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Abstract 

A Lifting Line Theory for Curved Helicopter 

Blades in Hovering and Axial Flight 

0. Rand and A. Rosen 

Department of Aeronautical Engineering 
Technion- Israel Institute of Technology 

Haifa, Israel 

A lifting line model to calculate the aerodynamic loads along a curved 
helicopter blade, in hovering and axial flight; is derived. In the 
derivation a "semi-rigid" wake model, which depends on the induced velocity 
distribution along the blade, is used. The influence of both, trailing and 
bound vortices, are taken into account. The derivation yields an efficient 
numerical scheme of calculations. Results for two different curved blades 
are pt·esented and compared with similar straight blades. It is shown that 
curvature influences the distribution of the aerodynamic properties along the 
blades. Good agreement between the results of the present lifting line 
theory and a "momentum--blade element" theory for curved blades is also 
presented. 

L Introduction 

At the beginning helicopter rotors included only straight blades. 
During recent years increasing numbers of rotors have blades with swept 
t·ips. These swept tips have a significant influence on the aerodynamic, 
structural and aeroelastic behavior of these blades as can be seen for 
example in [l] and many other references. In existing rotors usually only 
less than ten percent of the blade's tip are swept back although 
investigation of cases where 35 of the blade is swept back has also been 
reported [2]. It seems that because of the beneficial effects most of the 
helicopter blades in the future will not be straight. 

In a recent research [3] the authors of the present paper investigated 
the aeroelastic behavior of helicopter blades which are not straight, namely 
curved blades, during hovering and ax·ial flight. In that research, in order 
to calculate the aerodynamic loads, the well known "momentum-blade element" 
theory has been extended to also include curved blades. The purpose of the 
present paper is to develop a lifting line model which is capable of 
calculating the aerodynamic loads along curved blades of a helicopter in 
hovering and axial flight. This model win be used in order to calculate the 
load distt·ibution along blades having diffe-r.ent geometries. The results of 
the lifting line model will be compared with the results which are obtained 
by using the "momentum-blade element" theory. 

The derivation of the present paper follows similar path to the 
derivation which has been presented in [4] for straight blades. 
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2. Theoretical Derivation 

2.1 General Description 

The present paper deals with a helicopter rotor having b identical, 
equally spaced, blades. These blades rotate about the shaft with a constant 
rotational velocity Q and the rotor hovers or is in axial flight (in the 
direction of the shaft). 

In order to solve the problem, the blades are presented by curved 
lifting lines. The Cil'Culation along the lifting line is denoted by f. 
Since generally r varies along the blade, vortex filaments trail behind the 
rotating blade. It is assumed that each vortex element which leaves the 
blade moves downward with .a velocity which is equal to the sum of the rotor 
axial velocity and the induced velocity at the point where this element 
departs from the blade. Using this model one is faced with a problem which 
doesn't arise in the case of straight blades. The problem is that in the 
case of curved blades the vortex lines are not perpendicular to the lifting 
line at the point of departure. This results in infinite induced velocities 
along the lifting line; This problem also appears in the case where one 
tries to apply the lifting line theory to swept or curved wings of fixed-wing 
aircraft or to helicopter rotors (with straight blades) in the case of 
forward flight. Discussion of this problem appears for example in LSJ or 
L6]. · It seems that the problem can be overcome if one recalls that the 
lifting line theory is a combination of exterior solution of the velocity 
which is induced on a certain point of the lifting line by the whole wake 
field and the rest of the lifting line- and an interior solution associated 
with the two-dimensional airfoil theory. Exact representation of the 
interior solution includes a distribution of two-dimensional vortices along 
the blade chord. If such representation is employed the physical 
difficulties are removed. More details may be found in [5, 6j. Another 
problem which is raised in the case of curved blades is the fact that also 
the velocity which is induced on the lifting line by the bound vortex itself, 
obtains infinite values (see also L7]). This problem is solved by the same 
argument which was given above concerning the trailing vortex lines. 
Although the problems of an infinite induced velocity are of an important 
physical nature, they do not impose any practical difficulty since they are 
automatically overcome when the discrete model which will be described in 
what follows, is used. In this model the blade is replaced by straight 
elements with a control point at the middle of each. Thus the induced 
velocities at the control points become finite. 

