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Abstract 

The paper presents a nonlinear formulation and a 
finite-differences based numerical solution for the 
structural behavior of generic orthotropic beams of 
solid cross-sections. The analysis includes a 
detailed description of the three-dimensional 
out-of-plane warping and the solution is achieved by 
successive iterations while preserving all 
geometrical nonlinearities. The axial body force is 
introduced consistently through the axial 
differential equilibrium equation. The formulation 
yields some basic closed-form analytic solutions for 
homogeneous beams, and the numerical results provide 
an insight into the coupling effects mechanisms in 
generic laminated composite beams, including the 
resulting interlaminar stresses. 

Introduction 

The structural behavior of composite beams has 
attracted considerable research attention during the 
last years. There are many engineering applications 
where primary structures are designed as beams. 
Helicopter blades, propellers, wind turbine blades, 
wings and space structures are in this category. 

The modem composite materials technology offers many 
advantages. Using advanced manufacturing techniques, 
fiber-reinforced designs offer weight reduction for 
given strength requirements and increasing of fatigue 
life. However, there are many applications where the 
structural coupling effects which are offered by 
composite materials are much more attractive. An 
excellent example of beam structures which may 
benefit from such structural couplings are helicopter 
blades. A specific example of a favorable coupling 
effect in helicopter blades is the so called 
"flap-pitch" coupling. It turns out that such 
coupling may improve the stability characteristics of 
helicopter blades and proportors blades. In isotropic 
blades, this coupling may be introduced by external 
mechanisms which could be eliminated by using 
composite materials. Such aeroelastic tailoring has 
already proved to be feasible · see for example Refs. 
I ,2. Currently, most of the helicopter blades are 
built as thin-walled structures. However, the use of 
composite materials seems to lessen weight 
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considerations and utilizing blades of solid 
spar may be possible. Also, the manufacturing process 
of such blades seems to be simpler. 

From the analysis point of view, composite materials 
offer many design vartatwns. These additional 
degrees of freedom make the analyses of composite 
beams much more complicated then those of isotropic 
beams. Generally, it may be stated that the main 
difference lays in the inability to bypass the need 
to determine the cross-sectional warping effects in 
composite beams. This is due to the fact that 
composite materials in general, and in particular 
orthotropic composite materials, couple shear strains 
with normal stresses and normal strains with shear 
stresses. Thus, a detailed description of shear 
stresses and therefore shear deformation is 
inevitable. In isotropic beams, shear deformation is 
ignored by adopting the well known Bernoulli-Euler 
assumptions. This enables the expression of the 
cross-sectional resultant shear forces as derivatives 
of the cross-sectional resultant moments which are 
expressed solely by the normal stresses. 

Currently, many of the existing published analyses 
are based on the finite-element method. Reference 3 
presents a review and discussion of existing methods 
for analyzing rotor blades and the variety of their 
assumptions. Aspects of geometrical nonlinearities in 
beams are also extensively dealt with in the 
literature. These aspects are discussed in Ref. 4, 
which also presents the three-dimensional nonlinear 
equations of motion of an isotropic Bernoulli-Euler 
beam. Since the literature contains many beam-plate 
models (i.e. beams which are essentially thin plates 
of high aspect ratio), the reader is also referred to 
a review of recent developments in the analysis of 
laminated beams presented in Ref. 5, which also 
discusses the various shear-deformation theories and 
the relevant finite-element models. 

Generally, the advanced analyses may be divided into 
three categories. The first category includes models 
which consistently include all the necessary 
ingredients of the problem (Refs. 6-9). The second 
category consists of analyses where warping is 
expanded into a series of auxiliary warping 
functions (Refs. 10,11). The third category includes 
analyses which are based on a priori determination of 
the cross-sectional properties (stiffness, shear 
centers etc.) which are introduced to a standard one-
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dimensional beam model (Ref. 12-14). Detailed dis­
cussion of the above models may be found in Ref. 15. 

The purpose of the present paper is to present a new 
formulation and solution method for predicting the 
nonlinear behavior of composite beams having solid 
cross-sections. The beam-like behavior assumption 
(which is usually expected in slender structures) is 
used only for the formulation of the transverse 
displacements and the twist, while generic 
three-dimensional out-of-plane warping is included. 
The finite-differences based numerical procedure 
provides the ability to include all three-dimensional 
effects and all nonlinear terms with no neglect or 
use of an ordering scheme, and makes no use of 
two-dimensional cross-sectional properties. The 
iterative nature of the solution procedure enables 
the inclusion of a large number of degrees of freedom 
and to gradually adapt the numerical mesh during 
iterations. It should be emphasized that the present 
model is not limited to thin cross-sections and that 
all contributions to shear deformation are included 
in the warping function regardless their source (i.e. 
transverse shear or torsion). This enables consistent 
fulfillment of the cross-sectional boundary 
conditions by assuring no shear stresses normal to 
the contour. Since the present formulation provides 
detailed distribution of shear deformation and 
stresses, it also provides data concerning the 
resulting interlarninar stresses. 

