
EFFECT OF IN-PLANE INDUCED VELOCITIES ON THE
STEADY STATE MODELLING OF A HELICOPTER USING A

TIME MARCHING WAKE

Maria Ribera Vicent

4 Everlands Close, Woking, Surrey GU22 7B, UK
+44 07884 452400, mariaribera@gmail.com

ABSTRACT

The effect of an accurate prediction of the induced velocities on the steady state flight solution of a helicopter
was investigated with a flight dynamics model coupled with a time-marching free wake. In particular, the radial
and tangential induced velocities, often neglected, were added to the model. The results were obtained for a
range of speeds and turn rates and validated against flight test data. The radial induced velocity was found to
be very small, except for the regions where the vortex filaments were very close to the rotor. The tangential
induced velocity, on the other hand, was more significant in magnitude and its effect on the angle of attack and
aerodynamic loads was described. In general, the tangential induced velocity was found to lower the angle
of attack over much of the rotor, except for on the rear retreating side where it had the opposite effect. The
trim results showed that a similar trend is obtained with both models, however including all induced velocities
produces slightly higher power and collective requirements, but similar or moderately lower values for the
helicopter orientation and cyclic controls. It was also found that the effects of the in-plane induced velocities
on turning flight were not symmetrical, with slightly different predictions on left and right turns.

1. NOMENCLATURE

CD Drag coefficient
CL Lift coefficient
rCDM

2 cosφ Elemental profile torque
rCLM

2 sinφ Elemental induced torque
Dψ Finite difference approximation to the

time derivative
Dζ Finite difference approximation to the

spatial derivative
Ibi,j Bound influence coefficient matrix
INW i,j Near wake influence coefficient matrix
M Mach number
NS Number of blade segments
p, q, r Roll, pitch and yaw rates of the helicopter,

deg/sec
qk0 , q

k
nc, q

k
ns Constant and harmonic coefficients of

the kth blade mode
r Blade radial station, ft
r Position vector of a point on the filament
t time, sec
u, v, w Velocity components on body axes, ft/sec
u Vector of controls
UT , UR, IP Tangential, radial and perpendicular blade

sectional velocities
V Helicopter velocity along the trajectory
V(r) Total velocity at a point r on the filament

Vx, Vy, Vz Blade velocities
V∞ Stream velocity at the control points
X Vector of trim unknowns
y Vector of states
ẏ Vector of state derivatives
αF , βF Fuselage angle of attack and sideslip

angle, deg
β(ψ) Flap angle; flap distribution, deg
Γ Circulation
∆ψ Wake azimuth resolution, deg
∆ζ Vortex filament discretization

resolution, deg
ζ Age of the vortex filament, deg
θF Fuselage pitch attitude, deg
θ Geometric angle of attack, deg
λ0t Tail rotor inflow coefficient
λx, λy, λz Induced velocity coefficients
φF Bank angle, deg
φFW Induced angle of attack due to the far

wake, deg
ψ Blade azimuth angle, deg
Ω Rotor speed, rad/sec
Abbreviations
ODE Ordinary Differential Equation
PC2B Predictor-Corrector 2nd-order Backward

difference
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2. INTRODUCTION

As the requirements for faster, greener, quieter and
more efficient helicopters increase, so does the need
for more sophisticated models that provide accurate
predictions in a variety of practical problems of heli-
copter aeromechanics. It is important to make sure
that those models can be relied on to capture a wide
range of flight conditions, such as the response to pi-
lot inputs in moderate and large amplitude unsteady
manoeuvres, turning and descending flight.

There are nowadays a number of rotorcraft mod-
els to choose from, each with their own strengths and
weaknesses. Building a comprehensive simulation
model involves the coupling of many sub-systems,
such as the aeroelastic rotor, the rotor wake, the
fuselage, etc, which are not independent of each
other and interact between themselves, adding an-
other level of complexity to the behaviour of the he-
licopter model. Many rely on dynamic inflow mod-
els [1], gaining computational speed and simplicity, but
losing the full understanding of the wake dynamics.
Other models have more advance rotor/body aerody-
namics [2], but with simpler structural blade models.
However, there is a significant effort being made to-
wards comprehensive models that combine the state
of the art in aerodynamics and structural dynamics.