2.2 The Lifting Line and Wake Model· 

As pointed out before, each blade is replaced by a lifting line which 
passes at the forward quarter chord of each cross section. Figure 1 presents 
the projection of the blade geometry on the hub plane which is defined by the 
coordinate lines xHUB and YHus· The coordinate zHUB coincides with the 
shaft. e is the offset of the rotor, xc is the root cut out while R is the 
radius of the rotor. The lifting line is divided into m elements by the 
points n1, n2 .... nm+l" Each of these points is defined by its radial 
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distance from the origin of the coordinates xHUB' yHUB' These radial 
distances equal Rn 1, Rn 2 ...• etc. It should be emphasized that the 
division is usually not uniform while a more refined division exists towards 
the blade tip, where most of the loads are concentrated and in regions where 
the curvature or changes of curvature are significant. 

Now the curved lifting line is repl~ced by straight segments connecting 
the point n1, n2 .... nm+1 (see Fig. 1). At the middle of each such 
straight element a control point is defined. These control points x1, 

x2 .... xm are characterized by their radial distances Rx1, 
Rx 2 ...• Rxm respectively. The following relation therefore exists: 

(1) 

It is assumed that the circulation between the division points is constant 
and changes in the circulation occurs only while passing from one segment to 
its neighbour. Based on this assumption any segment j becomes associated 
with a horseshoe vortex which is composed of the segment of the lifting line 
between the points nj and nj+1, and the two free vortices trailing from 
these points. The circulation of this horseshoe vortex equals rj. 

At this point a semi rigid wake model which determines the path of the 
trailing vortices is adopted. This model is based on the following two 
assumptions: 

a) Flapping and elastic displacements of the blades are neglected and its 
is assumed that the blades remain straight and lie in the HUB plane. 

b) Each element of the trailing vortices which spring from the blade moves 
in space in a rectilinear motion, parallel to the zHUB direction. 
The velocity of the motion of the element along the line is constant 
and equal to the sum of the axial velocity of the rotor and the axial 
component (in the -zHUB direction) of the induced velocity. This 
assumption means that contraction of the wake, which should be 
important in the case of heavily loaded rotors, is neglected and the 
induced tangential velocity is negligible compared to the blade 
rotational speed. 

According to the above assumptions each vortex line which leaves the 

blade and belongs to the jth horseshoe vortex moves in the -zHUB 

direction with a velocity v'j which is given by: 

vj=Vc+vj (2) 

where vj is the induced velocity at the jth control point and Vc the 
axial velocity of the rotor. Thus a typic·al trailing wake, composed of 
helical vortex lines, is obtained. 
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2.3 Calculating the Induced Velocities 

In Fig. 2 two segments of the curved blade, the ;th and jth 
segments, are shown. The purpose of this subsection is to calculate the 
velocity which is induced by the jth horseshoe vortex, at the control point 

xi. For the sake of simplicity it is initially assumed that the 
circulation of the jth horseshoe is of unit intensity. It should be 

remembered that the rotor has b equally spaced blades. Therefore, in 
addition to the jth element which belongs to the same blade as the control 

point xi and which angle is ¢j (¢j is measured to the control point 
xj as shown in Fig. 2), there are other (b-1) }h elements the locations 

of which are: (¢j + 2n/b), (¢j + 4n/b) ... L¢j + (b-1)2n/b]. Expressions 
for the velocity which is induced in the disc plane by b equally spaced 
helical vortex lines are well known and could be found for example in L4,5]. 
It is found that the velocity in the -zHUB direction, which is induced at 
the control point xi by all the vortex lines which leave the b blades at 

the point nj' equals: 

where: 

and: 

