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Abstract 

 
Presented is a theoretical method for determining 
rotor blade flutter in forward flight and a sample 
problem that considers coupled bending torsion flutter 
of a modified UH-60 rotor blade.  The theory accounts 
for the unsteady aerodynamic contribution of the wake 
below the rotor. This is made possible due to certain 
simplifying assumptions regarding the rotor’s wake. In 
particular, it is assumed at the onset of flutter that 
oscillations begin to build up  prior to the blade 
reaching a critical azimuth position, then decay as the 
blade moves beyond this point.  Using the new 
forward flight lift deficiency function, the authors set up 
and repeatedly solve the flutter determinant for the 
blade in the conventional manner (Ref 7) to obtain the 
blade’s flutter speed.  For the sample analysis the UH-
60 rotor blade is modified to make it “flutter 
susceptible”.  This is achieved by moving the 
chordwise position of the blade’s center-of-gravity aft 
of the quarter chord while keeping its elastic axis at 
the quarter chord. 
 

Nomenclature 
 
A, A  aerodynamic terms in flutter equations 
a non-dimensional elastic axis location 

measured from midchord 
b semi-chord length 
C(k) Theodorsen’s lift deficiency function 
C′(k,h,m) Loewy’s lift deficiency function 
C′N(k,h,m) finite-wake lift deficiency function, 
C1(k,µ,λ) Shipman-Wood lift deficiency fn. (Ref 4) 
D dissipation function 
e flapping hinge offset from center of rotation 
E elastic (Young’s) modulus 
F real part of lift deficiency function  
g blade or wing damping 
G imaginary part of lift deficiency function 

h non-dimensional distance between layers 
of shed vorticity (wake spacing), h = 
2πv/bQΩ 

hn blade deflection due to nth bending mode 
Hn

(2) Hankel function (complex Bessel function) 
of second kind of order n, Hn

(2) = Jn - Yn 
In generalized mass for nth mode due to 

torsion 
Jn real part of complex Bessel function of 

order n 
k reduced frequency, vk ω=  (fixed wing), 

or 
b

rbk Ωω= (rotary wing) 
Kn Southwell coefficient 
l length of beam (semispan of airfoil for fixed 

wing, or l = R – e for rotary wing) 
Lα aerodynamic lift due to pitch 
Lh aerodynamic lift due to plunge 
m ratio of oscillation frequency to rotational 

frequency, Ωω=m  
Mn generalized mass of nth mode due to 

flapwise bending 
Mα aerodynamic moment about elastic axis 

due to pitch (positive clockwise) 
Mh aerodynamic moment about elastic axis 

due to plunge 
n revolution number 
N number of wakes for a single-blade rotor 
qn normal coordinate for nth mode 
Qn generalized force for nth mode 
r blade section radius from center of rotation 
R radius of rotor disk 
t time 
T kinetic energy 
U potential energy 
UFL flutter velocity 
V forward airspeed 
W Loewy’s wake weighting function 
WN finite-wake weighting function 
x non-dimensional distance from mid-chord 
YN imaginary part of complex Bessel function 
αn blade pitch angle due to nth torsional mode                                                       

[i] Paper presented at 28th European Rotorcraft 
Forum, Bristol, England, 17-20 September 2002. 

[ii] Professor, Department of Aeronautics and 
Astronautics. 

[iii] Lecturer, Department of Aeronautics and 
Astronautics.  

[iv] Associate Professor, Department of Mathematics

γa vorticity generated by reference airfoil 
γnq vorticity generated by qth blade in nth 

revolution 
λ inflow ratio, /iv Rλ = Ω  

µ advance ratio, V Rµ = Ω  
ξ non-dimensional distance from mid-chord 
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ρ density of air 
ϕ1 phase angle between initiation of rotation 

input and arbitrary reference point 
ϕ2 phase angle between initiation of amplitude 

input and arbitrary reference point 
ψq phase angle by which motion of qth blade 

leads reference blade 
ω frequency of oscillation 
Ω rotational speed of rotor 
 

Introduction 
 

The conventional method for designing a rotor blade 
to be free of flutter throughout the helicopter’s flight 
regime is to design the blade so that aerodynamic 
center (a.c.), elastic axis (e.a.) and blade center of 
gravity (c.g.) are coincident and located at the quarter-
chord.  The practice of designing rotor blade c.g. to be 
coincident at the quarter chord with the elastic axis 
and concurrent  with the a.c. pays off  by decoupling 
the equations used in two-dimensional unsteady 
aerodynamic theory.  While this assures freedom from 
flutter, it adds constraints on rotor blade design, not 
usually followed in fixed wing design.  Designing a 
wing such that c.g. and a.c. are coincident at the 
quarter chord costs weight.  It also, if strictly followed, 
rules out use of a flap which causes the a.c. to move 
with flap angle. It also restricts use of camber which 
moves the a.c. aft.  

