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Abstract
The paper deals with a theoretical-numerical comparison among integral formulations for the prediction

of noise scattered by moving bodies. Three acoustic scattering integral formulations for the solution of

the velocity potential wave equation are considered: a recently proposed linearized boundary-field integral

formulation, and two widely applied boundary integral approaches based on Taylor and Taylor-Lorentz

transformations. Aim of the work is to highlight their theoretical differences and limits of applicability, while

examining their capability of capturing the influence of body motion and corresponding nonuniformmean

flow around it on the scattered noise field. Numerical results concern a rigid translating sphere impinged by

sound waves emitted by a co-moving pulsating point-source and a helicopter fuselage impinged by noise

radiated by main- and tail-rotor.

1. INTRODUCTION
Sound scattering occurs when an obstacle (scat-

terer) is present in the path of an acoustic wave

and produces secondary sound spread in a vari-

ety of directions. Under the assumption that the

wavelength of the impinging sound is compara-

ble or less than a characteristic size of the scat-

terer, the acousto-structural interaction causes a re-

distribution of the energy content of the impinging

wave into reflected and diffracted secondary waves

that may remarkably alter magnitude, waveform

and directivity of the overall noise field with respect

to the unbounded space propagation. This phe-

nomenon is relevant for a wide range of engineer-

ing applications dealing with stationary and moving

objects: for instance, in aeronautics, to determine

the sources of airborne and structure-borne cabin

noise, as well as, to predict far field noise distri-

bution affecting populated areas; in hydroacoustic

ship design, to limit the impact of sea acoustic pol-

lution on marine life, to comply with noise emission

regulations and limitation of acoustic detectability
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of warships.

Basically, the analysis of acoustic scattering is

conceived as a a two-step problem where the im-

pinging pressure wave emitted by the main source

of sound is considered frozen, namely independent

of the presence of the scattering surface. The in-

cident sound field (which represents the input for

this type of problems) may be thus computed by

prior hydro/aerodynamic and hydro/aeroacoustic

analyses of the emitting source, as if it were iso-

lated, with the total noise field divided into inci-

dent and scattered components: this assumption

permits to avoid time-consuming computations for

the coupled analysis of primary source and scat-

terer of sound. For instance, this approach may

be successfully applied to capture acoustic scat-

tering effects from fuselage/wing/rudder compo-

nents of propeller-driven aircraft in cruise flight,

where propeller aerodynamics is scarcely affected

by the rest of the configuration
1
, and to predict

the acoustic shielding effects of helicopter cabins

in flight conditions characterized by the absence of

relevant aerodynamic interactions with the main-

rotor wake
2
. Differently, marine configurations with

thrusting propellers behind the hull inherently suf-

fer of the hydrodynamic interaction between turbu-

lent and vorticity fields released by the hull. How-

ever, for cruising motion without interactions be-

tween vortex structures and propeller blades, fully-

appended hull scattering effects may be computed

by considering isolated propellers working in a non-

homogeneous onset-flow given by a prior hydrody-

namic analysis of the moving hull
3
.

Literature papers show that the scattered pres-

sure field is typycally predicted by the solution of
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linear boundary integral formulations that solve the

Helmholtz equation for the velocity potential or the

acoustic pressure.
4,5,6,7

Alternative approaches pro-

pose the application of the Acoustic Analogy in a

non-standard fashion that extends the integral so-

lution of the linear version of the Ffowcs Williams

and Hawkings Equation (FWHE)
8,9,10,11

to scattering

problems. Common feature of these formulations

is the application of a Boundary Element Method

(BEM) to determine, first, the scattered pressure

upon the scatterer surface by solution of a bound-

ary integral equation and, then to evaluate the scat-

tered noise in the flowfield by the corresponding

boundary integral representation. By assuming in-

viscid potential compressible subsonic flows, the

Helmholtz formulations, namely, the velocity poten-

tial approach (VP) and the Lighthill Equation for the

acoustic pressure (LE), along with the linear FWHE

formulation, provide fully equivalent results as long

as the scattering body is at rest, wheres relevant dis-

crepancies may arise when the body moves.
12,13

In-

deed, these linear models consider acoustic prop-

agation in homogeneous medium at rest, thus ne-

glecting the effects of nonuniform flow component

arising when the scatterer is in relative motion with

respect to the fluid. The consideration of these ef-

fects on wave radiation would require the inclusion

of the nonlinear field terms that they ignore.

