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Abstract 

An asymptotically exact methodology, based on 
geometrically nonlinear, three-dimensional elasticity, 
is presented for analysis of prismatic, nonhomoge­
neous, anisotropic beams. The analysis is subject 
only to the restrictions that the strain is small rela­
tive to unity and that the maximum dimension of 
the cross section is small relative to a length pa­
rameter which is characteristic of the rapidity with 
which the deformation varies along the beam; thus, 
restrained warping effects are not considered. A two­
dimensional functional is derived which enables the 
determination of sectional elastic ocnstants, as well 
as relations between the beam (i.e., one-dimensional) 
displacement and generalized strain measures and 
the three-dimensional displacement and strain fields. 
Since the three-dimensional foundation of the formu­
lation allows for all possible deformations, the com­
plex coupling phenomena associated with shear de­
formation are correctly acocunted for. The final form 
of the strain energy ocntains only extensional, bend­
ing, and torsional deformation measures - identical 
to the form of classical theory, but with stiffness ocn­
stants that are numerically quite different from those 
of a purely classical theory. Indeed, the stiffnesses 
obtained from classical theory may, in certain ex­
treme cases, be more than twice as stiff in bending 
as they should be. Stiffness ocnstants which arise 
from these various models are used to predict beam 
deformation for different types of ocmposite beams. 
Predictions from the present reduced stiffness model 
are essentially identical to those of more sophisti­
cated models and agree very well with experimental 
data for large deformation. 
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l. Introduction 

When a flexible structure has one dimension 
that is larger than the other two, it can often 
be treated as a beam, a one-dimensional struc­
ture. Many engineering structures can be idealized 
as beams, leading to much simpler equations than 
would be obtained if complete three-dimensional 
elasticity were used to model the structure. Al­
though dimensional reduction processes can be ex­
tremely sim pie for homogeneous, isotropic, prismatic 
beams, and especially for restricted cases of deforma­
tion, they are far less tractable for ocmposite beams 
undergoing arbitrary deformation. It is known that, 
in general, all possible deformations of the three­
dimensional structure must be included in the for­
mulation [1,2]. 

In this paper, we refer to all three-dimensional 
cross-sectional deformation as "warping, - whether 
the displacement is in the cross-sectional plane or 
out of it. All the components of warping in com­
posite beams may be coupled. Also, there may be 
elastic couplings among all the global deformation 
ocmponents. This means that instead of 6 funda­
mental stiffnesses (extension, bending in the 2 prin­
cipal directions, torsion, and shear in the 2 principal 
directions), there could be as many as 21 (a fully 
populated, symmetric 6x6 matrix). Furthermore, 
simple integrals over the cross section will not suf­
fice to determine these elastic constants for the most 
general case. These ocmplexities make the determi­
nation of the elastic constants (what is termed herein 
as "modeling'') a much more difficult task. 

There are many possible approaches to this 
problem found in the literature. The literature prior 
to 1988 is reviewed in [3]. In work not cited therein, 
Berdichevsky [4], appears to be the first in the liter­
ature to plainly state that "the geometrically nonlin­
ear problem of the three-dimensional theory of elas­
ticity for a beam can be split into a nonlinear one­
dimensional problem and a linear two-dimensional 
problem.;' This statement was made concerning ho­
mogeneous beams with certain material symmetries. 
As pointed out in [3], this deocupling of the sectional 
and beam analyses is often assumed to be valid in 
ocmposite beam analysis. For example, Borri and 
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Mantegazza [5] used a linear, two-dimensional finite 
element analysis which is based on [6] to find the 
6 x 6 matrix of cross-sectional elastic constants for 
use in a nonlinear analysis. (Note that the cross­
sectional analysis [6] has been implemented by Borri 
and his co-workers in a desktop computer program 
called Nonhomogeneous Anisotropic Beam Section 
Analysis- NABSA.) 

In later work Rehfield et al. [7] showed that use 
of the complete 6 x 6 is not necessary in some cases. 
Indeed, one can reduce the 6 x 6 matrix by minimiz.. 
ing the strain energy with respect to the transverse 
shear strain measures. The numerical values of the 
elements of the resultant 4 x 4 stiffness matrix may 
be quite different from those of classical theory, in 
which shear deformation is ignored altogether. This 
is because bending-transverse shear elastic coupling 
can significantly reduce the effective bending stiffness 
of a beam - possibly by more than 50%! 