1 b oo n~ - njxi cos( 9 . - v - l/J) 
--- L j~J~~~n-~n~,J~------~------~dv 4"R n=1 o Lv' 2 / + n2 + x~- 2n .x. cos(e . - v- l/J)J 312 

9 . 9J. + Yn n,J 

2 . 
Yn =If \n-1) 

J J 1 J J n, J 

(9j is defined in Fig. 2) 

n = 1,2, ... b 

( 3) 

(4) 

(5) 

vj is a nondimensional velocity which is obtained after Vj is divided by QR. 
Similarily the axial velocity which is induced at the same control point by 
all the vortex lines which leave the b blades at the point nj+l, equals: 

vf · "+1 1 , J 

where: 

= _l_ ! f _n_,}_+;;-1_,-,-n-"j_+.;r1_x_1'-. c_o_s""(_9'"'n,_,, J"-.+-'1'-----v_-_l/J-::-),.----------.;""" 
4nR 1 O L-,2 2 + 2 + 2 2 (- •'•)J3/2 dv n= v jv nj+1 xi - nj+1x;cos 9n,j+1 - v- '¥ 

9 "+1 n,J 

From Fig. (2) it turns out that: 
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E>J·=lj!+(l .. 
l , J 

(Sa) (Bb) 

Based on Eqs. (3) - (8) it is clear that the axial velocity which is induced 
at the control point xi by the two vortex lines which are trailed from all 
the b jth horseshoe vortices (of unity strength) equals: 

where: 

Plij 

P2ij = 

S i nc e v 

values, 

1 { "' 
VT ij = 4~R f 

"i, j+l 

b 
I 

n=l 

b 
I 

2 n·- n.x.cos(y - v) 
J J 1 n 

n=l 

obtains very large values while ai . and a. ~ 1 have finite 
, J l , J 

it is clear that it is always possible to find vs, such that: 

a .. l , J , a. "+1 « l , J vs 

Based on Eq. ( 11), Eq. (9) can be approximated as: 

vs vs "' 
VT ij 

1 f P1ijdv - f P2 .. dv + f Pi j dv] "' 4"R [ lJ 
-ai, j+l -a .. vs l , J 

where: 

for "i,j = "i,j+l = 0 

In the case of straight blades: 

a. . = a. "+l = v = 0 l,J l,J ·S 

(9) 

(lOa) 

(lOb) 

( 11) 

( 12) 

( 14) 

(15) 

Then the first two integrals inside the square brackets of Eq. (12) disappear 
and VTij become equal to Vij which are the influence coefficients in the 
case of straight blades and which have been presented and investigated very 
extensively in [4]. Vij are defined as: 

(16) 
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In [4] a very efficient technique of calculating and using Vij has been 
derived and described. In order to use this technique, Eq. (12) is written 
as: 

VT .. 
1 J ~ vij + cij (17) 

where: 

1 
"s "s "s 

Pi j dv] 
cij = 4nR [ f Pl .. dv - f P2 .. dv - J 

-ai,j+l 
1 J -a .. 1J 0 

1 , J 

( 18) 

Cij presents the corrections to the influence coefficients of the trailing 
wake due to the curvature of the blade. In all the cases of interest here, 
as those that will be presented in the examples, a- . and a- .+ 1 are 

l,J l,J 
small angles. Moreover, in the most important cases of the influence of the 
horseshoe vortex on its own control point or the neighbour control point 
meaning j=i or j-i±1, a- . and a .. +1 can always be made small enough by 

l,J l,J 
refi~ing the division of the blade. In all the examples which will be 
presented in what follows "s was chosen equal ton while ai,j or ai,j+l 
accepted at the most a value of 6.4· (this value applied to two elements 
which are far from each other and their relative influence has not any 
practical importance). For neighbour elements a .. ±1 is in the order of 1" 