 
Loewy’s (Ref 1) 2-D unsteady aerodynamic theory as 
amended by Jones and Rao (Ref 2) and Hammond 
(Ref 3) provides a useful tool for examining blade 
flutter in hover.  Extension of their work to a helicopter 
in forward flight presents a formidable mathematical 
challenge, and thus at present, there is no accepted 
theory to completely analyze blade flutter in forward 
flight.  Here, the effect of a shed skewed helical wake 
would have to be considered and the contribution of 
each element of that wake on each segment of the 
blade at each azimuth position accounted for.  
Currently to meet forward flight blade flutter 
requirements the rotorcraft manufacturer must rely on: 
(1) quasi-fixed wing blade flutter analysis, which does 
not account for the unsteady contribution of the wake 
below the rotor; and (2) costly rotor whirl tests at 
normal and overspeed conditions, which while 
providing information in regard to blade flutter, do not 
accurately simulate either blade dynamics or unsteady 
aerodynamics in forward flight.   

 
However, closer examination of the problem reveals 
that it is possible to make several simplifying 
assumptions that make the forward flight flutter 
problem tractable.  In particular, it is assumed at the 
onset of flutter that oscillations begin to build up prior 
to the blade reaching a critical azimuth position, then 
decay as the blade moves beyond this point.  

Shipman and Wood (Ref 4) provide the basis for the 
analysis.  A description of the mathematical model, 
formulation, and the results that are obtained are the 
subject of this paper.  The paper also includes a fully 
worked out numerical example using the UH-60 rotor 
blade to illustrate the method complete with results. 
 

Theoretical Analysis 
 
Approach to the Problem 
 
Consider a rotary-wing aircraft in steady-state level 
flight.  We examine the unsteady aerodynamics acting 
on an advancing blade.  The basic assumptions 
incorporated are as follows: 
 

1. Two-dimensional, inviscid, incompressible 
potential flow. 

2. Respective layers of the wake are two-
dimensionalized and treated as parallel 
horizontal sheets. 

3. In forward flight, each blade of the rotor will 
respond in the same manner as every other 
blade. 

4. The most critical azimuth position of the blade 
in forward flight for the onset of flutter is at ψ = 
90°. 

5. At the onset of blade flutter oscillations will 
begin to build up prior to the blade reaching 
the critical azimuth position, and these 
oscillations will decay as the blade moves 
beyond the critical azimuth position. 

 
At a specified radial location r on the blade, the local 
tangential velocity would be given by   
 

( ) ψ+Ω= sinVrrUt  
 

If it is assumed that the flutter speed for this blade 
segment is such that 
 

( ) ,VrrUFL +Ω<  
 

then during each blade revolution the blade segment 
at  r will experience velocities, which will increase to 
the flutter speed and beyond, then return through the 
flutter boundary to lower airspeeds.  Extending this 
concept to both blade azimuth position and radial 
position, we observe that the blade tangential velocity 
at a given radial position will exceed the flutter speed 
in some region of rotor azimuth position if 
 

( ) rrUV FL Ω−>ψsin . 
 

An example of this region is shown in Fig. 1.   
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It should be noted that all points within the shaded 
region of Fig. 1 will experience negative damping.  
This negative damping will tend to cause blade motion 
to grow.  Also, in the region of  ψ ≤ π/2 - ∆ψFL, the 
damping will decrease as ψ  approaches (π/2 - ∆ψFL),  
whereas in the region ψ ≥ π/2 + ∆ψFL, damping will 
be positive and will increase so that a blade instability 
would tend to die out.   
 