In this paper, to further explore these issues, 
we present an anisotropic beam theory from ge­
ometrically nonlinear, three-dimensional elasticity. 
The kinematics are derived for arbitrary warping 
based upon the general framework of [8]. Next, the 
three-dimensional strain energy based on this strain 
field is dimensionally reduced via the variational­
asymptotical analysis of [4]. The resulting equations 
govern both sectional and global deformation, as well 
as provide the three-dimensional displacement and 
strain fields in terms of beam deformation quanti­
ties. The formulation also naturally leads to geo­
metrically exact, one-dimensional kinematical and 
intrinsic equilibirum equations for the beam defor­
mation [9]. 

The relationship of the present extension, bend­
ing, and torsional elastic constants to those of the 
6 x 6 stiffness matrix from N ABSA is then explored. 
These constants are then used to calculate the non­
linear static behavior from the one-dimensional beam 
equations. Finally, correlations with experiments are 
given as a means of validation, thus testing the pre­
dicti ve capability of the reduced stiffness model de­
scribed above. 

2. Three-Dimensional Formulation 

In this section, the three-dimensional displace­
ment and strain fields are developed, giving emphasis 
to three-dimensional beam geometry. The present 
analysis can be easily extended to treat initially 
curved and twisted beams, but herein we will r.on­
sider only straight and untwisted beams. Here and 

throughout this paper Greek indices assume values 2 
and 3 while Latin indices assume values 1, 2, and 3 
and repeated indices are always summed over their 
range. 

Undeformed Beam Geometry 

Let x 1 denote length along a reference line r 
within an undeformed beam. Let Xa. denote lengths 
along lines orthogonal to the reference line r. Let 
b; denote a dextral orthogonal reference triad along 
the undeformed coordinate lines. The position vector 
from a fixed point 0 to an arbitrary point is 

(1) 

where r(xt) is defined such that 

where the use of angle brackets to denote the above 
integral will be used throughout the rest of the devel­
opment and where the cross-sectional area A= (1). 
From this one can infer that the reference line is cho­
sen such that 

(3) 

In other words, the reference line passes through the 
centroid of each cross section. Since the beam is 
assumed to be prismatic, this line is straight. 

Deformed Beam Geometry 

In a similar manner, consider the deformed 
beam configuration. The particle which had position 
vector r(x1, x2, x3) in the undeformed beam now has 
position vector R(x1 ,x2 ,x3 ). The specific form of R 
must await the introduction of several entities related 
to the deformation. 

To this end, we introduce another orthonormal 
triad B;(x1) which we call the deformed beam triad. 
The vectors B; can be specified relative to b; by an 
arbitrarily large rotation, and B; coincides with b, 
when the beam is undeformed. Rotation from b; 
to B; is described in terms of a matrix of direction 
cosines C(xt) such that 

C;; = B,. b; (4) 
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Further specification of the triad B; must be post­
poned until the generalized strain measures are in­
troduced below. 

Once a specific form of the displacement field is 
introduced, the matrix x whose elements are defined 
by 

aR. 
X<i = B;. -i) 

X; 
(5) 

can be found. Now, following Danielson and Hodges 
[8], the polar decomposition theorem shows that x 
can be uniquely decomposed into an orthogonal rota­
tion matrix 6 times a symmetric right stretch matrix 
u 

(6) 

Note that 6 is not the total rotation, because the 
global rotation has been effectively removed by re­
solving x in mixed bases as implied by Eq. (5). The 
matrix of Jaumann strain components is then defined 
by 

(7) 

where h is the 3 x 3 identity matrix and f' is a 
3 x 3 symmetric matrix containing the (3-D) Jan­
mann strain components. The expression for f' is 
quite simple once the components of the deformation 
gradient are known. Danielson and Hodges [8] were 
able to show that the strain field can be expressed 
approximately as 

, 1 T r =- (x + x ) -I 
2 

(8) 

Using the estimation procedure developed in [4] (see 
below), it is possible to show that this expression is 
valid as long as the strain is small. 