1 ' 1 
in all cases. Until now only the contribution of the vortex line which trail 

from the b jth elements have been taken into account. In the case of 
curved blades also the bound vortices of all the b blades induce, in general, 
a velocity at the ith control point. This fact is in contrast to the case 
of straight blades where because of symmetry these influences disappear. The 
influence coefficients of the bound vortices will be denoted VBij and are 
calculated with the help of the function G which is defined in Appendix A. 
According to the definitions of that Appendix and to the notations of Fig. 2, 
it is clear that: 

while: 

and: 

k=l for i,fj 

X~ 
1 

x~ = n .cos(¢.+ y ) 
J J J n 

( 2la) 

(22a) 
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k=2 for i=j 

y'. 
1 

y'~ = n . sin(¢ · + y ) 
J J J n 

(19) 

(20) 

( 2lb) 

(22b) 



After all the contributions to the influence coefficients have been 
derived it is clear that the resultant influence coefficient VR;j equals: 

VRij = Vij + Cij + VBij 

The induced velocity at the control point X; will therefore be: 

m 
\' VR .. r. 

·''1 lJ J J= 

2.4 Calculating the Aerodynamic Loads 

(23) 

(24) 

In calculating the aerodynamic loads the following assumptions, which 
are typical for lifting line models, are adopted: 

a) The resultant velocity at all the cross sections of the blade is 
subsonic. 

b) Any blade section is considered to work under two-dimensional flow 
conditions when the complete influence of the induced and axial flight 
velocities on the flow field is taken into account. Therefore it is 
possible to calculate the sectional lift, drag and moment using known 
two-dimensional characteristics of the airfoils. The variation of 
these characteristics with Mach number and Reynolds number are taken 
into account at each cross section, considering the local resultant 
velocity and chord. Such two-dimensional information can be found, for 
example in [8], Theoretical support of the present assumption can be 
found in L9] where "lifting surface" calculations showed chordwise 
pressure distributions identical to two-dimensional ones inboard of the 
radius of maximum bound circulation. A similar experimental support is 
presented in [10]. 

c) Compressibility and viscous effects are taken into account only in the 
two-dimensional properties of each cross section as presented in 
assumption (b), 

The cross sections in the present derivation are always perpendicular 
to the lifting line where YoF and z0F are cross sectional coordinates 
(see Fig, 3). 

According to Joukowski's Theory, the lift per unit span of the blade at 
the control point x;, is given by: 

(25) 

p is the air density and W; is the magnitude of the resultant flow velocity 

in the blade cross section at xi. L; is perpendicular to the direction 

of W;. In addition, according to assumption (b) L; is also given by: 

(26) 

2.10 - 7 



where Ci is the local chord, "; is the effective angle of attack and a; 

is defined by: 

( 27) 

cl. is the local lift coefficient and is not necessarily a linear function of 
1 

cl. is obtained from two-dimensional properties of the certain airfoil, 
1 

and is a function of the local Reynolds Number R , the local Mach number M;, 
e; 

and the effective angle of attack. The Reynolds Number is defined as: 

~-- (28) 
"a 

where "a is the kinematic viscosity. Mach number is defined as: 

w. 
M; 

1 =v-
s 

(29) 

where Vs is the velocity of sound. In the present report the influence of 
the Mach number will be included by using the following well known equation: 

CL(M.=O) 
i 1 

=~==.,--

-)1-M/ 
which can be easily obtained from two-dimensional Prandtl-Glauert 
transformation. 

( 30) 

The calculation of "i deserves special care, as it is explained in 
what follows. Figure 3 shows the flow at a certain cross section of the 
blade. The two-dimensional properties of the blade depend on the flow field 
which is shown in this figure. It should be noted that because of the 
curvature, precone, flapping and elastic deformations, the rotational 
velocity, the induced velocity v; and the axial velocity of the rotor Vc 

at each spanwise location should be carefully transformed to the blade cross 
sectional directions yDF' zUF' Therefore in Fig. 3 OA is mainly the 
projection of the rotational velocity on the YoF direction, but includes 
small contributions due to vi and Vc. In the same way AB is almost 
identical to VC but includes small contributions due to the local 
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rotational speed while BC is the transformation of vi into z0F 