Consider the effect of this variation in damping on an 
outboard portion of the advancing blade.   It is 
expected that damping would decrease as the blade 
approaches ψ = 90°, and the amplitude of oscillations 
would build up.  Conversely, as the blade advanced 
beyond ψ = 90° damping would increase, and there 
would be a corresponding decrease in blade vibratory 
amplitude.  This build-up and decay of blade 
amplitude would result in a distribution of shed 
vorticity as shown by Fig. 2.   Here, we observe that 
timewise variations in amplitude of blade vibrations 
have resulted in spacewise variations in shed vorticity.  
Since we have assumed steady-state flight, each 
blade would shed similar segments of vorticity for 
each revolution.  These vortex segments constitute 
the wake that will be treated in this analysis. 
 
Based on the foregoing, the bound vorticity on the 
airfoil can be expressed as the product of a function of 
chordwise position, a decay function, and a harmonic 
function of time[v].  We write the incremental bound 
vorticity as 
 

( ) ( ) ( )φ+ωξγ=γ ti
aa efx 0  

 
where f(ξ0 ) is an assumed decay function centered 
about ξ0 = 0.  The limiting case of constant-strength 
shed vorticity such as considered by Theodorsen (Ref 

6) and Loewy (Ref 1)   for their analyses, is simply 
achieved by taking f(ξ0 ) = 1.  
 
When the inflow velocity through the rotor is small, the 
shed vorticity remains close to the rotor and the 
wakes shed from each blade during several previous 
passes as well as the present pass must be 
considered.   The build-up and decay of vorticity 
occurs within a double azimuth angle on either side of 
ψ = 90°.   The solid lines of Fig. 3 indicate this region 
of the wake.  In this region the azimuth angle between 
a shed vortex filament and the reference blade may 
be ignored.  The tip does not move very far from the 
vertical plane shown in Fig. 3 and so its path may be 
taken to lie in this plane.   
 
Combining the vorticity segments given in Fig. 2, the 
resulting wake pattern is shown in Fig. 4.  With the 
mathematical model defined, the problem now is to 
determine the pressure difference across the airfoil 
due to the vorticity shed in the wake, and 
consequently to determine the unsteady lift and 
moment acting on the airfoil.  

Figure 1.  Unstable region 
encountered by advancing blade. 

 

Figure 2. Distribution of shed vorticity in unstable 
region. 

Aerodynamic Forces and Lift Deficiency Functions 
 
Theodorsen (Ref 6) developed the equations for the 
unsteady aerodynamic forces for fixed-wing aircraft by 
considering a wing oscillating in simple harmonic 
motion at frequency ω.  The unsteady forces per unit 
span are given by 
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[v] W. P. Jones (Ref. 5) first treated the case of an 

oscillating airfoil where the strength of the airfoil’s 
motion was allowed to grow or decay exponentially 
with time.  As the buildup or decay rate approached 
zero, Jones’ lift deficiency function approached that 
of Theodorsen (Ref 6). 
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The term C(k) is Theodorsen’s well-known lift 
deficiency function defined by 
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where  is the Hankel function of the 
second kind of order n evaluated at reduced 
frequency k = ωb/V. 

nnn iYJH −=)2(

 
Loewy developed the unsteady aerodynamic forces 
for a rotor in hover by accounting for the layers of 

shed vorticity generated by the previous blades in the 
same revolution and all blades in the previous 
revolutions.  His equations were analogous to 
Theodorsen’s, but included a modified lift deficiency 
function.  Loewy’s lift deficiency function is defined by 

Figure 3.  Development of skewed helical wake. 
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and is evaluated at reduced frequency (k), wake 
spacing (h = 2πV/bQΩ) and frequency ratio (m = ω/Ω). 
 
A Theory for Forward Flight 
 
Shipman and Wood, using the theory described in the 
section on Approach to the Problem, developed their 
equation for the unsteady forces in forward flight that 
are analogous to Theodorsen and Loewy, but 
modified the lift deficiency function to account for the 
helicopter’s forward speed (advance ratio) and the 
build-up and decay function associated with the 
advancing blade illustrated in Fig. 4.  The forward 
flight lift deficiency function is defined by 
 

 



 

Figure 4.  Two-dimensional wake model for forward flight. 
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where f(y) is the assumed decay function[vi]. 

                                                 
[vi] The forward flight lift deficiency function described 
and applied in this paper is similar to that of Shipman 
and Wood (Ref 4), except the decay function has 
been modified to eliminate a singularity problem. 