Analysis 

An orthotropic, slender and uniform beam having solid 
cross-section is presented in Fig. 1. A basic 
reference system is defined by the coordinate lines 
x, y, z. The x coordinate line will be referred to as 
the''beam axis'1and is assumed to pass through the same 
arbitrary point at each cross-section. The beam is 
assumed to be made out of orthotropic lamina where 
one plane of material symmetry is parallel to the x-y 
plane and the other plane is parallel to the z 
coordinate line. The displacements are expressed by 
four unknown longitudinal functions, in addition to a 
three-dimensional function. Referring to the notation 
of Fig. I, u(x) is the blade axial displacement (in 
the x direction), and v(x) and w(x) are two 
transverse displacements in the y and z directions, 
respectively. These displacements take a point P on 
the beam axis to its position after deformation, P'. 
In addition, a twist angle <jl(x) is assumed to take 
place around the deformed axis (i.e about the beam 
axis in its deformed direction due to the u,v and w 
displacements - see Fig. 1). ljl(x,y,z) is a generic 
out-of-plane warping function which is superimposed 
on the axial displacement in the deformed axis 
direction and has zero averaged value over each 
cross-section. To facilitate the following 
derivation, two additional cross-sectional systems of 

1\ 1\ 1\ 

coordinates should be defined. xB' yB' zB are unit 

vectors of a local system of coordinates which is 
attached to each cross-section. Before deformation, 

1\ 1\ 1\ 

the xB, y B' zB directions are parallel to the x,y ,z 

directions, respectively. Since the in-plane warping 
is neglected, the entire cross-section is deformed 
"rigidly" (note that the out-of-plane warping does 
not vanish) to its new position. The deformed 

1\ 1\ 1\ 

orientation of the triad xB' YB' zB is a function of 

the displacements u, v, w and $ and their 
1\ 1\ 1\ 

derivatives, and is denoted xD' Yn· zD. The above 

cross-sectional systems before and after deformation 
are related by a nonlinear transformation matrix (see 
Ref. 16). The following derivation is based on Green 
strain tensor components (see Ref. 17), namely: 

I-)-)-)-) 

10ij = 2 (Gi"Gj - gi.gj) (ij = x,y,z) (1) 

-) -) -) -) 

where G., G. and g., g. are the tangent base vectors 
1 J 1 J 

before and after deformation. The constitutive 
relations for a general orthotropic lantinae having a 
principal axis which does not coincide with the x 
direction are assumed to be of the form: 

(CI) = [C'](<) (2) 

where ( cr) and (e) are the stress and strain vectors, 
respectively: 

In the following derivation only the 
components cr , 1: , 1: will be of interest. 

XX XZ xy 
on the above constitutive relations, these 
components may be expressed as: 

(3a) 

(3b) 

stress 
Based 

stress 

(4) 

Essentially, the strain components e , e , y 
yy zz yz 

contain only small nonlinear contributions due to the 
neglect of the inplane deformation. Therefore, by 
ignoring the underlined part in Eq. (4), it becomes 
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the reduced constitutive relations for this case. 
However, these relations do not account for Poisson's 
effect. To correct this deficiency, the strain 
components e , e , y may be written as function 

yy zz yz 
of the stress components cr , ~ , ~ by neglecting 

XX XZ yz 
the normal stresses cr , cr and the shear stress ~ 

yy zz yz 
(see also Refs. 12,15), which yields the following 
new stress-strain relations: 

[l[Cf::j (5) 

xy Yxy 

where 

ell 0 cl6 

[C] = {[I] - [C2][S])-l [Cl] = 0 c55 0 

cl6 0 c66 

(6) 

where the matrix [S] contains elements of the 
compliance matrix associated with [C']. 

