estimation 

of time shifts and also of the facility for defining relationships between elements of a 

model. Through the use of this latter facility a single value of bias was estimated which 

represented a parameter occurring at six points within the model. 

Results obtained from application of the system identification approach to the 

empirical model of equation 13 are given in Table 2. The corresponding 

frequency-domain fits and time-domain reconstructions are shown in Figure 2 and Figure 

3 respectively. It can be seen that the changes in the model have resulted in substantially 

improved fits. In addition, the normalised flapping frequency, }..{3, is now in much better 

agreement with theory than for the previous case given in Table 1. The inertia number, 

n13 is still in good agreement with theory and many of the empirical constants, kij• are 

estimated with relatively low error bounds. The two induced-flow time constants, r 0 and 

r cs• are found to have values which are rather larger than might have been expected 

from physical considerations, especially in the case of r 0 which is the time constant 

associated with >-.0 dynamics. An azimuth bias term, which has been used to advantage 

by others9, is estimated with a low error bound and corresponds to a bias of about 16.2 

degrees. 

3. A MODIFIED FIRST-QRDER BLADE-FLAPPING MODEL WITH INDUCED-FLOW 

DYNAMICS 

The favourable results obtained using the empirical model of equation 13 suggested 

that an improved theoretical model structure should be sought. It was believed that " .n 

a model could allow a physical interpretation to be placed upon the estimates of the 

empirical parameters within the K matrix defined in equation 13. 
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3.1 An Extended Induced-Flow Model 

One problem area associated with the basic model of induced flow concerns the 

equation defu;llng the speed of air through the disc (equation 7). If P.z• the component of 

rotor hub velocity normal to the rotor plane, is replaced by W B> the blade velocity in 

non-dimensional form, we have 

__y_ (14) 
flR 

where 

iii a 

where 

P* p/fl + ~lc Wts + 8ts 

q* q/fl ~ls ~'lc + 8tc 

8*o P.x~lc + P.y~ls 

In this equation it should be noted that the derivatives Wts and Wtc involve 

differentiation with respect to azimuth (normalised time). 

From equations 14 and 15 the following approximate expression can be derived 

p. 

+ (r(q* - A
10

) + r2 )cos~] (16) 
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where X0 represents a mean value of A* 0 where 

= (17) 

Using equations 6 and 16 we have: 

A1 r·sin~) (~+X s _Q 

~ 

(18) 

The expression given in equation 18 can then be used within integrals similar to that in 

equation 5 in order to calculate expressions for the aerodynamic forces and moments. 

This leads to the following modified form of induced flow equation:-

D*>-' + 1 L£ + F£.A + GJ!xy (19) 
T-

where 
a s/2~ 0 0 

0 

L 0 -2a s/~ 0 
0 

0 0 -2a s/~ 
0 

k k c1 c2 s c 

F 0 k G- -c3 "4 0 

k 0 c4 "3 0 

v --A (p* A1s' q* A )T 
1c 

and where kg, kc and ko and c1, C2, C3 and C4 are constants representing 

the mean values of the following quantities: 

k 
s 

- A X 1s o 

4/n 
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c1 4 k ne 4 k fl(3 
3 s 0 3 c 0 

c2 4 k fl(3 + 4 k ne 
3 s 0 3 c 0 

c3 8 k fl(3 
3 0 0 

c4 8 k ne 
3 0 0 

The matrix G represents a Glauert type of augmentation to the induced flow model. 

3.2 The Blade-Flapping Model with Extended Induced-Flow Dvnamics 

The incorporation of the extended induced-flow model of equation 19 into the 

state-space description for flap and induced velocity given originally by equation 1 requires 

some changes. Firstly there is a requirement to introduce the quantities Jlx and Jly as 

measured inputs. This implies a need to estimate elements of the associated coefficient 

matrix G. Secondly, the term F£.)\ in equation 19 involves terms from the vectors IJ.', fl.. 

1, ! and £. and thus modifies the definitions of the partition matrices E 21 , A 21 , A 22 ,B 21 

and B22 of equation 9. Additional constants associated with ks, kc and k0 must also be 

estimated. The complete model now has the form: 

[ 
Ell 0 

] [ ft ]' [ 
All A12 

] [ 
fl. 

] .. .. 
~ A~1 A~2 1 E21 E22 

[ 
8ll 812 813 0 

] 
! 