 
UH-60 Blade Sample Problem 

 
Using the forward flight lift deficiency function, a 
sample numerical problem will now be presented. The 
flutter determinant for the blade is repeatedly solved in 
the conventional manner to obtain the blade flutter 
speed. (See Scanlan and Rosenbaum, Ref 7).  But 
here the newly proposed lift deficiency function is 
applied.  UH-60 blade parameters are used in the 
sample problem in deference to the extensive 
database now available for this blade. However, for 
the demonstration analysis the UH-60 blade will be 
modified to make it “flutter susceptible”.  This is 
achieved by moving the chordwise position of the 
blade c.g. aft while keeping its elastic axis at the 
quarter chord. This also introduces flap torsion 
coupling, a desirable feature for a sample problem of 
this type. 

 
For the numerical example, the blade is divided into 
radial segments in the usual manner with unsteady 
aerodynamics applied to the blade at each panel 
point.  Included in the analysis are a rigid flapping 
mode, two flapwise bending modes and the blade’s 
first and second torsion mode.  Results of the forward 
flight analysis are compared with baseline values 
obtained from locking the blade at the 90-degree 
azimuth position and solving the flutter problem, 
similar to a fixed wing case with Theodorsen lift 
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deficiency values, yet allowing radial velocity to vary 
with span as in the case of the tangential velocity of a 
rotor blade in forward flight, ψ = 90°. 

 
 
 

Blade Frequencies and Mode Shapes 
 
Characteristics of the UH-60 rotor blade are given in 
Table 1.  Three flapwise bending modes with natural 
frequencies of 1.035Ω, 2.81Ω and 5.19Ω are 
incorporated in the flutter analysis together with two 
torsion modes.  The two torsion modes occur at 4.3Ω 
and 11.0Ω, respectively.   
 

Table 1.  Characteristics of UH-60 rotor blade 
Parameter Value Units 

b 4 blades 
m 0.52 lb/in. 
c 1.73 ft 
Iα 2.55 lb in. 

R 26.83 ft 
e 2.334 ft 

e.a. 25% chord  
xc.g. variable  
Ω 258 rpm 
ΩR 725 ft/s 

 
Blade bending frequencies and mode shapes used in 
the present sample analysis were determined by a 
simplified method made possible by assuming a 
uniform stiffness and mass distribution for the 
problem.  This makes it possible to simplify the 
present sample problem by  shortcutting a more exact 
and detailed analysis that would be required to 
account for such details as local changes in stiffness 
and mass distribution due to blade features such as 
doublers near the blade root and outboard blade 
balance weights near the tip.  
 
The shortcut method for determining frequencies is 
that by Yntema in NACA TN 3459 (Ref 8).  Given the 
natural frequencies, corresponding non-rotating mode 
shapes can then be obtained from the well-known  
report (Ref 9) by Young and Felgar.  Yntema’s key 
assumption is that non-rotating mode shapes are very 
close approximations to rotating mode shapes. Fig 5  , 
taken from Yntema’s report, compares rotating and 
non-rotating mode shapes for the first three bending 
modes of a pinned-free beam to validate this 
assumption. 
 
In Ref 8, Yntema notes that an exact value for the nth 
bending frequency of a beam rotating at any rotational 
speed, Ω,  can be found if the nth natural bending 
mode shape is known for this value of rotational 
speed.  He obtains his frequency equation by 
equating the kinetic energy at zero displacement to 

the potential energy of both the bending and 
centrifugal forces at maximum displacement for 
vibration perpendicular to the plane of rotation. 
 

Fig. 5.  Comparison of bending modes of a
rotating and nonrotating uniform hinged-free
beam. 
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where n refers to mode of vibration and  
 

( )∫ η+η=
l

x
dmeT1  

 
He goes on to point out that while the rotating mode 
shape is unknown, a close approximation to the 
rotating natural frequency can be obtained by making 
use of Rayleigh’s Principle and using the non-rotating 
beam mode shape in equation (1).  The report states 
that the non-rotating mode shape is consistent with 
the constraints of the system (in this case a pinned-
free beam).  If the nth mode of the non-rotating Yn  is 
substituted into equation (1), the first term becomes 
exactly the square of the bending frequency of the 
non-rotating beam.  By denoting the ratio in the 
second term by Kn  , a Southwell coefficient, the form 
of the frequency equation becomes: 
 