In previous works, a boundary-field formulation

including the linearized field source-terms contri-

bution has been developed and the correspond-

ing predictions have been compared with those

obtained by the linear formulations for a moving

noise scattering wing.
12,13

Specifically, a frequency-

domain boundary-field integral formulation has

been developed for the velocity potential by ex-

tracting from the source field terms the first-order

perturbations with respect to the steady veloc-

ity potential associated to the uniform translation

of the scatterer.
12
Numerical investigations high-

lighted the significant influence of the field lin-

earized sources to the directivity pattern of the

scattered sound. Differently, the scattering prob-

lem could be stated in terms of boundary integral

formulations for the solution of the Lighthill and

Ffowcs Williams and Hawkings Equations on a ficti-

tious permeable surface surrounding the scatterer

and co-moving with it and embedding the corre-

sponding noise field sources.
13
This approach al-

lows to avoid cumbersome computations of volume

integrals involving the Lighthill stress tensor, that

may be impracticable for high-frequency simula-

tions of realistic three-dimensional configurations.

Numerical results demonstrate the desired match-

ing among the examined scattering formulations

for moving objects (namely, VP, LE and FWH), thus

confirming, at the same time, their perfect equiv-

alence when their complete versions are applied,

and the different acoustic effects induced by the

corresponding field source terms. Last but not least,

note that the approaches based on the definition

of permeable surfaces are not autonomous, in that

require the knowledge of suitable input data on

the permeable surface provided by a prior very

near field acosutic solution. This is an unavoidable

drawback of pressure-based formulations for the

scattering analysis of moving bodies in the pres-

ence of not negligible mean-flow effects, that marks

the difference with respect to the velocity potential

boundary-field integral formulation.

Although the aforementioned scattering mod-

els provide an accurate description of nonuniform

mean flow effects on the sound field generated by

scattering bodies, their application is actually not so

straightforward due to the required evaluation of

the field sources of sound localized around the scat-

terer. However, if the interest is on weakly nonuni-

form mean flows with characteristic length-scales

comparable with (or larger than) the characteris-

tic length-scales of the acoustic disturbance, the

noise scattered by moving bodies may be conve-

niently captured by applying, linear boundary in-

tegral formulations that, for homentropic poten-

tial flows, solve suited non-homogeneous forms of

the wave equation for the velocity potential in the

Taylor or Taylor-Lorentz transformed spaces.
14,15,16

These boundary integral formulations for the noise

scattered in the presence of moving bodies and

nonuniform mean flow are widely applied and the

purpose of the present paper is the theoretical-

numerical comparison among them and the lin-

earized boundary-field integral approach in order

to identify the common aspects of the different for-

mulations, as well as, their limits of applicability and

order of accuracy.

The paper is structured as follows: the equations

governing the potential field in the presence of a

moving perturbation source are briefly presented,

then Section 2.1 outlines the novel boundary-field

integral scattering formulation,
12
whereas Sections

2.2 and 2.3 show the basic features of the scatter-

ing formulations involving the Taylor and Taylor-

Lorentz transforms. Comparisons among the nu-

merical predictions obtained by these three formu-

lations are shown in Section 3.1, concerning the

analysis of the noise scattered by a sphere in uni-

form rectilinear translation impinged by the sound

emitted by a pulsating co-moving monopole. Next,

the main- and tail-rotor noise scattered by a he-

licopter fuselage is examined by both Taylor and

Taylor-Lorentz boundary integral formulations in

Section 3.2. The configuration considered is that
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tested in the HART II project
20,21,22

, which is a joint

multi-national program aimed at performing exten-

sive wind tunnel measurements concerning aerody-

namics and aeroacoustics of a four-bladed model

rotor in low-speed descent flight, placed above a

realistic fuselage model. The conclusions are dis-

cussed in Section 4.