Linear reduction of the strains which are determined 
by Eq. (I) shows that the only nonzero linear strains 
are: 

L e =u -yv -zw +ljl 
xx 'x 'xx 'xx 'x 

(7a) 

(7b) 

L 
Y = -z~ + ljf xy 't'•x 'y (7c) 

As will be explained in what follows, the nonlinear 

. 'b . N N N b . d strams contr1 utwns e , y , y are o tame 
XX XZ XY 

implicitly by subtracting the above linear strains 
from the complete strains expressions. Thus, by 

L L 
substituting exx' yxz, 

relations (Eq. (5)), the 

yx y L in the constitutive 

linear stresses components 
L L L 

crxx' 'txz' 'txy are obtained, and similarly, by 

b .. N N N.th 1 . 
su stltutmg e xx' y xz' y xy m ese re attons, 

nonlinear stresses components crNx x' ~N ~N xz' xy 

the 

are 

obtained. 

At this stage, it is possible to express the axial 

resultant force, the transverse resultant forces and 
the resultant torsional moment that act at each 
cross-section in the deformed directions, in terms of 
the above stresses. Within the small strains 
assumption, the stress vector at each point is given 
by (see Ref. 17): 

~ ~ ~ ~ 

f = v g ·g (cr G + t G + ~ G ) (8) 
xxxxx xyy xzz 

~ 

By expressing the base vectors G. as sums of unit 
1 

vectors in the deformed directions and nonlinear 
~N N N 

contributions G . , the nonlinear stresses t , t and 
N 1 X y 
t are obtained. Consequently, the linear and 
z 

nonlinear loads that act at each cross-section may 
be expressed by the following integrations over each 
cross-sectional area: 

~. ~) = ff(crL ' tN)dA 
X X XX X 

(9a) 

A 

(9b) 

(9c) 

(rJ-, ~) = JJ<i y - 'tL z, tN y - tN z)dA (9d) 
X X XZ XY Z y 

A 

As already mentioned, the out-of-plane warping 
function ljf is a three-dimensional function and has a 
local nature (i.e. it is also a function of the 
cross-sectional coordinates yD and zD). Consequently, 

a local equation is required for a consistent 
determination of this function. This local equation 
turns out to be the differential equilibrium equation 
in the axial direction (while the other two 
differential equations are fulfilled in an integral 
manner by Eqs. (9b-c)). This equation may be 
generally expressed as: 

cr + ~ + ~ + B = 0 (10) 
XX,XD xy ,y D XZ,ZD X 

A 

where Bx is the axial body force (in xD direction). 

In the case of rotating blades, this body force may 
play an important role and should be accounted for. 
Using Eqs. (5),(6),(7) enables to rewrite Eq. (10) 
as: 
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d
dx [cll(u, -yv, -zw, +IJI, )+CI6(-z<jl, +IJI, )]+ 

XD XX XXX XXX XX X xy 

+ c
16

(-v, +IJI, )+C
16 

(u, -yv, -zw, +IJI, )+C
66

1Jf, 
XX xy ,y X XX XX X yy 

N 
+ c66 (-z.p, +IJI, )+C551V' +C55 (y.p, +IJI, l~ -B -B ,Y xy ZZ ,ZXZ XX 

(II) 

where BN 
X 

contributions) 

(which contains the nonlinear 

d dx · · R f 15 an d are gtven m e . . 
XD 

stress 

The Finite-Differences Formulation 

As shown schematically by Fig. 2a, each cross-section 
of the beam is divided into a net of rectangular 
cells. This net must not be uniform over the 
cross-section but it is identical for each 
cross-section along the beam. Figure 2a presents a 
generic cross-section which is divided into equal 
square cells. At the middle point of each cell, a 
value is assigned to the out-of-plane warping 
function, IJI. The cells are numbered so the value IV 

n 
stands for the warping at the middle of the nth cell. 
The total number of cells in the cross-section is 
denoted by N. Consequently, Eqs. (9a-d) and (I I) may 
be put in a form of a linear system of equations: 

[R][u) ~ {f) (12) 

where the unknowns vector and the right-hand side 
vector are given by: 

{u) ~ <u, , v, , w, , <jl, , IJI
1
, IJI

2 
.... lj!N> (13a) 

X XXX XXX X 

{f) ~ <z
1
, z

2
, z

3
, z

4
, f(l) ...... f(N)> (13b) 

All nonlinear terms and linear terms which are not 
functions of the unknowns vector { u) are moved to the 
{f) vector. It should be noted that the specific 
choice of the above unknowns vector involves various 
considerations. The most important considerations 
were the ability to have a nonsingular matrix in the 
most simple cases of isotropic symmetric cross­
sections, and the need to include explicitly as 
unknowns high derivatives of the displacements (i.e. 
v, , w, ) in order to minimize the required 

XXX XXX 

numerical differentiations. 