Specification of Displacement Field 

Now, for the purpose of later obtaining the 
strain field in terms of generalized (i.e., one­
dimensional) strain measures, we introduce a vector, 
which is the position vector from 0 to the points of 
the reference line ofthe deformed beam such that 

Undeformed State 

r 

0 

Defonned State 

R 

Unwarped Cross Section 

Fig. 1: Schematic of beam deformation 
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R( ) - ( )+ ( )_!!(R(x1 ,xz,x,)) 
x 1 - r x 1 u x 1 - A (9) 

where u(xi) is a "displacement'' vector, of sorts. 
This vector is properly understood as the position 
vector from a point at x1 = xi on the reference line 
of the undeformed beam to a point s(xi) on the ref­
erence line of the deformed beam (the curved line of 
centroids for the deformed beam). Here s is the arc­
length of the deformed beam reference line, which 
differs from x 1 by stretching. 

The deformation can be described as a small 
warping displacement superimposed on possibly 
large rigid-body translation and rotation of the cross 
section. A schematic of this type of deformation is 
shown in Fig. 1. Thus, the position vector of any 
point in the deformed beam can be written as 

R(x,, .;,, ~3) =R(x,) 

+ ht;aBa(xt) (10) 

+ hw;(x,,6,6)B;(xt) 

Here we have introduced nondimensional cross­
sectional coordinates (a so that x" = ht;a, and 
nondimensional warping displacement, w;; h is the 
maximum cross-sectional dimension. This descrip.. 
tion is six times redundant; one can remove this inde­
terminancy by imposing constraints on the warping. 
By virtue of the definition of R one can show that the 
warping must satisfy the following three constraints 

(w;(x,, 6, 6)) = 0 (11) 

With Eq. (11) applied, Eq. (10) is still three 
times indeterminate. Three more constraints will be 
introduced in the context of the reduction to one 
dimension. Note that the orientation of the vector 
B 1 is not necessarily tangent to the reference line of 
the deformed beam. The orientation of Ba will not 
be specified until the generalized strain measures are 
defined. 

Generalized Strains 

The strain field can concisely be expressed in 
terms of so-called generalized strain measures [8] 

where 

/'u =R' · B, 

2!ta =R' · Ba 
B; =KjBj X B; 

(12) 

(13) 

where ( )'denotes differentiation with respect to x1 . 

Here ill is the extensional strain, K 1 is the twist per 
unit length, K" are the curvatures of the deformed 
beam, and 2/lcc are the transverse shear strain mea~ 
sures. 

In addition to the three constraints of Eq. (11), 
if we choose the direction of B 1 so that it is normal 
to the plane determined by (l;aR), then two more 
constraints on the warping are found to be 

(14) 

Because of this, the shear strain measures 2/la from 
Eq. (13) are in general not zero. The vectors Ba are 
determined within a rotation about B 1 ; they can be 
fixed with one final constraint 

(R,z · B, - R,, · Bz) = 0 (15) 

which is equivalent to the scalar condition 

(16) 

The orientation of the kinematical deformed beam 
triad B; relative to b; is now specified uniquely; it 
can thus be represented by an arbitrarily large ro­
tation in terms of orientation angles, Rodrigues pa­
rameters, or any suitable angular displacement pa­
rameters. For additional discussion of this matter, 
see [10]. 

It should be noted that u is not the displacement 
of a particular material point on the reference line of 
the undeformed beam, which would be given by 

(R- r) j =u(x,) 
.;:~={a;:;:.O (17) 

+ hw;(x1 , 0, O)B;(xt) 
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3. Dimensional Reduction 

In constructing a one-dimensional beam the­
ory from three-dimensional elasticity, we attempt to 
represent the energy stored in a three-dimensional 
body by finding the energy which would be stored 
in an imaginary one-dimensional body. This reduc­
tion from a three- to a one-dimensional model makes 
beam modeling more difficult than the analogous 
process for plates and shells, in which reduction from 
three to only two dimensions is necessary. 

This modeling process cannot be performed in 
an exact manner. However, due to the interest of 
working with a simple one-dimensional theory, re­
searchers have turned to asymptotical methods to 
reduce the dimension of the model for bodies which 
contain one or more small parameters. Beams are 
such bodies because the characteristic cross-sectional 
dimension of a beam is much smaller than its length. 

Thus, in what follows we replace the three­
dimensional beam problem by an approximate one­
dimensional one in which the strain energy per unit 
length will be a function of only x 1 • This will be done 
with the aid of the variational-asym ptotical formu­
lation originally developed by Berdichevsky [4]. 