The study on which the present work is based [3,4,5]

describes the formulation and validation of such a
simulation model, in which a finite element based
rotor model and large amplitude fuselage dynamic
equations are coupled with a free wake model ca-
pable of capturing correctly the wake geometry dis-
tortions. This model can describe steady state flight
conditions, both in straight, descending and turning
flight, and the free flight response to pilot inputs, with
no restriction on the amplitude of the inputs or of the
helicopter response.

One of the general assumptions made in the stud-
ies that form the base of this work [3,6] is that, while the
wake model provides all three spatial components of
the induced velocities, the x and y components, ra-
dial outward and in the lead direction respectively, are
set to zero, and only the z component is used for the
calculation of the aerodynamic loads. It was assumed
that the x and y components are negligible in compar-
ison with the z component. This assumption is quite
common in helicopter models, even in those of some
complexity.

There has been some effort into looking at the tan-
gential component in the modelling of horizontal axis
wind turbines, as it is of higher significance for wind
turbines than it is for helicopter rotors. Even some
work has been done to look at the effect of the ra-
dial component, which even in wind turbine models is
usually neglected [7]. But little reference to the induced

velocities in the x and y direction is made in rotorcraft
models.

Some of the results in the work that form the base
for this study [3] gave an indication that perhaps, in
some flight conditions, these in-plane induced veloc-
ities might not be as small as previously considered,
and perhaps not negligible, as previously supposed.
In particular, some descents [4], in which the wake vor-
tex filaments get closer to the rotor, and even cross
the rotor plane, and some manoeuvres, such as the
descent into the vortex ring state [5], in which the bun-
dled vortex filaments approach the rotor until a vortex
ring is formed.

This paper removes this assumption. The asym-
metry of the in-plane induced velocities is expected
to have some effect on the aerodynamic loads and
therefore on the overall rotor and helicopter attitude
and rates.

The specific objectives of this paper are

1. To describe the coupling of the free wake model
with the rotor and fuselage models for trim calcu-
lations;

2. To present the results of trim at various flight con-
ditions (level, turning flight) with the inclusion of
the x and y induced velocity components, and
analyse their effect on the aerodynamic loads
and helicopter behaviour;

3. To provide some validation with flight test data
when such data is available.

3. MATHEMATICAL MODEL

3.1. Rotor and fuselage dynamics

The flight dynamics model used in the present
study [3,4,5] is based on a system of coupled nonlin-
ear rotor-fuselage differential equations in first-order,
state-space form. It models the rigid body dynamics
of the helicopter with the non-linear Euler equations.
The aerodynamic characteristics of the fuselage and
empennage are included in the form of look-up ta-
bles. The dynamics of the rotor blades are modelled
with coupled flap, lag and torsion, a finite element dis-
cretisation and a modal coordinate transformation to
reduce the number of degrees of freedom. There is
no limitation on the magnitudes of the hub motions.
In particular, the effects of large rigid body motions
on the structural, inertia, and aerodynamic loads act-
ing on the flexible blades are rigorously taken into ac-
count.

The resultant of combining the rotor blade equa-
tions and the fuselage equations is a set of ODEs,
which can be formulated explicitly, in the form

ẏ = f(y,u; t)(1)



or implicitly, in the form

f(ẏ,y,u; t) = 0(2)

where y is the vector of states, ẏ is the vector of state
derivatives and u is the vector of controls. The vector
of states contains the three body velocities and rates,
the three Euler angles and the rotor states. The tail
rotor inflow is modelled with one-state dynamic inflow.

3.2. Wake model

Free wake methods model the rotor flow field us-
ing vortex filaments that are released at the tip of
the blade. A schematic of the wake discretisation
is shown in Figure 17. The distortions of the wake
geometry due to manoeuvres are taken into account
without a priori assumptions on the geometry.