direction. OC is equal to the resultant velocity Wi. The fact that in 
calculating the induced velocity in subsection 2.3 assumption (a) of 
subsection 2.2 has been adopted while here, in applying Eq. (26), coning, 
flapping and deformations are taken into account, should raise the question 
of consistency. Any effort to remove assumption (a) in calculating the 
induced velocity is impractical, since it will result in an enormous 
complication of the theory. Since the two stages- calculating the induced 
velocities and calculating the two-dimensional aerodynamic characteristics
are in a way separate, it is still believed that this inconsistency is 
justified. The induced angle of attack, "ind (see Fig. 3), equals: 

fi is usually a number close to unity, but does not equal to unity because 

of the difference between the zHUB and z0F directions and because "ind 
is not always a small angle. fi is obtained from Eq. (31) as: 

"i ndw i 
fi = --

vi 

From Fig. 3 it is clear that: 

2.5 Derivation of the Complete System of Equations 

Substitution of Eq. (31) into Eq. (33) and then into Eq. (26) and 
equating to Eq. (25), imply: 

If the following nondimensional terms are defined 

then Eq. (34) becomes: 

2 - --- r. + f.v. 
C.a. 1 1 1 

1 l 

and Eq. (24) becomes: 
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(33) 

(34) 

(35) 

(36) 
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Substitution of Eq. (37) into Eq. (36) results in the following equation: 

VR .. f. 
lJ J 

i=1,2, .... m 

The last equation presents in fact a system of m equations which should be 
solved in order find them unknowns r1 .... rm. Usually by using 

( 38) 

simplifying assumptions the system of Eqs. (38) becomes linear and is easily 
solved (see for example [5]). In the present case Eq. (38) presents a 

- -
nonlinear system since all the fi, ai, Wi and VRij are functions of the 

induced velocities at the·control points along the blade. Therefore, the 
system should be solved by using an iterative scheme. In all the cases which 
have been investigated the convergence was very fast. 

The numerical procedure is very efficient and in order to find the 
appropriate values of Vij use is made of pre-calculated tables which are 
stored on a computer disc. More details about the calculation procedure are 
given in [4]. 

3. Numerical Results and Discussion 

Two curved blades will be investigated. One is a straight blade with a 
swept back tip while the second one is a blade with continuous curvature. 
The geometric shape of the lifting line in both cases is shown in Fig. 4. 
The sweep forward angle at different points along the second blade is given 
in the figure. The blades are plannar do not have any twist, in all the 
cases the pitch angle at the root equals 8-. The chord is constant and 
equals 0.1 L while the offset e equals zero and the root cut out is 0.2 L 
where L is the blade length. Two bladed rotors are investigated and in each 
case a comparison is made with a rotor having blades which are identical to 
the curved blades (also the same length) except for the fact that they are 
straight. Linear aerodynamics is assumed while the lift curve slope is 5.7. 
The distribution of the different aerodynamic variables along the blade are 
presented in the figures as a function of the nondimensional length a, which 
is the distance along the blade axis divided by its length. At the blade 
root a=O while at its tip a=1. In all the cases there are eleven elements 
along the blades while the division is: ni = 0.20, 0.30, 0.40, 0.50, 0.60, 
0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00. A few examples with a more refined 
division gave practically identical results which shows that a satisfactory 
convergence is obtained by the above described division. 