In the following sections, we will apply this 
method for nonhomogeneous, anisotropic beams in 
order to obtain the asymptotically correct strain en­
ergy. Before doing so, however, it is appropriate to 
discuss the estimation procedure. To keep track of 
the orders of various terms in the strain field, we 
introduce a scalar parameter 

(18) 

Rather than write out complete expressions for the 
strain field, we will only write the needed terms of 
the appropriate order. As a first approximation, we 
will neglect all terms in the strain energy that are of 
the order fl£2 ( ~) 2 , where I' is a constant which is of 
the order of the material elastic constants, and where 
e is the lesser constant in the following inequalities 

I ~' ·I <.: "' - e 
(19) 

This implies that· t is representative of the wave­
length of the deformation pattern. For this sort of 
approximation it will turn out that we only need to 
keep the terms in the strain energy density functional 
that are of the order jl£2 . (Note that for some ro­
tor blade problems it may be necessary to augment 
these terms with others of the order jJ£3 so that the 
nonlinear coupling between extension and torsion is 

properly accounted for [11].) This implies that the 
strains need only be written to O(e). To obtain them, 
one substitutes Eqs. (10) and (5) into Eq. (8). The 
strain components, which are a linear function of € 

and w = ·lw1 w2 w3jT, can be arranged as a 6 x 1 
column matrix I'= li'u 2112 2113 I'22 2123 I'33jr 
given by 

I'=X<+ow (20) 

where 

€g{ ~} xg [; -;;f] (21) 

and 

0 0 0 
8 0 0 8%, 
8 0 0 

[ 0 
-x3 

12 ] ag Fx3 -t. 

0 8 0 
/;= X3 0 

Fx3 -X2 0 
0 8 8 

8%, 8%, 

0 0 8 
Fx3 

(22) 

Now the strain energy per unit length can be 
written as 

where D is the 6 x 6 matrix of three-dimensional 
material properties. This functional is to be mini­
mized with the constraints found in Eqs. (11), (14), 
and (16). For general nonhomogeneous, anisotropic 
beams, analytiCal solutions do not exist. In what fol­
lows, a finite element solution ofthis two-dimensional 
variational problem will be developed. 

Let us discretize the warping as 

w=SW (24) 

where the matrix S contains the shape functions and 
W is the nodal displacement column matrix. Substi­
tuting this into the energy functional and taking the 
variations with respect to W and c, one obtains 

where 
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A =(XTD X) 

E =((8S)T D aS) 

R =((8S)T D X) 

(26) 

are matrices obtained in terms of the weighted in­
tegrals of the material properties and the geometry 
over the cross-sectional domaln. 

From Eq. (25) follows immediately a solution for 
the warping 

(27) 

The linear system of equations given by Eq. (27) can 
be solved with the aid of the discretized form of the 
constraints, which removes the indeterminancies (a 
total of six). In an equivalent sense, these indetermi­
nancies can be thought of as six linearly dependent 
rows and columns and the isostatic constraint tech­
nique [6] is applicable. The solution is 

W = jj;-lflc (28) 

where n denotes ( ) after the six-fold indeterminacy 
has been removed. 

Therefore, for the first approximation, the total 
strain energy per unit length is 

(29) 

where 

(30) 

Note, however, that S can be reduced. This matrix 
is 6 x 6 because of the presence of shear deformation. 
There are also transverse shear related effects asso­
ciated with slenderness, which are accounted for in 
higher asymptotical approximations. Thus, for slen­
der beams one may not need to use the full 6 x 6 form 
of S. Minimization of S with respect to the trans­
verse shear measures 211"' produces a 4 x 4 stiffness 
matrix denoted by $. This minimization is equiva­
lent to undertaking the following operations on the 
stiffness matrix: (1) invert the 6 x 6 matrix; (2) ig­
nore the rows and columns associated with trans­
verse shear, leaving a 4 x 4 matrix; (3) invert this 
resulting 4 x 4 matrix yielding the "reduced" stiff­
ness matrix associated with extension, torsion, and 
two bending measures. The result is an approximate 
strain energy per unit length of the form 

Thus, the strain energy is in the same form as in 
classical theory (i.e., no shear deformation in the 
one-dimensional energy). However, the complex cou­
pling effects involving transverse shear are present in 
the energy, and the numerical values of these elastic 
constants can differ considerably from those of clas­
sical theory, in which shear deformation is set equal 
to zero at the outset. Note that this reduced form 
of the one-dimensional strain energy allows for sim­
ple modification of existing blade analyses, such as 
GRASP [12], to treat composite beams. 