The behaviour of the vortex filaments is described
by a convection equation of the form

∂r (ψ, ζ)

∂ψ
+
∂r (ψ, ζ)

∂ζ
=

1

Ω
V (r (ψ, ζ))(3)

where r(ψ, ζ) is the position of a point on the vortex fil-
ament and V(r(ψ, ζ)) is the local velocity at that given
point. The wake geometry is discretised in two do-
mains, ψ and ζ. The first represents the time com-
ponent and is obtained by dividing the rotor azimuth
domain into a number of angular steps of size ∆ψ.
The second represents the age of the vortex filament,
which is discretised into a number of straight line vor-
tex segments of size ∆ζ. The right hand side of
Eq. (3) is formed of the addition of the free stream
velocity, the velocities induced by all the other vortex
filaments and the blades, plus other external veloci-
ties such as those due to manoeuvring. The induced
velocity is the most complicated and expensive term
to compute, and Biot-Savart law is used to calculate
the induced contribution of each vortex segment at
any point in the wake.

The discretisation of the left hand side of Eq. (3)
and its solution depend upon the type of free wake
model used. In this study, the free wake model used
is the Bhagwat and Leishman free wake [8,9], which is
a time-accurate free wake model with a five-point cen-
tral difference scheme to describe the spatial deriva-
tive, Dζ , given by

Dζ ≈
∂r(ψ + ∆ψ/2, ζ + ∆ζ/2)

∂ψ
=

[r(ψ + ∆ψ, ζ + ∆ζ) − r(ψ, ζ + ∆ζ)]

2∆ψ
+

+ [r(ψ + ∆ψ, ζ) − r(ψ, ζ)]

2∆ψ
(4)

and a predictor-corrector with second order backward
(PC2B) scheme for the time derivative, Dψ:

Dψ ≈ ∂r(ψ + ∆ψ/2, ζ)

∂ψ
=

3r(ψ + ∆ψ, ζ) − r(ψ, ζ) − 3r(ψ − ∆ψ, ζ)

4∆ψ

−r(ψ − 2∆ψ, ζ)

4∆ψ
(5)

This method is not restricted by the flight condition.
Since time marching methods do not have to enforce
any boundary condition, they can be used for tran-
sient conditions in which periodicity can not be en-
forced, and therefore relaxation methods can not be
used rigorously.

The bound circulation is obtained using a
Weissinger-L lifting surface model, which discretises
the wake into NS segments. A control point is located
at 3/4 of the chord of each segment, while the bound
circulation is at the quarter-chord location, and as-
sumed constant along the segment. The difference in
circulation between consecutive segments is trailed
behind the blade at segment endpoints, with a vor-
tex strength equal to the difference between the two
segments bound vortex strengths. The near wake is
comprised of these trailed vortices. The tip vortex that
constitutes the free wake extends beyond the near
wake with a strength equal to the maximum bound
circulation along the blade. The governing equation
for the Weissinger-L method is written as

NS∑
j=1

[
Ibi,j + INW i,j

]
Γj = V∞i (θi − φFW i)(6)

with i going from 1 to NS . Ibi,j and INW i,j
are

the bound and near wake influence coefficient matri-
ces, respectively. The stream velocities at the con-
trol point, V∞, are calculated by the flight dynamics
model. They include the velocity due to the transla-
tion and rotation of the helicopter, the velocity due to
the blade motion and flexibility and the induced veloc-
ities.

3.3.The trim solution

A coordinated steady helical turn is determined by
the velocity V , the flight path angle γ and the rate of
turn ψ̇. Straight and level flight is a particular case in
which both the flight path angle and the rate of turn
are zero. Similarly, ψ̇ is nonzero for turns and γ is
nonzero for climbing and descending flight.

The trim equations are a system of nonlinear al-
gebraic equations, which include: 3 force equilibrium
equations, 3 moment equilibrium equations, 3 kine-
matic equations relating the rate of turn to the body
angular velocities, a turn coordination equation, an
expression for the flight path angle, any inflow equa-
tions if inflow described with a state-space model



such as dynamic inflow (none in our case, as inflow is
provided by free wake, solved separately), an equa-
tion for the tail rotor inflow, and the rotor equations
(number depends on how many modes are retained
in modal coordinate transformation and the number of
harmonics used for each mode).