2. SOUND SCATTERING MODELLING FOR MOV-ING BODIES
For an inviscid, isentropic and irrotational flow at

rest, the velocity field v is given by the gradient of
the velocity potential φ, that is, v = ∇φ. Then, let
us consider a body with surface S that translates at
uniform velocity v

B
respect to a frame of reference

fixed with the undisturbed medium. If an external

source of intensity Ai(t) located at the point xi(t)
generates a perturbation velocity potential field im-

pinging S , the propagation of the total potential de-
scribed in a frame of reference rigidly connected

with the body (body frame of reference, BFR), is gov-

erned by
17

∇2φ−
1

c20

(
∂

∂t
− vB · ∇

)2
φ =

= σ(φ) + Ai δ(x− xi)
(1)

where c0 denotes the speed of sound in the undis-
turbed medium, and

σ(φ) =

(
1−

c2

c20

)
∇2φ

+
1

c20

(
∂v2

∂t
− vB · ∇v2

)
+
v

2c20
· ∇v2

(2)

collects all the nonlinear terms, with c denoting the
local speed of sound.

2.1. Boundary-field formulation for thevelocity potential (VP)
Following the boundary integral equation

method,
17,18

the solution of Eq. 1 is given by

the following boundary-field expression

φ(x, t) =

∫
S

[
G0
∂φ

∂ñ
− φ

∂G0
∂ñ

]
dS(y)

+

∫
S

[
∂φ

∂t
G0

(
∂θ

∂ñ
+ 2
M · n
c0

)]
dS(y)

+

∫
V
G0 [σ]θ dV(y) + φi(x, t)

(3)

where V represents a field domain surrounding the
body where the nonlinear terms are not negligi-

ble. In this integral equation G0(x, y) = −1/4π rβ ,

with rβ =
√

[M · (y − x)]2 + β2||y − x||2 and
β2 = (1 − M · M), with M = v

B
/c0 denot-

ing the body velocity Mach number. The symbol

[...]θ means evaluation at retarded time, t − θ,
where θ = 1/(c0β

2)[rβ −M · (y − x)] represents
the acoustic time delay (namely, the time taken by a

perturbation emitted in y to reach x). In addition,
∂(·)/∂n̂ = ∂(·)/∂n −M · nM · ∇(·) with n denot-
ing the body outward unit normal vector, whereas

φi(x, t) = [Ai G0(x, xi)]θ represents the value of
the velocity potential field generated by the pertur-

bation source.

For φst and φs denoting, respectively, the steady-
state velocity potential field due to the uniform

translation of the body and the unsteady potential

scattered by the body as a consequence of the in-

cident field φi , the total potential may be split into
φ = φst + φs + φi . Thus, assuming φp = φs + φi
as a small perturbation with respect to φst , the
linearization process about φst yields the follow-
ing boundary-field integral equation for φs in the
Fourier domain

12

φ̃s(x) =

∫
S
G

(
−
∂φ̃i
∂n
−M · nM · ∇φ̃s

)
dS(y)

+

∫
S

(
−φ̃s

∂G

∂ñ
+ 2M · n jk φ̃s G

)
dS(y)

+

∫
V
G µ̃ dV(y)

(4)

derived through imposition of the steady and un-

steady flow impermeability boundary conditions,

namely ∂φ0/∂n = v
B
·n and ∂φs/∂n = −∂φi/∂n. In

Eq. 4 (̃ )means Fourier transformation, k = ω/c0 is
the wave number of the impinging field, whilst G is
given by

(5) G(x, y) =
−1

4π rβ
exp

[
−jk

(
rβ +M∞∆x

β2

)]
where, for M = −M∞i, M∞∆x = −M · (y − x).
Here, the time-delay is related to wave propaga-

tion through uniform flow, whereas the effects of

nonuniform mean flow are taken into account by

the volume field term, µ̃, derived as the first-order
approximation of the perturbation of the nonlin-

ear terms, σ, about their steady-state value, σ0
12
.