The elements of [R] that contain derivatives of ljf 
with respect to y D or zD are determined by a 

finite-difference scheme. In order to write the 
warping derivatives over the cross-sectional contour, 
the cross-sectional boundary conditions should be 
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dealt with. These cross-sectional boundary conditions 
are Neumann-type conditions for the first derivative 
of the warping and are set by requiring no shear 
stress in a direction which is normal to the 
cross-sectional contour (see Fig. 2b). For example, 
for a vertical contour line, Eq. (5) shows that for 
~ ~ 0: 
xy 

cl6 
(IJI, )B ~ E - -C u, + z<jl, (14) 

y y 66 X X 

where E is also a function of the displacements and 
y 

their derivatives. Since expressing the first and the 
second derivatives by central finite differences is 
based on the point where the derivative is 
calculated, and two additional points one on each 
side of it, the boundary points need special care. 
Referring to Fig. 2c, it may be shown that knowing 
the value of the first derivative with respect to y 
at the boundary points B, enables to express the 
first and second derivative with respect to y at 
point I as: 

(ljl,y)l "' a! (lji,)B + blljfl + c!IJI2 (!Sa) 

where al'a
2

,bl'b
2

,c
1 

,c
2 

depend on the cells dimen­

sions. Similar procedures apply to the derivatives in 
the z direction. 

Solution Procedure 

Generally, the overall three-dimensional solution is 
achieved by an iterative procedure which basically 
consists of successive solutions of Eq. (12) at each 
cross-section. In order to describe this process, the 
following discussion will be concentrated on the case 
of a cantilevered beam which will also clarify the 
application of the present method to other boundary 
conditions. 

The beam is assumed to undergo a distribution of body 
A 

force B in the xD direction, transverse forces per 
X A A 

unit length py and pz in the yD and zD directions, 

respectively, and a distribution of moments per unit 
A A A 

length q , q and q in the xD' yD' z._ directions, 
X y Z lJ 

respectively. All loads are assumed to be given as 
functions of x. In addition, the tip resultant forces _, _, 
and moments Ft, Mt are prescribed over the tip 
cross-section. 

The solution procedure consists of the following four 
steps: 



Step I - Determination of the loads distribution: 
Based on some initiaiiy assumed distribution of 
displacements, the above tip and distributed loads 
are determined. These loads are then integrated to 
give the resultant loads at each cross-section in the 
A A A 

xD' yD, zD directions. 

Step 2 Determination of the nonlinear 
-; 

contributions: For this purpose, the base vectors G., 
I 

-; 

g. are determined including the nonlinear contribu-
1 

-;N 
tions G . . Then, the strains e.. are calculated (Eq. 

I IJ 

I
. N N N 

(!)) and the non mear components e , e , e are 
XX XZ xy 

L L e , e , 
XX XZ 

subtracting the linear stresses obtained by 
L e (Eqs. (7a-c). Consequently, the nonlinear 
xy 

stresses crN , ~N , ~N may be determined (using Eq. 
xx xz xy N N N 

(5)), and the nonlinear components t , t , t of the 
X y Z 

stress vector are evaluated. Finally the nonlinear 

resultant loads ~. ~. FN, ~ (Eqs. 9a-d) and the 
X y Z X 

nonlinear body force BN are determined. 
X 

Step 3 - Determination of the unknowns vector: Using 
the above linear and nonlinear loads, and based on 
the above initially assumed displacements, the right­
hand side of Eq. (12) is determined for each cross­
section. Then, Eq. (12) is solved for each cross­
section and the local values of the unknown vector 
{ u} are obtained. 

Step 4 - Updating the displacements assumption: The 
components of { u} are differentiated and/or 
integrated along the beam span and the values of u, 

u,xx' v, v,x, v'xx' w, w'x' w'xx' $, $'xx' '.Jf,x and 

ljf, are obtained. Differentiations are executed by 
XX 

central finite-differences scheme. Integration 
constants are obtained by the global boundary 
conditions of the beam. Note that one aspect of the 
boundary conditions has been already discussed and 
introduced to the scheme by demanding that there will 
be no shear stresses over the outer surface area of 
the beam. In addition to these local boundary 
conditions, and according to the above beam-like 
behavior assumption, the global displacements 
unknowns u, v, w and <P are subjected to the global 
boundary conditions. At the root (x=O), the geo­
metrical boundary conditions for a clamped beam are: 

u = v = v = w, = w = <P = 0 (16) 
'x x 

The natural boundary conditions for v, and w, are 
XX XX 

given at the tip and are obtained by equating the tip 
transverse moments obtained by integrations of the 

t t 
normal stresses to the external moments M , M , 

y z 
respectively. This yields the following system of two 
equations and unknowns: 

(17) 

Step 4 provides updated values to the initially 
assumed displacements, and the above procedure is 
repeated until convergence is achieved. 