The trim unknowns are:

X = [θ0 θ1c θ1s θ0t αF βF θF φF λt . . .

. . . q10 q
1
1c q

1
1s q

1
2c q

1
2s . . . q

1
Nhc

q1Nhs
. . .

. . . qNm
0 qNm

1c qNm
1s qNm

2c qNm
2s . . . qNm

Nhc
qNm

Nhs
]>(7)

where θ0, θ1c, θ1s and θ0t are the collective, cyclic
and tail pitch, respectively, αF , βF , θF and φF are an-
gle of attack, sideslip, pitch angle and bank angle of
the fuselage, λt is the dynamic inflow coefficient for
the tail rotor, and the qkx terms are the constant and
harmonic coefficients of the kth blade mode.

The trim solution to the system of rotor-fuselage
equations is obtained with a nonlinear algebraic equa-
tion solver, using a modified Powell hybrid method [10].
It builds a Jacobian matrix by a forward difference ap-
proach, and then finds a better approximation to the
solution by iterating the trim vector.

3.4.Coupling of free wake and rotor-fuselage mod-
els

The time marching free wake model cannot be
solved alongside the rest of the trim equations. Not
only it is not expressed in state-space form, but also
it is subject to numerical instabilities and must use
its own solution method. For those reasons, the free
wake model is solved separately at each step of the
trim iteration to provide the main rotor induced veloc-
ities. For each guess of the trim solution, the veloc-
ities seen by the blade due to the helicopter trans-
lation and rotation, blade motion and blade flexibility,
Vx(ψ, r), Vy(ψ, r), Vz(ψ, r), are calculated, as well as
the equivalent flapping angles, β(ψ). Together with
the body rates and velocities, u, v, w, p, q, they are
passed to the free wake model, which adds the in-
duced velocities to the blade velocities in order to cal-
culate the circulation distribution with a Weissinger-L
method. With this circulation, the free wake iteration
starts, determines the geometry and the correspond-
ing induced velocities, and then updates the circu-
lation distribution for these. The process is then re-
peated until the inflow converges. This method allows
for much faster convergence than that in the previous
approach [6], with cost savings of more than an order
of magnitude.

The free wake model returns the inflow distribution
for that particular flight condition, λx(ψ, r), λy(ψ, r)
and λz(ψ, r).

The velocities Vx(ψ, r), Vy(ψ, r) and Vz(ψ, r) are the
components of the total velocity at the blade. When
the inflow is converged for each step of the nonlinear
equation solver and returned to the flight dynamics
model, the total velocity of the air at each point in the
blade can be calculated. In previous studies with this
model, only the vertical component of the induced ve-
locity, in the z direction, was considered, and the λx
and λy were set to zero. But the point of this study is
to include both components in the rotor plane and ob-
serve their effect on the overall aerodynamics. There-
fore, the velocity at any given point with the induced
velocities becomes:

VT = (Vx + λx)êx + (Vy + λy)êy +

(Vz + λz)êz(8)

The above velocities can also be expressed in the
blade sectional aerodynamics coordinate system,

VA = UTeT + UPeP + UReR(9)

where eT points in the lag direction, eR is tangent to
the elastic axis and points outwards and eP is positive
upwards.

The sectional aerodynamic angle of attack, α,can
be expressed as

α = θ − φ = θ − UP
UT

(10)

An increase in λz would decrease the perpendicu-
lar component of the airflow at the section, UP , and
therefore increase the angle of attack. And an in-
crease in λy would decrease the angle of attack.

4. RESULTS

The results shown in this study have been obtained
for a helicopter similar to the UH-60, at 16,000 lbs
and an altitude of 5250 ft. The flexible blade is mod-
elled with 4 finite elements, and 5 blade modes are re-
tained in the modal coordinate transformation (2 flap,
2 lag and 1 torsion). The free wake has been mod-
elled with 4 free turns downstream of the rotor. A
10o discretisation is used for both the time and space
derivatives. Trim conditions has been obtained be-
tween the speeds of 1k (illustrative of hover) and 140
its in level flight, and for rates of turn between ψ̇ = −20
and ψ̇ = 20 deg/sec at a speed of 60 kts.