Specifically

µ̃ = A1∇2φ̃p + jk A2 φ̃p + (A3 + jk A4) · ∇φ̃p
+ A5 · ∇

(
vst · ∇φ̃p

)(6)

with A1, A2,A3,A4,A5 denoting constant coeffi-
cients that depend on the nonuniform mean flow
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velocity, vst = ∇φst ,

A1 =
γ − 1

c0
2

(
v2st
2
− v

B
· vst

)
A2 =

γ − 1

c0
2
∇2φst

A3 =
1

c0
2

[
∇vst2

2
+ (γ + 1)(vst − vB)∇2φst

]
A4 =

2

c0
2
vst

A5 =
1

c0
2

(vst − 2 v
B

)

(7)

with γ denoting the ratio of specific heat coeffi-
cients cp/cv .

2.2. Boundary formulation based onTaylor-Lorentz transformation (TL)
For LA and LM representing the characteristic

length scales of acoustic and mean flow fields,

respectively, performing an ordering scheme of

the nonlinear terms in Eq. 1 for which only

terms of the order [φ]/L2A, M∞[φ]/L2A, M
2
∞[φ]/L2A,

M2∞[φ]/LALM are retained with LA ≤ LM and

M∞ << 1, and assuming a weakly non-uniform
mean flow, namely a flow where the non-uniform

component vst/c0 is small compared to M∞, the
equation governing the potential field in the pres-

ence of a moving body and a source of perturba-

tions reads
15,16

∇2φ−
1

c20

(
∂

∂t
− vB · ∇

)2
φ

−
2

c20
vst ·

∂∇φ
∂t

= Ai δ(x− xi)
(8)

Next, the application of the Taylor-Lorentz transfor-

mation recasts Eq. 8 into the standard wave equa-

tion
16
which, in the frequency domain, is solved by

the following boundary integral equation

φ̃s(x) =

∫
S
GTL

(
−
∂φ̃i
∂n

)
dS(y)

−
∫
S
GTLM · nM · ∇φ̃sdS(y)

−
∫
S
φ̃s

(
∂GTL
∂ñ

+ 2M0 · njkGTL
)

dS(y)

(9)

whereM0 = −M+vst/c0 is the local Mach num-
ber andGTL denotes the approximate fundamental

solution of Eq. 8 in the physical space given by

GTL(x, y) =
−1

4π rβ
exp

[
−jk
(
rβ +M∆x

β2

+
φst(y)− φst(x)

c0

)](10)

Differently from Section 2.1, no field acoustic

sources are present (thus avoiding the evaluation of

volume integral contributions), and weakly nonuni-

form mean flow effects on the scattered acoustic

signal are taken into account only by surface inte-

gral contributions.

2.3. Boundary formulation based on Taylortransformation (T)
An alternative acoustic scattering approach valid for

low-Mach number analyses comes from the elimi-

nation of terms of orderM2∞ in Eq. 8, which yields
14

∇2φ−
1

c20

∂2φ

∂t2
−

2

c20
(vst − vB) ·

∂∇φ
∂t

= Ai δ(x− xi)
(11)

Then, the application of the Taylor transform to

Eq. 11, followed by application of the boundary in-

tegral equation approach provides, in the physical

space
14,15

φ̃s(x) =

∫
S

[
−GT

∂φ̃i
∂n
− φ̃s

∂GT
∂n

]
dS(y)

+

∫
S

[
−2M0 · n jk φ̃s GT

]
dS(y)

(12)

where the approximate fundamental solution of Eq.

11 is expressed as

GT (x, y) =
−1

4π r
exp[−jk(r +M∆x

+
φst(y)− φst(x)

c0

)](13)

with r denoting the distance between x and y.

2.4. Theoretical Remarks
The above formulations provide different levels of

simulation accuracy for the analysis of sound scat-

tering problems dealing with by moving bodies. As

a function of scatterer velocity and of mean flow

nonuniformity, the acoustic radiation is predicted

by VP, TL and T formulations with reduced levels of

accuracy, moving from VP to T ones.