Results 

This section documents some analytic solutions for 
generic cross-sections and typical numerical results 
which were obtained for a clamped-free composite beam 
of a rectangular cross-section. In all cases the 
beams are made of Graphite/Epoxy orthotropic laminae. 
All geometric and material properties are given in 
Appendix A. In the numerical examples, a net of I Ox20 
cells has been used to discretize the cross-sectional 
area while 20 equally spaced cross-sections were 
considered along the beam axis. The cross-sectional 
discretization is presented in Figs. 3a,b for a 
homogeneous beam and for a beam with two lamina. As 
shown, the cross-section dimensions are a and b 
(parallel to yD and zD directions, respectively), and 

is discretized by a "cosine rule 11 which creates 
smaller cells along the boundaries of each lamina. 

Homogeneous Beams (analytic solutions): 

Homogeneous beams may be viewed as beams made of 
identical laminae oriented at the same angle or as 
beams made of a single lamina. The present 
formulation yields some exact linear analytic 
solutions for this case. The linear version of the 
above formulation shows that the functions u(x), v(x), 
w(x), <jl(x) and ljf(x,y,z) form an exact solution 
provided that they satisfy the linear part of Eqs. 
(9a-d) and (I 0), satisfy the cross-sectional boundary 
conditions (such as Eq. (14)), the global 
boundary conditions (Eqs. (16) and (17)), and ljf has 
zero averaged value over the cross-section. In all 

A A A 

cases, it has been assumed that the xD' y D and zD 

system of coordinates 
cross-sectional centroid. A 
be found in Ref. 15. 

is located at the 
detailed derivation may 
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Case a - Tensile Force (generic cross-section): In 
this example, it is assumed that the beam is 
subjected to a tensile force, P(x), which is created 
by a tip force and a distribution of body force in 
the x direction. The solution in this case is given 
by w=<jl=O and (see also Fig. 4): 

(18a) 

v,xx = N 
(18b) 

(18c) 

The expressions for u, v, and v are easily obtained 
X 

by introducing the appropriate boundary conditions 
for u(o), v(o), v, (o). 

X 

Case b: Tip Torsional Moment (generic cross-section): 
Exact analytic linear solution for a cantilever beam 
which is subjected to a tip twist moment, M, is 
presented in this section. The solution in this case 
is based on the solution of a special orthotropic 
beam where the plane normal to the beam axis is a 
plane of elastic symmetry (see Ref. 18). This case 
may be obtained by the present formulation by setting 
c16=0 which decouples twist and bending. Thus, it is 

assumed that the warping function cp(y,z) (defined by 
\jf(y,z)=<jl, cp(y,z) and the rigidity D (defined by 

X 

M=lj>, D) of such an uncoupled case are known for the 
X 

actual values of c
55 

and c
66

. The twist and the 

warping in the coupled case take the form: 

M 
lj>,x = D + ex (19a) 

M 2 
\jf = D 'l'(y,z) · cxyz + A~ + B~ + c\jf (19b) 

and for a clamped beam where the z axis is a symmetry 
axis, the solution is given by: 

(20a) 

(20b) 

which enables clear insight into this Torsion-Bending 
coupling mechanisms. The expressions for A ,B and C 

\jf \jf \jf 

are given in Ref. 15. 

For a rectangular cross-section r
2

, is given by (see 

Fig. 5): 

192 ~ (·1)n I . 
r

2 
= 2 · 2 L 

4 
tanh(mq)[m sm(m)·cos(m)] 

where 

qn n=O (2n+ 1) 

2n+l 
m=-2-n 

q is a nondimensional parameter 
the cross-sectional thickness 
anisotropy, and is given by: 

(21a) 

(21b) 

which accounts for 
ratio and its 

(22) 

For an elliptical cross-section of axes a and b 
(parallel to y and z direction, respectively), r is 

z 
given by: 

(23) 

The warping distribution for the case of a 
rectangular cross-section is presented in Fig. 6. 