4.1. Straight and level flight

Figure 1 shows the x, y and z components of the
induced velocities at speeds of 1 kt, 60 kts and 140
kts. In near hover conditions, all velocities are nearly
axisymmetric, with a ring-like appearance. The radial
and tangential components have nearly zero values
for the inner part of the rotor but concentric rings of



higher positive and negative values near the tips, due
to the proximity of the vortex filament. The perpendic-
ular component, the traditional inflow, is high all over
the rotor, with a slight bias to the front, as all the wake
vortices are concentrated below the rotor and exert-
ing their influence quasi axi-symmetrically. As the
speed increases, the wake begins to skew, and the
vortices interact between themselves as their proxim-
ity increases. At 60 kts, the radial velocity is close to
zero over most of the rotor, but some arched bands
of higher values in the front of the rotor reveal the in-
fluence of the front wake filaments that are starting
to be washed backwards at this speed. The y com-
ponent shows some of these axisymmetric bands in
the front half, but in lesser magnitude. The interesting
behaviour occurs in the back half of the rotor. On the
advancing side, there is a large region of negative λy,
while on the fourth quarter a large area of positive val-
ues of λy can be seen. The perpendicular component
λz shows the area of higher influence has shifted to
the rear half of the rotor, as the wake is trailed behind,
and the front half has nearly zero values at this speed.
At 140 kts, the wake is pushed farther back and the
influence of the wake filaments on λx is reduced. At
this speed, λx is nearly zero over most of the rotor. λy
is slightly lower in the rear retreating side, but on the
advancing side still presents an area of large negative
values. λz has a region of upwash in the front of the
rotor, and the values in the rear half of the rotor con-
tinue to decrease as the wake filaments are stretched
very far behind.

From Equation 10, it follows that an increase in
the perpendicular induced velocity will produce a de-
crease in the angle of attack, while an increase in the
tangential component will produce a higher angle of
attack. Figure 2 depicts the angle of attack at speeds
of 1 kt, 60 kts and 140 kts, both when only the λz is in-
cluded as when λx and λy are considered as well. In
hover, the differences are very small, as both in-plane
induced velocities are nearly zero, and the angle of at-
tack is almost uniform with a small variation between
3 and 5 degrees. At 60 kts, the lower perpendicular
induced velocities at the front of the rotor translate into
higher angle of attack in that region, while the areas in
the retreating and rear sides of the rotor, where λz is
higher, show values of lower α. However, the relation-
ship is not direct, as now we can account for the effect
of λy. On the first and third quadrants of the rotor, the
low negative values of the tangential induced velocity
reduce the angle of attack, which is lower there in the
case when all the induced velocities are included than
when not, while in the fourth quadrant the opposite is
true, but in lesser magnitude. At high speeds, a sim-
ilar effect is observed, a large region of low values of
λy on the advancing side reduce the overall angle of
attack, while at the retreating side it is nearly zero and
has very little effect on α.