The main differences among the mentioned ap-

proaches for sound scattering analysis are:
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• the VP formulation requires the evaluation of

acoustic field terms in a suitable volume sur-

rounding the body, differently from the TL and

T models which require only the evaluation of

surface integrals;

• time-delays involved in the VP formulation are

related to sound waves traveling in uniform

flows. Nonuniform mean flow acoustic effects

are taken into account through field sources

volume terms;

• time-delays in the TL and T formulations are af-

fected by the nonuniform mean flow effects;

• the validity of the VP formulation is not limited

to small Mach number and weakly nonuniform

mean flows, whereas the TL model is valid for

moderate Mach number and weakly nonuni-

form flows, and the T formulation is applica-

ble under the assumption of lowMach number

and weakly nonuniform flows.

Following the mathematical processes leading to

Eqs. 1, 8 and 11 and their integral solutions, one ob-

serves that the Green function used in Eq. 5 cor-

responds to the exact fundamental solution of the

adjoint operator associated to the wave equation

in uniform mean flow (namely, the homogeneous

form of Eq. 1). Differently, Eqs. 10 and 13 represent

approximate fundamental solutions of their respec-

tively differential operators. This implies also that

the incident potential field produced by the mov-

ing pulsating source is not perfectly compatible with

the boundary integral representations in Eqs. 9 and

12.

Observing the advantages and disadvantages of

the formulations examined suggests the introduc-

tion of a further formulation derived by neglecting

all the nonlinear terms in Eq. 2 except (∂v2/ ∂t)/c20 ,
thus transforming Eq. 1 into Eq. 8. Then, the appli-

cation of the integral approach in Section 2.1 with

the Green function given by the exact fundamental

solution in Eq. 5 yields an integral equation where

only the volume contribution of A4 of Eqs. 7 is re-
tained. Next, neglecting the term related to∇ ·Mst

(to comply with the approximation of the TL for-

mulation) and applying the Gauss theorem, the fol-

lowing boundary-field solution in the frequency do-

main is obtained

φ̃s(x) =

∫
S
G

(
−
∂φ̃i
∂n
−M · nM · ∇φ̃s

)
dS(y)

−
∫
S

[
φ̃s
∂G

∂ñ
+ 2M0 · n jk φ̃s G

]
dS(y)

−
∫
S

2Mst · n jk φ̃i G dS(y)

−
∫
V

2 jk
(
φ̃i + φ̃s

)
∇G ·Mst dV(y)

(14)

In principle, this approach would lead to a formu-

lation exactly equivalent with the TL one, but the

use of Eq. 5 (namely, an exact fundamental solution)

determines the presence of a volume contribution

that is not present in Eq. 9. Correspondingly, Eqs.9

and 14 have different levels of accuracy. In the fol-

lowing the boundary-field solution given by Eq. 14 is

referred to as VP-A4 formulation.

3. NUMERICAL RESULTS
In this section, a numerical investigation on the

scattering of a translating sphere impinged by a co-

moving pulsating source is presented, as well as a

numerical analysis pertaining the fuselage scatter-

ing effects on the noise radiated by the main and

the tail rotor of the BO-105 scaled model investi-

gated within the HART II program.

3.1. Sound scattered by a rigid sphere
The scattering problem selected to compare the

above formulations consists of a sphere with radius

a = 1 in uniform rectilinear translation, impinged
by an incident pressure field due to a co-moving

ω-harmonic potential point source. Introducing a

Figure 1: Mid-plane of the scattering sphere. Sphere

velocity and location of point source and observers.

Presented at 44th European Rotorcraft Forum, Delft, The Netherlands, 19–20 September, 2018.

This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2018 by author(s).
Page 5 of 13



coordinate system (x0 , x, y , z) with origin coincid-
ing with the center of the sphere and fixed with

it (see figure 1), let the source position be identi-

fied by xs = (−2.5a, 0, 2.5a). Moreover, let as-
sume that the sphere moves towards the nega-

tive x -axis direction. Acoustic scattering predictions
are presented in terms of Sound Pressure Level

(SPL) and directivity pattern of the acoustic pres-

sure p′ = ps + pi , evaluated at microphones lo-
cated at a radial distance d/a = 3 from x0 , lying
on the plane y = 0. First, the assessment of the
sensitivity on both Mach number and wave num-

ber of the predictions provided by the linear VP,

TL, T and linearized VP formulations is presented.