Case c · Vertical Load (rectangular cross-section): 
An analytic solution for a beam having a rectangular 
cross-section and subjected to a vertical load F (x) 

z 
(in the z direction) is described in this section. 
The solution in this case shows that u=v=O, and: 

(24a) 

(24b) 
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Again, the Torsion-Bending coupling is clearly 
presented by the above result. 

Case d - Tip Edgewise Load (rectangular cross­
section): If a beam of rectangular cross-section is 
subjected to a tip edgewise load, F (in the y 

y 
direction), an exact linear analytic solution may be 
obtained by assuming w~$~0, and warping distribution 
of the following form: 

where the expressions for the above coefficients may 
be found in Ref. 15. For a clamped beam, u and v are 
given by: 

(26a) 

(26b) 

Non-Homogeneous Beam (numerical solutions): 

In the following discussion, a beam made of two 
laminae of equal thickness is dealt with. The 
cross-sectional discretization is presented in Fig. 
(3b). The principal orthotropic axes of the lower and 
upper laminae are assumed to create angles e and -e, 
respectively, with the beam axis, while for e~o both 
laminae are identical. This case is usually referred 
to as lfantisymmetric 11

• 

First, a demonstration of the Extension-Torsion 
mechanism in this beam will be presented. The results 
of applying tension force at the tip, P, appear in 
Fig. 7 where the tip extension ut (normalized by its 

. value for e~o) and the tip twist angle per unit 
tensile force are presented as function of e. As 
expected, ut is growing with e due to the reduction 

in the longitudinal stiffness of the beam. The twist 
angle, $, , is growing up to its maximum value (about 

-~ 
-7.5x10 deg./Nt) around e~40 degrees. 

The warping distribution in this case is presented in 
Fig. 8. As shown, there is an opposite trend in the 

out-of-plane warping of the two laminae. As a result, 
interlaminar stresses are created. These stresses are 
the 1: components over the laminae contact surface 

xz 
(z~O) which are presented in Fig. 9. As shown, these 
interlaminar stresses are larger close to the cross­
sectional vertical boundaries and reach a maximum 
value of about 40% of the averaged axial stress. 

Concluding Remarks 

A formulation and a solution procedure which are 
capable of determining the structural behavior of 
orthotropic beams having solid cross-section have 
been presented. It has been shown that it is possible 
to obtain a solution which includes a detailed 
description of the out-of-plane warping and all three 
dimensional effects. Due to the detailed description 
of the warping, prediction of the interlaminar 
stresses in multilayered beams are provided as well. 
In addition, the introduction of the axial body 
forces which is carried out by the differential 
equilibrium equation, contributes to the quality of 
the results obtained for rotating blades. 

The present formulation also provides some 
closed-form "strength of material type" analytic 
solutions for homogeneous beams which lay down an 
important insight into the composite-related coupling 
effects. 
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Appendix A. Geometric and Material Properties 

The numerical examples presented in this 
for a cantilevered beam of length 
cross-sectional dimensions a and b where: 

L = 0.4 m 

a= 0.02 m 

b = 0.01 m 

paper are 
L, and 

(A.1) 

(A.2) 

(A.3) 

a,b and the location of the cross-sectional system of 
coordinates are presented in Fig. 3. The beam was 
made of Graphite/Epoxy laminae of the following 
characteristics: 

9 2 
E

11 
= 129.1 x 10 N/m 

9 2 E22 = E33 = 9.4 x 10 N/m 

9 2 
0

12 
= 5.5 X 10 N/m 

9 2 0
13 

= 4.3 x 10 N/m 

9 2 o
23 

= 2.5 x 10 N/m 

v12 = v13 = 0.3 

v23 = 0.5 

(A.4) 

(A.S) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 
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Fig. I: Scheme of the undeformed beam, the deformed 
axis and the systems of coordinates. 
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Fig. 2: Scheme of the cross-sectional discretization. 
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Fig. 3: Discretization of a rectangular cross 
-section: 
(a) Homogeneous beam 
(b) A beam of two lantinae. 
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Fig. 4: The values of u, and IJI, due to a tip 
X y 

tensile force as function of the lantination 
angle in homogeneous beam and the approximate 
value based on u,x =P/(ACll). 
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Fig. 6: Warping distribution due to a tip o torsional 
moment in homogeneous beam (8=30 , x=L/2). 
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Warping distribution due to a tip tensile 
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Fig. 7: 

Variation of the tip values ut and <l>t due to 

a tip tensile force in an antisymmetric beam 
as function of the lamination angle. 
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Distribution of the 1: shear stress due to a 
xz 

tip tensile force in an antisymmetric beam. 
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