+ 
8~1 8~2 0 G £. 

1l 

Mxy (20) 

3.3 Parameter Identification using the Modified Model 

Examination of equation 19 shows that the more complex model structure resulting 

from the introduction of Glauert augmentation involves a number of constants which are 
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interrelated. However, by further manipulation of the relationships given above, it can be 

shown that the quantities l<c, 1<5 and 1<0 + a0 s/8p. may be estimated as independent 

parameters. 

The application of parameter estimation techniques for this new model structure with 

the flight test data used previously led to the results presented in Table 3 and in Figures 

4 and 5. From Table 3 it can bee seen that the estimates of the physical parameters 

>.2 and n13 are identical, within the 
{3 

indicated error bounds, to those obtained for the 

empirical model as presented in Table 2. However, the estimates obtained for the time 

constants given in Table 3 are substantially different from those in Table 2. The time 

constants obtained for the modified model structure indicate that the >.0 dynamics are 

almost instantaneous and that the >-tc and >- 15 dynamics have a time constant of about 0.8 

seconds. The time constant r cs is estimated with a high degree of confidence and from a 

physical standpoint these values are much more satisfactory than those for the empirical 

model. The quantities l<c and l<s introduced in Section 3.1 have estimated error bounds 

which indicate a reasonable degree of confidence while the error bound for the paramter 

1<0 indicates complete uncertainty in terrns of the estimate. The coefficients c1, c2, c3 

and c4 associated with the P.x and P.y inputs to the induced-flow equation show values 

close to zero for those corresonding to >.0 (i.e. c1 and c2) and are estimated with a very 

high degree of confidence for those corresponding to >-tc and >-ts (i.e. c3 and c4). This 

means that two independent parameters, c 3 and c 4• together with the relationships 

indicated by equation 19, are now estimated in place of the four independent parameters 

k11, k12, k21 and k22 in the empirical model structure. 

Comparing Figure 4 with Figure 2 it can be seen that very similar fits better fits are 

obtained for [30 and f3tc with the modified and empirical model structures. In the case 

of f3ts the results for the empirical model, as presented in Figure 2, show a better 

magnitude comparison, at the important lower frequencies. It should be noted, however, 

that the magnitude of f3t 5 is very small in comparison with f3t c. 
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3.4 Effect of Frequency Range on Parameter Estimates 

The effect on the estimated values of varying tbe lowest frequency used in the 

identification is shown in Figure 6. The range of starting frequencies considered covered 

the lowest available frequency of 0.0376 Hz up to a value of 0.338 Hz which excludes the 

rigid-body dynamics. 

If we exclude consideration of the lowest available frequency (0.0376 Hz) and 

consider initial frequency values in the range 0.0752 Hz to 0.2256 Hz it can be seen that 

many of the parameter estimates are effectively independent of frequency range. Such 

parameters include the inertia number n {3• the induced-flow time constants T 0 and T cs• 

the normalised flapping frequency A~ , the induced-flow model coefficients for both l'x 

and fly• c1 and c 4, and the azimuth bias. There is some variation with frequency for the 

estimate of ks· and in the cases of kc .and (k0 + a0 sl8f.t) there is a considerable variation. 

These terms do, however, depend on time-varying quantities and some variation with 

frequency range might be expected. 

4. CONCLUSIONS 

A frequency-domain output-error system identification technique has been applied 

successfully to the estimation of parameters of a state-space type of model representing 

rotor flapping and induced velocity for a Puma helicopter. Many features of the 

particular frequency-domain approach used and its software implementation were found to 

be specially appropriate for this form of modelling problem. 

The development of the model structure used in the identification involved extension 

of an earlier momentum-inflow model by means of empirical modifications which were 

subsequently justufied by additional theoretical work. In essence, these changes amounted 

to a more complex representation of the rotor surface used in the momentum-inflow 

theory, incorporating effects due to blade flap and blade pitch. 
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The identification software used for this work accommodated the changes in model 

structure without difficulty. The facility within this software for incorporating defined 

relationships between different elements of the model structure was found to be an 

essential tool for this work. 