To this aim, Figs. 2, 3 show the comparison among

them in terms of SPL for M∞ ranging from 0.1 to
0.4, at two wave numbers ω/c0 = 2 and ω/c0 =
5. Volume extensions and surface/volume meshes
used for this analysis are such to assure converged

results; a dedicated analysis, not shown here for

conciseness, highlights that a computational grid

of 10000 panels on the body surface and 120000
cells around the sphere used to discretize an exter-

nal volume extending up to a distance of one ra-

dius from the sphere surface guarantees acoustic

results insensitive to further mesh refinements (for

all the formulations investigated). The aeroacous-

tic computations are based upon an aerodynamic

steady-state solution obtained through a compress-

ible potential-flow boundary integral formulation,

suited for the aerodynamic analysis of lifting and

non-lifting bodies in unsteady arbitrary motion
17
.

As expected, the higher the Mach number and fre-

quency of the impinging noise, the more relevant

are the discrepancies between the signals predicted

by the boundary integral formulations (namely, T, TL

and linear VP) and those provided by the boundary-

field linearized VP approach. In other words, the

agreement among the acoustic results based on

the T, TL, linear VP and boundary-field linearized

VP models is good as long as the Mach number

of the translating sphere and the frequency of the

emitting monopole are low enough; their increase

worsens the agreement because of the increased

nonuniformmean flow effects. From these results it

seems to be mandatory the inclusion of M2∞-order
terms to maintain accuracy also at very low Mach

numbers: indeed the T formulation provides inac-

curate results starting fromM∞ = 0.2, whereas the
inclusion of such contributions gives rise to limited

differences with respect to the VP linearized formu-

lation up to aboutM∞ = 0.3, especially for ω/c0 =
2. Similar considerations may be done looking at
Fig. 4 which shows the comparison between the

aforementioned four formulations in terms of di-

rectivity pattern of acoustic pressure, atM∞ = 0.4
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Figure 2: SPL of the acoustic pressure for ω/c0 = 2.
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Figure 3: SPL of the acoustic pressure for ω/c0 = 5.
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Figure 4: Noise directivity pattern forM = 0.4.

and for both wave numbers considered. It is worth

noting that the T formulation solver used here has

been validated against numerical results presented

in literature
19
(these results are not shown here for

the sake of conciseness).

Finally, a numerical analysis aimed at investigat-

ing about the numerical differences between the

Taylor-Lorentz formulation and the linearized VP-

A4 formulation is performed. These formulations

are based upon two different strategies to solve the

same differential equation (Eq. 8), which lead to so-

lutions of different level of accuracy. As stated be-

fore, the main differences reside in two main as-

pects: (i ) the VP-A4 formulation is a boundary-field
integral formulation, while the TL formulation is

a boundary integral one, and (i i ) the Green func-
tion used in Eq. 14 is the exact fundamental so-

lution of the wave equation in uniform translating

flow (Eq. 1), whereas the Taylor-Lorentz Green func-

tion (Eq. 10) is an approximated fundamental solu-

tion of the wave equation in non-uniform translat-

ing flow. Specifically, Figs. 5 and 6 compare the SPL

curves computed by the TL formulation, the VP-A4

approach proposed in Section 2.4 and the VP formu-

lation, for the same Mach numbers and wave num-
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Figure 5: SPL of the acoustic pressure for ω/c0 = 2.
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bers considered above. These figures demonstrate

that VP-A4 predictions are in very good agreement

with those provided by the linearized VP approach,

whereas some differences appear in the TL for-

mulation, which increase with the increase of both

Mach number and wave number. This behavior of

the TL-based outcomes can be explained with the

use of a fundamental solution of the wave equation

for non-uniform translating flow (see Eq. 10) that is

not exact, but rather, is affected by approximations

depending on Mach number and signal wave num-

ber.