Cross-Sectional Analysis Code 

A cross-sectional analysis code called VABS 
( Variational-Asymptotical Beam Sectional Analysis) 
has been developed based upon the theoretical for­
mulation presented herein. From it one gets a re­
duced, asymptotically correct stiffness matrix and 
warping displacements for a general, nonhomoge­
neous, anisotropic beam cross section. The dis­
cretization of the cross-sectional domain is made 
with the finite element technique. The element which 
has been developed is four-noded, planar, and rect­
angular, with three degrees of freedom per node. The 
algebraic operations at the element level, including 
element quadrature, were carried out via symbolic 
manipulation by using Mathematica [13]. This has 
the main advantage of allowing any kind of element 
dimensions without loss of accuracy, as can happen 
when element quadrature is performed numerically 
[14]. 

Constraints can be imposed in two equivalent 
ways: (a) by using Eqs. (11), (14), and (16); and (b) 
by eliminating rows and columns [6]. Method (b) is 
better since it requires neither extra memory allo­
cation nor additional computational time to handle 
extra matrices. The stiffnesses that result from using 
(a) and (b) are numerically the same, but the warp­
ing from (b) must be transformed in order to ensure 
that it satisfies Eqs. (11), (14), and (16). 

4. Nonlinear Beam Analvsis 

The asymptotically correct expression for there­
duced strain energy per unit length of an anisotropic 
beam is now available from Eq. (31). The expression 
for the energy is quite sim pie and the constants of the 
constitutive law coincide with those of linear theory, 
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although the theory is valid for arbitrarily large dis­
placements and rotations (which enter through non­
linear expressions for the generalized strains) as long 
as the strains remain small. 

The one-dimensional elastic law then follows as 

(32) 

Now, let us recapitulate the ingredients of the 
theory as it now stands. The beam boundary value 
problem is based on six nonlinear intrinsic equilib­
rium equations [9] which contain the six stress re­
sultants (F1, F2, Fa, M1 , M2, and Ma) and the six 
generalized strain measures (111. 2112, 211a, K 1 , K2, 
and Ka). Four of the stress resultants and four of the 
generalized strains are related through the four scalar 
equations in the elastic law in Eq. (32). The shear 
forces F2 and Fa are not available from the consti­
tutive law, but rather must be determined from the 
equilibrium equations. The shear strain measures 
can be calculated by setting 

(33) 

where U is given by Eq. (29). Recalling the kinemat­
ical development above and following the procedure 
in [9], one can find relations between the six gener­
alized strain measures (/11 , 2112, 211a, K 1, K2, and 
Ka) and the three displacement measures (u·b;) and 
three suitable orientation parameters. The resulting 
system of 18 equations has 18 unknowns. 

One can alternatively use Eq. (29) instead of 
Eq. (31); for the cases studied below, this choice 
makes a negligible difference in the results. Both 
ways possess equivalent energy. If, however, one sets 
2/lo equal to zero at the outset, one obtains classical 
theory. As will be seen below, this latter approxima­
tion yields incorrect results in some cases. 

5. Applications 

In this section, numerical results obtained for 
the stiffness constants and for the global deformation 
parameters are presented and, where possible, com­
pared with experimental data. Three cantilevered 
composite beams are considered. We first present 
results obtained for the stiffness constants of these 
beam cross sections, based on the approaches out­
lined above and making use of the programs VABS 

and NABSA. We then present nonlinear static deflec­
tion results for these beams under various loadings. 
The intent here is to validate that knowledge of the 
reduced 4 x 4 stiffness matrix is sufficient to predict 
static deflections of slender composite beams. This is 
accomplished by a comparison with previously pub­
lished experimental results and an examination of 
the influence of the stiffness calculation on the global 
deformation. 

Comparison of Results for Stiffness Constants 

We first verified that VABS gives, for the same 
elements and mesh, the same stiffnesses as NABSA. 
We compare all of our results with those from 
NABSA, which has been shown to yield asymptot­
ically correct extension, bending, torsion, and all 
possible coupling stiffnesses [2]. The values of the 
sectional stiffness constants reported herein were ob­
tained from NABSA using a sufficiently large number 
of 8-noded planar quadrilateral elements to obtain a 
converged result. 