The results.for the blades with swept tips are presented in Figs. 
5a-c. In Fig. 5a the distribution of the induced velocity along the blade is 
presented. The regions of major influence are at the point of sweep back 
where the induced velocity is increased by 7% compared to the straight blade, 
and toward the tip where the induced velocity is reduced 7%. The lift 
coefficient distribution is presented in Fig. 5b. Just before the sweep back 
point the lift coefficient of the swept back blade is smaller than that of 
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the straight blade. This results from the fact that the induced velocity 
there is larger than in the case of straight blade. In the swept tip region 
there is an increase of the effective angle of attack due to the fact that 
the contribution of the rotational speed to the resultant velocity at the 
blade cross section is reduced. The decrease in the induced velocity · 
(relative to the straight blade) toward the tip adds to the increase in the 
effective angle of attack which results in increasing values of the lift 
coefficient. In Fig. 5c the distribution of the lift force per unit length 
is presented. The results of the lifting line model of the present 
derivation are compared to those which are obtained using the "momentum-blade 
element" method which has been presented in [3]. Results for the 
"momentum-blade element" model with tip correction according to Glauert and 
one without this tip correction are presented. Differences between these two 
models exist only at the tip region. There are differences of five percent 
between the results of the "momentum-blade element" model and the 
lifting-line model at the point of sweep back while the former model yields 
higher results. The reason for the differences is the fact that the 
"momentum-blade element" theory is based on the assumption of the 
independence of the behaviour of any radial annulus on the behaviour of the 
rest of the disc (except for artificial tip corrections). On the other hand 
the lifting-line model includes a three-dimensional analysis where influence 
of neighbour cross sections is taken into account. It should also be noted 
that while the "momentum-b 1 ade element" theory neglects azimuthal variations 
in the induced velocity, the present lifting-line model includes these 
variations. Near the tip the lifting-line results are higher by five percent 
compared to the "momentum-blade element" results with tip correction. 

Results for the continuously curved blade are presented in Figs. 6a-c. 
Because of its shape this blade is denoted ''double-curved''. The induced 
velocity distribution is presented in Fig. 6a. The trends are identical to 
those in the case of swept tips. The lift coefficient distribution as 
presented in Fig. 6b and the lift force distribution as presented in Fig. 6c, 
are also very similar to the distribution of the same parameters as have been 
presented for the case of swept tips. The main difference is of course the 
fact that in the case of the "double-curved" blades these parameters are 
continuous while in the case of swept tips a discontinuity exists at the 
point of sweep back. 

It is interesting to note that the trends which have been presented 
here in the case of curved rotating blades also appear in the case of curved 
fixed-wings, as presented for example in [11]. 

4. Conclusions 

A lifting line model to calculate the aerodynamic loads along a curved 
helicopter blade, in hovering and axial flight, has been developed.· This 
model includes a semi-rigid wake representation. The numerical solution is 
very efficient and deserves very modest computation error. 

The model has been applied to two different curved blades and the 
results were compared to the case of similar straight blades. It has been 
shown that curvature has an influence on the distribution of the aerodynamic 
properties along the blade which can be used by the rotor designer in 
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optimizing the rotor. The results of the present lifting line model were 
compared to results of a "momentum-blade element" theory which has been 
recently derived for curved blades by the authors of the present paper. The 
agreement is usually good except for increasing deviations at the tip region 
and regions of significant curvature. The good agreement indicates that the 
more important influences are those of the geometric angle of attack and the 
resultant .velocity at each cross section. The differences result from the 
fact that •1hile the "momentum-blade element" theory is based on the 
assumption of independence of behaviour of the disc annulus and neglecting 
azimuthal variations, the lifting line model, being an approximation to the 
three-dimensional behaviour of the rotor, does not include these assumptions. 
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Appendix A - The Function G 

The function G is explained in Fig. (A-1). A straight vortex filament 
whose circulation equals unity (the positive direction of the circulation is 
shown in the figure) is stretched from point (x2, y2) to point 

(x3, y3). The velocity induced by this vortex filament in the -z 
direction, at the point (x1, y1J is given by the function 

G(x1, y1, x2, y2, x3, y3). According to Biot-Savart's law and 

using the notation of Fig. (A-1) it is clear that: 

(A-1) 

A computer function has been prepared, which calculates the value of G as a 
function of the six numbers in the parentheses. 
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FIGURE 2: DESCRIPTION OF THE ;th AND jth ELEMENTS. 
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