The fundamental physical parameters in the extended model structure (i.e. X~ , n 13, 

7 0 and 7 csl were confidently estimated with values that were physically realistic and fairly 

constant for a range of frequencies. The introduction of two distinct time constants 

associated with the induced-flow dynamics ( 7 0 and 7 csl was found to be a valid modelling 

step. An effectively instantaneous response was found for the >- 0 dynamics and a time 

constant of the order of 0.8 seconds was estimated with small error bounds for both the 

>-1 c and X1 s dynantics. 

The model structure developed ultimately in this paper for blade flap and induced 

velocity exemplifies how through the use of sound physical reasoning and versatile software 

tools, adequate mathematical models incorporating observed physical features can be 

developed by means of system identification methods. 
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TABLE 1 Phvsical oarameter estimates for original model structure 

PARAMETER ESTIMATE APPROXIMATE THEORETICAL 
(0.226 - 1.58 Hz) VALUE 

1 - >.2 -{).3992 (0.084) t 
>.2 13 1.3992 1.06 

13 

n{3 1.0027 (O.ll)t 0.987 

T 19.426 (11.0) t -

t Estimated 1 tr error bound. 

TABLE 2 Parameter estimates for empirical model 

PARAMETER ESTIMATE APPROXIMATE THEORETICAL 
(0.226 - 1.58 Hz) VALUE 

1 - >.2 -{).0703 (0.025) t 
>.2 (3 

1.07 1.06 
{3 

n{3 0.906 (0.035) t 0.987 

To 16.28 (5.107) t -
Tcs 31.91 (2.23) t -

k01 -{),279 (0.12) t -
k02 0.0583 (0.008) t -
k11 -1.105 (0.36) t -

k12 -1.835 (0.12)t -

k21 -{).168 (0.14) t -

k22 -{).698 (0.058)t -
-

tfaiAS 0.283 (0.042) t -

t Estimated 1 tr bound. 
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TABLE 3 Parameter estimates for improved model structure 

PARAMETER ESTIMATE APPROXIMATE THEORETICAL 
(0.226 - 1.58 Hz) VALUE 

1 - )\2 -o.0224 (0.021)t 
)\2 {3 

1.022 1.06 {3 

nl3 0.857 (0.030)t 0.987 

To 1.079 (1.12)t -
Tcs 21.442 (0.89) t -

cl -o.0752 (0.034) t -

c2 -o.0214 (0.020) t -

c3 -1.329 (0.083) t -
c4 -Q.4579 (0.022) t -
k + a0sl8~t 0 

0.0692 (0.012) t -
k 0.1629 c (0.038) t -

k -o.1901 (0.055}t -s 

lfsiAS 0.392 (0.036) t -

t Estimated 1 cr error bound. 

Figure 1 

X J0·2 

/Jo 
6.8 
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Time-domain reconstructions for original model. 
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..------,~-------------,Predicted response : -----

8 2 6 g 18 12 14 16 1E 28 11 14 16 

TIME - Sec. 
8.888 

-8.828 

/Jtc 

VI v~ -- ·- --- -, ~ 
~··-· -

-8.848 ' ' '. '- -~ 8 1 4 6 g 18 11 14 16 1E 18 11 24 26 

TIME - Sec. 

8.888 
{J IS 

-8.828 

-8.848 
8 1 6 g 18 12 14 16 1E 18 21 14 16 

TIME - Sec. 

17-20 



Figure 2 Frequency-domain fits for empirical model. 
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Measured response : --
Predicted response :---- -

[3, 
6.8 

X IQ·:! 

5.5 

8 2 6 8 18 12 14 16 18 28 22 24 26 

TIME - Sec. 

8.888 
{3 I C 

-8.8<8 

-8.848 
8 2 6 8 18 12 14 16 18 28 22 24 26 

TIME - Sec. 

8.888 

-8.828 

-!1.1148 
8 2 4 6 8 18 12 14 16 18 28 22 ~ 26 

TIME - Sec. 
. 17-21 



/3, 
matniiU<N 

X !0·2 

' 
8 ' 

8.4 8.6 

j3 I' 

4 

X J0·2 
2 

8 
8.4 8.6 

/3 '' m.JfltJllu.k 

8 

6 

l x I0-2 4 

2 

8 
8.4 8.6 

Figure 4 Frequency-domain fits for modified model. 
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Figure 5 Time-domain reconstructions for modified model. 
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Figure 6 Variation of parameter estimates with lower frequency limit for modified 
model. Upper frequency limit fixed at 1.58 Hz. 
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