Two of the beams were studied both experimen­
tally and theoretically by Minguet [15]. These have 
thin rectangular cross sections of width 1.182 in. The 
two layups are [45° ;oo]a, (L1) and [20° / - 70°1 -
70° /20°]20 (L2). The third beam was studied in [16]. 
It is a rectangular box beam which has layup [15°]6 
on all four sides. The exterior of this cross section 
had a width of 0.953 in. and a depth of 0.53 in., with 
a total wall thickness of 0.030 in. For all three beams, 
the material is AS4/3501 - 6 Graphite/Epoxy, the 
properties of which are given in Table 1. 

Table 1: Properties of AS4(3501-6 Graphite/Epoxy 
[17] (note that the "1" direction is along the fibers 
and "3" is normal to the laminate) 

Eu = 20.6 x 106 psi 

E22 = Eaa = 1.42 x 106 psi 

012 = 0 13 = 0.87 x 106 psi 

023 = 0.696 x 106 psi 

V12 = V1a = 0.3; V23 = 0.34 

Stiffness results (for S and S, both denoted 
generically by S) for these three beam cross sec­
tions are shown in Tables 2 - 4. Different choices for 
the laminate thicknesses produce different stiffness 
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results for the strips. Stiffnesses for the strips were 
determined from VABS and N ABSA based on the so­
called "effective thickness" as suggested in Minguet 
[15]. Specifically, the lamina thicknesses were taken 
to be 0.05792 in. for (11) and 0.07565 in. for (12). 
The resulting stiffnesses are given in Tables 2 - 3, 
while those for the box beam are given in Table 4. 
The heading NABSAR refers to the reduced form 
of the NABSA stiffness model. For the (11) layup, 
NABSA results were obtained by using 8-noded ele­
ments in a 12x20 element mesh while VABS results 
were based on 4-noded elements in a 12x50 mesh. 
For the (12) layup, a 16x 10 8-noded element mesh 
for NABSA and a 16x44 4-noded element mesh for 
V ABS were used. For the box beam case, N ABSA 
used a 216-element proportional mesh with 8 nodes 
per element. The small differences between the cor­
responding results from NABSAR and VABS are ba­
sically due to the superior convergence property of 
the N ABSA elements; the influence of these small 
differences on the static behavior is considered be­
low. 

Table 2: Stiffness results (lb., lb.-in., and lb.-in.2) for 
(11) (1 extension; 2, 3 shear; 4 torsion; 5, 6 bending) 

s NABSA NABSAR VABS 

Su 0.8115 X 106 0.7884 X 106 0.7884 X 106 

s,2 -0.4655 X 105 -
s22 0.9368 X 105 
S33 0.6882 X 104 

s44 0.1251 X 103 0.1251 X 103 0.1290 X 103 

s45 0.3455 X 102 0.3455 X 102 0.3653 X 102 

S55 0.1852 X 103 0.1852 X 103 0.1864 X 103 

S66 0.9178 X 105 0.9178 X 105 0.9179 X 105 

Table 3: Stiffness results (lb., lb.-in., and lb.-in. 2) for 
(12) (1 extension; 2, 3 shear; 4 torsion; 5, 6 bending) 

s NABSA VABS 

Su 0.7585 x 106 0.7585 x 106 0.7594 x 106 

S14 -0.8587 X 104 -0.8587 X 104 -0.8603 X J04 

s 22 o.1324 x 106 

S25 0.3636 x 104 

S33 0. 9946 x 104 

S36 0.6205 x 102 

S44 0.3675 X 103 0.3675 X 103 0.3683 X 103 

S55 0.3762 x 103 0.2763 x 103 0.2778 x 103 

S66 0.8460 x 105 0.8460 x 105 0.8491 x 105 

Table 4: Stiffness results (lb., lb.-in., and lb.-in. 2
) for 

box beam (1 extension; 2, 3 shear; 4 torsion; 5, 6 
bending) 

s NABSA 

S11 0.1438 x 107 0.1438 x 107 

S14 -0.1075 X 106 -0.1075 X 106 
S22 0.9018 X J05 

S2s 0.5204 x 105 

S33 0.3932 x 10s 
S35 0.5637 x 105 

S44 0.1678 X 105 0.1678 X J05 
S55 0.6622 x 105 0.3619 x 105 

S66 0.1726x106 0.9179x105 

The reduced 4 x4 stiffness matrix either for 
NABSAR or for VABS were obtained by the mini­
mization process described above. Note that due to 
extension-shear coupling there is a certain reduction 
(2.85%) in the extension stiffness for the (11) layup. 
On the other hand, for the (12) layup, the bendlng 
stiffness is reduced by 26.6% due to the bending .. 
shear coupling. More severe still is the case of the 
box beam problem, in which the bendlng-shear cou­
plings reduce the bending stiffnesses by about 46%! 
Changes in the predicted static behavior of a beam 
which stem from neglecting these effects (i.e., adopt .. 
ing classical beam theory) are considered below. 