The drawback of using an approximated funda-

mental solution is confirmed by Figs. 7 and 8 which

show, for different Mach numbers and observer po-

sitions, the incident pressure field radiated by the

body surface (that is theoretically equal to zero) pre-

dicted by the TL and linear VP models, respectively.

For the linear VP formulation the incident pressure

field exactly satisfies the integral equation and thus

the radiated contribution is numerically zero for all

Mach numbers and microphones distances consid-

ered. The same is not true for the TL model, for

which the incident field contribution from the body

surface is not zero and increases withMach number

and frequency values; this contribution becomes

more relevant for acoustic observers closer to the

scatterer where the assumption of the TL-based for-

mulation, namelyMst � M∞, is scarcely satisfied
(in proximity of the body surface the nonuniform

flow velocity becomes of the same order of magni-

tude of the mean uniform flow velocity
16
).

3.2. Noise scattered by helicopter fuselage
This section presents the results of the numerical

investigation concerning the effects of sound scat-

tering produced by a B0-105 scaled model fuselage

impinged by the noise radiated by the scaled he-

licopter main rotor. The configuration examined is

that considered within the framework of Hart II pro-

gram. The main-rotor, having radius R = 2 m, op-
erates in a 5.4-deg, low-speed descent flight, with
advanced ratio µ = 0.15 and rotational speed
Ω = 109.12 rad/sec. Approximately, the fuselage
is about 0.5mwide, 1.0m high and 3.2m long. The

Figure 9: Incident Pressure field radiated by the

main rotor at the fifth blade-passage frequency.

results are presented in terms of pressure fields (in-

cident and total) and shielding factor, γT , defined
as the ratio between the total pressure and the in-

cident one, on a horizontal plane, 5.4m wide and 8
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m long, centered with the rotor hub and placed 2.2
m below the rotor disk.

Figure 10: Total Pressure field radiated by the main

rotor and the fuselage at the fifth blade-passage fre-

quency.

The main rotor is assumed as a frozen source

of noise: indeed, for the working conditions con-

sidered, the fuselage is not massively impinged by

the rotor wake and hence, although affecting ro-

tor aerodynamics, this occurs to a lower extent.

Therefore, first, the acoustic pressure field gener-

ated by the main rotor is evaluated as if it were

isolated through a tool based on a Boundary Ele-

ment Method for potential flows that has been ex-

tensively validated in the recent past against the

HART II database
24,25

; then, the shielding effect of

the fuselage on the aeroacoustic perturbation gen-

erated by the main rotor is investigated by some of

the presented scattering formulations.

Figures 9 and 10 show the contour plot of the in-

cident and total pressure field, respectively, at the

fifth blade-passage frequency (BPF) of the main ro-

tor (k = 6.385), corresponding to the lower fre-
quency having a wavelength comparable to the

fuselage characteristic size. The scattered field is

predicted by the linear VP formulation since the

effect of the nonuniform flow on the scattering

prediction has been proven to be negligible. The

comparison between incident and overall pressure

maps well highlights that the presence of the fuse-

lage does not affect remarkably the radiated noise;

the shielding factor contour plot, not shown here

for the sake of conciseness, reveals that it is almost

one everywhere on the carpet of microphones.

This result agrees with the conclusion of previous

works
24,25

stating that the major effect of the fuse-

lage is to modify rotor aerodynamics, and in turns,

the incident pressure field radiated by it, rather than

to provide a significant direct acoustic contribution.

Figure 11: Incident Pressure field radiated by the tail

rotor at the second blade-passage frequency.

Figure 12: Total Pressure field radiated by the tail ro-

tor and the fuselage at the second blade-passage

frequency.

The scattering effect of the fuselage is expected

to be considerable at frequencies higher than the

fifth BPF for which, however, the corresponding car-

ried energy content is negligible.
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(a) VP formulation (b) TL formulation (c) T formulation

Figure 13: Shielding factor at the second blade-passage frequency.