2 2

n n
nR NR

Kω = ω + Ω2  

 
To account for blade offset, e, subdivide Kn  into two 
independent parts: 
 

eKKK
nnn 10 +=  

 
where K0n  is referred to as the zero-offset Southwell 
coefficient and K1n  is referred to as the offset-
correction factor for the Southwell coefficient.  As is 
frequently done it is convenient to write the square of 
the non-rotating frequency in terms of a non-rotating-
beam frequency coefficient,  an ,  and the mass and 
stiffness of the beam as: 
 

4
0

022

lm
EI

anNRn
=ω  

 
Putting this all together yields  
 

( ) 2
104

0

022 Ω++=ω eKK
lm

EI
a

nnn nR           (6) 

 
 Yntema’s report (Ref 8) gives charts that 
provide an ,  K0n  and K1n which, in conjunction with the 
mass and stiffness of the beam at the root, the length 
of the beam, the hinge offset, and the rotational 
speed, permit rapid estimation of the first three 
bending frequencies of rotating beams with hinged or 
cantilevered root-end support. As previously noted, 
once the frequencies have been found, the rotating 
beam mode shapes can then be approximated by 

non-rotating mode shapes which are defined for every 
two percent of the beam’s length by the detailed 
report by Young and Felgar (Ref 9). 
 
 Equations of Motion Using Normal Modes 
 
The method of analysis for flutter of a rotor blade 
parallels that given by Scanlan and Rosenbaum (Ref. 
7) for flutter analysis of an airplane wing.  There is a 
fundamental difference in the lift deficiency function as 
has been already described.  For small oscillations of 
a conservative system, the motion of the system can 
be considered as superposition of the natural modes 
of vibration.   
 
The problem as considered here is three-dimensional 
only to the extent that the spanwise variation of mass, 
geometry, and mode shape is taken into account.  
The aerodynamic forces and moments are given by 
strip theory for infinite-aspect-ratio incompressible 
flow.  It has been found that a reasonable 
representation of the flutter condition can be obtained 
by considering the motion of the system a 
superposition of the fundamental uncoupled bending 
modes and uncoupled torsion modes of the rotor 
blade.  A basic assumption is that aerodynamic forces 
and moments do not change the shape of the 
uncoupled modes of vibration of the rotor blade itself. 

 
Normal Coordinates 
 
With the rotor blade free vibration problem solved, we 
present the bending deflection as  

 

( ) ( ) (∑
=

=
N

n
nn tqxftxh

1
, )

)

 

 
where fn(x) is the characteristic function (mode shape) 
for the nth vertical bending mode of the rotor blade.  
The quantities qn(t) can be considered as weighting 
functions for each mode that contributes to the 
deflection.  They are called the normal coordinates 
since they can be shown to reduce the kinetic and 
potential energy expressions to sums of squares of 
the coordinates with no cross product terms. 
 
The corresponding torsional deflection of the rotor 
blade can be written in terms of the blade torsion 
modes as 

 

( ) ( ) (∑
=

=α
N

n
nn tqxFtx

1
,  

 
where Fn(x) is the characteristic function of the nth 
torsional mode of the rotor blade and qn(t) is the 
corresponding normal coordinate.  Consider the 5 
D.O.F. case where we have three bending modes and 

 43.7



 

two torsion modes.  The bending and torsional 
deflections can be written as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )xfthxfthxfthtxh 332211, ++=  
 
and 
 

( ) ( ) ( ) ( ) ( )xFtxFttx 2211, α+α=α  
 
where 
 

f1(x) = 1st vertical bending mode 
f2(x) = 2nd vertical bending mode 
f3(x) = 3rd vertical bending mode 
F1(x) = 1st torsion mode 
F2(x) = 2nd torsion mode 

 
Lagrange’s equation is given as 
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where T ≡ kinetic energy, U ≡ potential energy, D ≡ 
dissipation function,  and Qn ≡ generalized force.  For 
the 5 D.O.F. case, 
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and the generalized forces are defined as 
 

( )
( )
( )
( )
( )255154353252151

2

245144343242141
2

235134333232131
2

225124323222121
2

215114313212111
2

2

1

3

2

1

α+α+++πρω=

α+α+++πρω=

α+α+++πρω=

α+α+++πρω=

α+α+++πρω=

α

α

AAhAhAhAQ

AAhAhAhAQ

AAhAhAhAQ

AAhAhAhAQ

AAhAhAhAQ

h

h

h

 