Sensitivity of Global Behavior to Stiffnesses 

The different stiffness modeling approaches yield 
different stiffnesses, as shown above. Here we con­
sider the predictive capability of the different stiff­
ness models by using these different stiffness con­
stants in the same beam formulation. 

The one-dimensional beam formulation adopted 
here is the mixed, weak formulation derived in [9]. 
The equilibrium and kinematical equations therein 
are exact because all terms have been retained; that 
is, no ordering scheme has been used to create ap­
proximate equations. This formulation has been ap­
plied to the nonlinear statics [1], linear dynamics [18], 
and linearized dynamics about nonlinear equilibrium 
[2]. Here we consider nonlinear static behavior once 
more, analyzing different laminates and focusing on 
the effects of the reduced stiffness model. 

In Figs. 2 and 3, deflection results from our cal­
culations versus load are compared with experiment 
for laminated beams (11) and (12). Note that for 



both figures, the deflection components were mea­
sured 19.70 in. from the root and the load was ap­
plied at the 21.67 in. station. In addition, the beam's 
deflection due only to its own weight was subtracted 
from the results such that the deflection curves pass 
through the origin. The beams are essentially flat 
strips, both oriented in the horizontal plane, and 
loaded with vertical transverse loads. 

In Fig. 2 the displacements of the symmetric 
laminate (11) are shown as a function of the magni­
tude of the vertical load. The mass per unit length 
used in the calculations was l.07x Io-5 lb. sec. 2/in. 2 

[15]. The theoretical results from all the stiffness 
models, including the full NABSA 6 x 6, the reduced 
NABS A 4 x 4, N ABSA with transverse shear de­
formation set equal to zero (classical theory), and 
the present result from VABS, all show as one curve 
to within plotting accuracy, and agree with the ex­
perimental data very well. This is not too sur­
prising since in this case the reduction operation 
only slightly changes the axial stiffness (because of 
extension-shear coupling). Studying only these re­
sults, one could (falsely, as shown below) conclude 
that transverse shear deformation could be set equal 
to zero at the outset and not hamper the predictive 
capability of the model. 
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8 

.5 - 6 = "' 5 
~ s 4 
"" .:a 

Q 

2 

0 

Symbols 

0 0.2 

Experiment- Minguet (1989) 
NABSA (all) and V ABS 

vertical 

0.4 0.6 0.8 
Load, lb. 

Fig. 2: Displacements of symmetric laminated 
beam (11) -for root angle of oo 

In Fig. 3 the displacements of the beam with the 
antisymmetric laminate (12) are shown. The mass 
per unit length was 1.27 x 10-s lb. sec. 2/in2 [15]. 

The dashed line is the "classical" result obtained by 
setting shear deformation equal to zero in the strain 
energy based on the full 6 x 6 stiffness matrix. These 
results are clearly inferior because the model is con­
siderably stiffer than it should be. However, the the­
oretical results from the other three stiffness models, 
including the full NABSA 6 x 6, the reduced NABSA 
4 x 4, and the present result from VABS, all show as 
one curve to within plotting accuracy. This shows 
that for this case the 4 x 4 stiffness model is suffi­
cient for predicting the same behavior as the 6 x 6 
full model. 
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Fig. 3: Displacements of antisymmetric lami­
nated beam (12) - for root angle of 0° 

We now turn to the box beam. In Figs. 4 and 
5 the twist of the box beam versus axial coordinate 
is shown, due to a tip twisting moment and a tip 
axial force, respectively. The beam axis was paral­
lel to the gravity vector with the tip above the root, 
and the weight of the beam produces negligible de­
flections compared to those created by the tip loads. 
The nonlinearity of the experimental data is due to 
a very slight restrained warping effect [16] which is 
not treated in the theory. The theoretical results 
from three N ABSA stiffness models (full, reduced, 
and with shear deformation set equal to zero) again 
show as one curve to within plotting accuracy. One 
might (again falsely) conclude that all of these mod­
els are of equal predictive capability. To see that 
this is not true, Fig. 6 shows the displacements due 
to a transverse load applied at the tip. As with 
the (12) laminated strip, the presence of bending­
shear coupling in the full 6 x 6 stiffness model from 