The lift and drag coefficients, CL and CD, are a
function of angle of attack and Mach number, and
since the Mach number is also a function of the tan-
gential velocity, both coefficients will be affected by
the inclusion of λy.This relationship is not straightfor-
ward to deduce, but the following are observations
on the comparison between the cases when the in-
plane induced velocities are included and when they
are assumed zero. For brevity, we will consider only
the case when 60 kts. Figure 3 shows the lift and
drag coefficients, CL and CD, as well as the elemen-
tal induced torque, rCLM2 sinφ, and elemental pro-
file torque, rCDM2 cosφ, with and without in-plane in-
duced velocities, at 60 kts. The lift coefficient, CL,
is slightly higher when λx = λy = 0, as is the angle
of attack, specially on the retreating side. The ele-
mental induced torque, rCLM2 sinφ, shows a region
of slightly negative values in the front of the rotor, al-
though mostly the contribution to power occurs in the
rear half of the rotor. Including the in-plane induced
velocities seems to produce higher induced torque
at this speed. The drag coefficient CD shows large
areas where it takes a value around 0.008, however
there are three regions where the drag reaches con-
siderably larger values: first, near the tip on the ad-
vancing side, where the Mach number is highest, then
the region in the outer third quadrant, where the vor-
tex filaments have a strong effect on all three induced
velocity components, and therefore on the angle of at-
tack, and at the rear of the rotor plane. Including the
tangential induced velocity seems to lower the drag,
particularly in the third quadrant. The elemental pro-
file torque, rCDM2 cosφ, is low over most of the rotor,
but increases radially towards the tip, and is maximum
at the tip on the advancing side. While very similar, it
appears moderately higher when λx and λy are com-
puted into the total velocities.

So far, little has been said of the radial induced ve-
locities, as it has not produced a direct effect on the
variables described. However, the overall speed VT

at each blade station, which is the sum of all three
velocities, will be affected by any variations in the ra-
dial induced velocity. The total velocity is needed for
the computation of the total forces and moments, and
therefore thrust and power. From Figure 1, we can
gather that this effect will indeed be very small, as λx
is very low, except for a few bands when the vortex
filaments are close. So in general, the effect of λx is
insignificant, unless one needs to have a very accu-
rate prediction of the velocity and aerodynamic loads
locally in the regions of close proximity with the vortex
filaments.

The overall power required as a function of speed
is shown in Figure 4. Including the in-plane induced
velocities, the model predicts slightly higher power re-
quirement at high speeds, although in low to transition



speeds the predicted power is lower. From the anal-
ysis of the elemental induced torque and elemental
profile torque at 60 kts from Figure 3, we can see that
the induced torque is slightly higher, while the profile
torque is starting to become more significant as the
tip speeds on the advancing side produce high drag.

Figure 5 shows the helicopter pitch attitude as a
function of speed, both with the in-plane velocities
considered and forced to zero, along with the avail-
able flight test data. These results show that at
lower speed both models have a very similar be-
haviour and both overestimate the flight test data.
This over prediction can be attributed to the lack of
a rotor/fuselage aerodynamic interaction model. At
higher speeds, both models capture the trend cor-
rectly, with the model including all induced veloci-
ties predicting slightly lower pitch attitude at higher
speeds.

Figure 6 shows the bank angle as a function of
speed, again comparing the effect of λx and λy as
well as flight test data. In this case, both models un-
derestimate the bank angle at high speeds in a similar
manner. At low speed, however, the trend of flight test
data is captured accurately. The effect of including all
induced velocities is to trim at slightly lower bank an-
gles.

Figure 7 shows the main rotor collective stick as a
function of speed, which behaves in a similar manner
as the power required.

The cyclic controls, longitudinal and lateral stick,
are shown in figures 8 and 9. The longitudinal stick is
underestimated at low speed, possibly due to the lack
of rotor downwash-fuselage interaction in the model,
but correctly captured at higher speeds. The model
with in-plane induced velocities predicts slightly lower
values of the longitudinal stick position. The lateral
stick is captured by both models with good agree-
ment, with slightly higher values attained when λx and
λy are not zero.

4.2. Turning flight

The induced velocities for turning flight at rates of
turn of -20 deg/sec and 20 deg/sec are shown in Fig-
ure 10. As in straight and level flight, the radial in-
duced velocity shows values close to zero for great
parts of the rotor, except in those areas where the
vortex filaments are close, where the bands of high
λx closely follow the shape of the vortices below. Both
left and right turn are very similar. The tangential in-
duced velocity also looks similar to the straight and
level values at the same speed, in Figure 1, with low
negative values in the first and third quadrant and high
positive values in the fourth. However, as the heli-
copter turns the wake bends into itself and the prox-
imity of the vortex filaments increases. The magni-
tude of their influence at the rotor level increases, pro-

ducing even more negative values on the advancing
side and higher values on the retreating side. This
seems to be slightly more pronounced in the left turn,
at ψ̇ = −20deg/sec, than in the equivalent right turn.
The perpendicular induced velocity is nearly zero in
the front half of the rotor, with a slight upwash flow, but
higher at the rear of the rotor than in level flight, as the
wake is closer and its influence greater. The right turn
seems to show values of λz moderately larger than
the left turn.