For a given frequency of the incident field, a dif-

ferent fuselage scattering effect is obtained in func-

tion of the disturbance source position: this is due

to the different shielding effect occurring in dis-

tinct directions of radiation (related to the length

of intersection segments between body and direc-

tion of noise propagation). For this reason the scat-

tering of the noise emitted by the a tail rotor lo-

cated at the end of the fuselage is examined. For

the sake of simplicity it is represented as a pul-

sating co-moving harmonic source located at xs =
[2 m, 0.4 m,−0.9 m] with respect to the hub posi-
tion. The scattering analysis is performed at the sec-

ond blade-passage frequency (k = 6.704) of the 2-
blade tail rotor model scale (the tail-rotor rotational

speed is about six times that of the main-rotor). Fig-

ures 11 and 12 show the contour plot of the corre-

sponding incident and total pressure field, respec-

tively. As expected, the scattering contribution of

the fuselage is not negligible and the total pressure

field differs relevantly from the incident one. This in

confirmed by figure 13 depicting the shielding fac-

tor provided by linear VP, Taylor-Lorentz and Tay-

lor formulations, respectively. The scattered pres-

sure is of the same order of magnitude of the in-

cident one and the effect of the nonuniform mean

flow on the solution is practically negligible, as in-

ferred by comparing Figs. 13(a) and 13(b). The agree-

ment among predictions is good, with the main dif-

ferences located in the region upstream the fuse-

lage. Note that outcomes from the linear VP and TL

formulations match very well highlighting some dis-

crepancies with respect to the results predicted by

the Taylor formulation.

4. CONCLUSIONS
A theoretical-numerical comparison among differ-

ent integral formulations aimed at the analysis of

propagation of scattered waves in non-uniform po-

tential flows around moving bodies has been pro-

posed. Specifically, the capabilities of three stan-

dard formulations (linear VP, Taylor and Taylor-

Lorentz) to predict the effects of nonuniform mean

flow (due to the scatterer motion) on the acoustic

pressure field are investigated and compared with

those of two non-standard formulations (linearized

VP and linearized VP-A4). One of the main novel-

ties of this paper consists of the introduction of the

linearized VP-A4 formulation, which is an alterna-

tive boundary-field integral solution of the Taylor-

Lorentz convective wave equation in non uniform

flows. The main difference between the TL and VP-

A4 formulations is related to the fundamental so-

lution used: the exact fundamental solution of the

wave equation in uniform translating flows for VP-

A4, and the approximated fundamental solution of

the wave equation in nonuniform translating flows

for TL.

The main outcomes of the analysis are summa-

rized in the following:

• linear VP, Taylor and Taylor-Lorentz formula-

tions give accurate results only for very low

Mach numbers and frequencies of the im-

pinging perturbation: indeed, the differences

with respect to the predictions of non-standard

approaches (linearized VP and linearized VP-

A4) increase with the scatterer velocity and

wavenumber;
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• the Taylor formulation gives accurate results

only forM∞ ≤ 0.2, showing that the inclusion
of M2∞-order terms seems to be mandatory
also for low Mach number in order to main-

tain a suitable accuracy of the numerical pre-

dictions;

• the use of the exact fundamental solution of

the wave equation operator in uniform trans-

lating flows in the VP-A4 formulation seems to

increase the accuracy of the numerical predic-

tions, which are in good agreement with those

of the (more accurate) linearized VP approach.

This means that some inaccuracies arise in the

Taylor-Lorentz formulation due to the approxi-

mated Green function used in the integral for-

mulation;

• the sound scattering investigation concerning

a model helicopter cabin demonstrates that

the tail-rotor noise field is more remarkably af-

fected by the fuselage presence than that from

the main rotor. This is essentially due to the

relative position between fuselage and tail ro-

tor which enhances the fuselage scattering ef-

fects, in that different shielding effect occurs

in different directions of radiation. Otherwise,

the aerodynamics of the main rotor is directly

affected by the fuselage, whereas the fuselage

shielding effect on its radiated noise is negli-

gible. It is also demonstrated that for the low

Mach number flight conditions examined the

nonuniform flow effects play a marginal role in

the acoustic scattering predictions.
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