NABSA greatly reduces the effective bending stiff­
ness, as seen in the reduced 4 x 4 model (see Table 
4). The model obtained from setting shear deforma­
tion equal to zero (the classical result) is much too 
stiff as shown in Fig. 6. 
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Fig. 4: Twist for box beam for a 1 in-lb twisting 
moment applied at the tip 
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Fig. 5: Twist for box beam for a 1 lb axial force 
applied at the tip 

As noted above, the essential difference in pre­
dictive capability between the full 6 x 6 and the re­
duced 4 x 4 stiffness models is related to the slender­
ness of the beam. If the beam is sufficiently slender 
for given sectional characteristics, then the reduced 
model is adequate. A meaningful question, then, is 

how slender a beam of given sectional stiffness char­
acteristics must be. Rehfield et al. ['l] treats a cir­
cular tube with extension-twist coupling. Results 
presented therein imply that, for slenderness ratio 
1J 2: 8 where L is the length and D is the diameter, 
the reduced model is sufficient. 
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Fig. 6: Vertical displacement for box beam for a 
1 lb vertical force applied at the tip 
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Fig. 7: Normalized tip displacements of box 
beam for distributed transverse loading versus slen­
derness ratio t 

The linear solution for the box beam with a 
uniformly distributed transverse load can be ob­
tained analytically. Consider the tip displacements 
Y = uz(L) and Z = u3 (L) from the full 6 x 6 model, 
and also corresponding displacements from the re­
duced model; note that Y(reduced)=O. In Fig. 7, Y 
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and Z(reduced), both normalized by Z, are shown 
plotted versus slenderness ratio i' where b is the 
width of the box beam. Similar to the results of [7], 
for beams of modest slenderness, say i' 2 8, the dif­
ference between the full and reduced models is quite 
small. Also, the horizontal deflection is small for 
slender beams, indicating that the reduced model is 
adequate for beams with these sectional characteris­
tics. Dynamic behavior with the reduced model has 
not yet been investigated. 

6. Concluding Remarks 

We have presented an asymptotically correct 
first approximation of composite beam stiffnesses for 
use in nonlinear deformation theory. The present de­
velopment is based on the variational-asymptotical 
method, which allows consistent determination of 
the governing equations for the complete beam prob­
lem, including the three-dimensional relations neces­
sary to predict the displacement, stress, and strain 
throughout the beam. An asymptotically correct 
strain energy function was obtained for the case of a 
generally anisotropic, prismatic, slender beam. The 
beam deformation is governed by the geometrically 
exact equations presented in [9]. 

The splitting of the problem into linear two­
dimensional and nonlinear one-dimensional analy­
ses, which is a natural outcome of applying the 
variational-asymptotical analysis, has been con­
firmed experimentally for slender composite beams. 
Recalling that NABSA, which is based on [6], pro­
duces a 6 x 6 matrix of elastic constants, we hy­
pothesized that a reduced 4 x 4 form of this matrix, 
obtained from minimizing the energy with respect 
to the transverse shear strain measures, is sufficient 
for modeling slender composite beams. The reduced 
model is of the classical form, but the stiffness con­
stants may be quite different from those of classical 
theory. The extensional, bending, and torsional con­
stants of the reduced N ABSA stiffness matrix are in 
agreement with our results. The agreement of the 
predicted nonlinear deformation with experimental 
data, based on the reduced stiffnesses, appears to 
confirm our hypothesis. Further work, however, will 
need to be done in order to investigate dynamic ef­
fects. 

The form of the one-dimensional strain energy 
obtained allows for simple modification of existing 
blade analyses, such as GRASP [12], to treat com­
posite beams. Since real beams may be initially 
twisted and curved, it is important to extend the 
work in that direction. Initial twist and curvature 

not only appear in the equilibrium and kinematical 
equations, but they also influence the section mod­
eling. Such a refined theory has now been developed 
by the first and third authors and will be presented 
in a later paper. 
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