 
The expressions for aerodynamic terms, Aij, are 
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The generalized masses of the three bending modes 
and two generalized torsion modes can be written as 
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The static unbalance terms are defined as  
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First it is noted that the kinetic energy equation is only 
a function of the derivative of the generalized 
displacement (  or ).  Thus, Lagrange’s equation 
reduces to  

nh nα

 

n
nnn

Q
q
D

q
U

q
T

dt
d

=
∂
∂

+
∂
∂

+







∂
∂  

 
Applying Lagrange’s equation to each of the 5 D.O.F. 
yields the following five equations: 
 

1
11

11211 1

2
1

1
2

12111 h
hh

h Qh
gM

hMSShM =
ω

ω
+ω+α+α+ αα  

2
22

22221 2

2
2

2
2

22122 h
hh

h Qh
gM

hMSShM =
ω

ω
+ω+α+α+ αα  

3
33

33231 3

2
3

3
2

32133 h
hh

h Qh
gM

hMSShM =
ω

ω
+ω+α+α+ αα  

1
111

11

3121111

1

2

1
2

3211

α
ααα

αα

αααα

=α
ω

ω
+αω+

+++α

Q
gI

I

hShShSI
 

2
222

22

3222122

2

2

2
2

3212

α
ααα

αα

αααα

=α
ω

ω
+αω+

+++α

Q
gI

I

hShShSI
 

 
If simple harmonic motion is assumed, that is: 

  and ;2
nn hh ω−= ;nn hih ω= ;2

nn αω−=α ,nn iωα=α  
and the expressions for Qhn

 and Qαn
 are substituted 

into the equations of motion, the results are 
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The five equations to the flutter problem can be 
written in matrix form as shown in Fig. 6.  The solution 
to the flutter problem is found by solving the 
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Fig. 6  Flutter equations in matrix form. 
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The non-dimensional determinant elements are 
defined as 
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It should be noted that the coefficients of the 
characteristic equation of the ( )IZA −  matrix (a quintic 
in Z) are complex, and thus the eigenvalues will be 
complex.   
 

The frequency of oscillation (ω) for each eigenvalue 
can be found from the real part of Z since the first 
torsional natural frequency is already known, or  
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The damping coefficient required for flutter to exist (g) 
for each eigenvalue can be found from the imaginary 
part of Z, or 
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If g is negative for the reduced frequency chosen, 
then damping must be decreased in order to be at the 
point of instability for flutter to exist.  Negative values 
of g represent the stable, or non-flutter condition.  If g 
is positive, then damping must be increased in order 
to be at the point of instability for flutter to exist.  
Positive values of g represent the unstable, or flutter 
condition.  When a plot of g is made against 1/k, there 
will be five curves corresponding to the variation of 
each eigenvalue as the reduced frequency varies.  
Some of these curves will have only values of g that 
are negative.  These are the non-critical curves and 
do not influence the flutter solution.  However, at least 
one curve will start with a negative value of g and then 
at some point cross the abscissa (1/k) to a positive 
value of g.  This curve is called the critical curve, and 
the value of 1/k where this curve crosses the abscissa 
represents the critical flutter speed.  The critical flutter 
speed is found from the relationship 
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where ω is found from the real part of the eigenvalue 
relationship described above for the critical curve 
evaluated at the reduced frequency that corresponds 
to the crossover point (kcrit). 
 

Results and Conclusions 
 
This paper has presented a theoretical method for 
determining rotor blade flutter in forward flight together 
with a detailed sample problem that treats the bending 
torsion flutter of a modified UH-60 rotor blade.  For the 
theory a wake model is postulated where it is 
assumed at the onset of flutter that oscillations begin 
to build up prior to the blade reaching a critical 
azimuth position at the  position.  
Oscillations begin to decay as the blade moves past 
this point. 

90Ψ = º
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For the sample problem a flutter determinant has 
been derived in the manner of Scanlan and 
Rosenbaum (Ref 7) using normal modes (Ref 10).  
The determinant is solved repeatedly to obtain the 
frequency and damping of each blade mode until a 
flutter speed is found.   
 
Five blade modes are considered in the analysis.  
These are rigid blade flapping, first and second blade 
bending modes, and first and second blade torsion 
modes.  To expedite the analysis, Yntema’s method 
(Ref  8) is applied to obtain the first and second blade 
bending frequencies.  Non-rotating mode shapes are 
taken from Young and Felgar (Ref  9).  Torsional 
mode shapes are from Volkin (Ref  11). 
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