Figure 11 shows the angle of attack at ψ̇ = −20
deg/sec and ψ̇ = 20 deg/sec, both with the perpen-
dicular induced velocity only and with all induced ve-
locities considered. The lower values of λy on the
advancing and front sides of the rotor decrease the
magnitude of the angle of attack, and on the rear re-
treating side λy has a positive contribution to α. In
comparison, the angle of attack on the right turn ap-
pears moderately larger than on the left turn.

The power required in turning flight at 60 kts for a
range of bank angles, predicted by both models, is
shown in Figure 12. Both models capture the trend
of flight test data results correctly. Including all in-
duced velocities produces slightly higher power re-
quirements throughout the range of roll angles. The
main rotor collective, shown in Figure 15, shows a
similar behaviour.

Figure 13 shows the pitch attitude as a function of
roll angle at 60 kts. While both models over predict the
flight test data values, the trend is better captured on
the left turns. The inclusion of all the induced veloc-
ities in the model helps improve the prediction of the
left turns, while on the right turns it produces higher
results than without λx and λy.

The longitudinal control as a function of roll angle
at 60 kts is shown in Figure 14, does not capture the
trend at all, in fact moving in the opposite direction of
the flight test data.

Finally, the main rotor lateral stick displacement is
shown in Figure 16, for a range of roll angles at 60
kts. Both models capture the experimental results ac-
curately, and the prediction is similar for both left and
right turns. The results with nonzero λx and λy are
slightly higher, mostly at the higher roll angles, both in
left and right turns.

6. CONCLUSIONS AND FUTURE WORK

This paper set out to study the effect of including
all three components of the induced velocities, radial,
tangential and perpendicular, on the steady state so-
lution of a helicopter, using a comprehensive flight
mechanics model with refined aerodynamics provided
by the Bhagwat-Leishman free wake model. The pur-
pose of the exercise is, in part, to explain the relation-
ship between the wake dynamics and the velocities it



induces at the rotor plane with the behaviour of the
helicopter. The other purpose is to lay the basis for
an analysis of manoeuvring flight.

The main conclusions obtained from the present
study are:

1. The radial induced velocity is in general very
small, although locally it can reach high values
where the vortices are in close proximity. Its ef-
fects are difficult to trace but important whenever
an accurate knowledge of the elemental veloci-
ties is needed.

2. The tangential induced velocity has a moderate
but visible effect on the angle of attack, as well as
on the Mach number, and its effect can clearly be
traced on the aerodynamic coefficients and over-
all rotor loads.

3. The effect of the in-plane induced velocities is dif-
ferent on left and right turns.

4. The prediction of power requirements, rotor con-
trols and helicopter orientation are slightly differ-
ent but similar enough that the assumption of
λx = λy = 0 can be made safely for most pur-
poses. However, for studies in which an accurate
knowledge of the rotor loads and localised veloc-
ities is needed, it is recommended to include the
in-plane induced velocities, particularly λy.

Though it has not been done due to size limitations,
it is recommended for the future to explore the effect
of the in-plane induced velocities on the blade dynam-
ics, in particular the effect of the drag obtained with
tangential induced velocities on the lag motion.

The logical continuation of this project consists on
analysing the effects of all the induced velocities in
descending and manoeuvring flight. The increased
proximity of the vortex filaments, not just in steady
descents but also in other transient manoeuvres that
bring the wake into closer interaction with the rotor, is
expected to have some more significant contribution
than in steady level and turning flight.
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Figure 1: x, y and z components of the induced velocities at 1 kt, 60 kts and 140 kts.
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Figure 2: Angle of attack α at 1 kt, 60 kts and 140 kts, without and with the x and y induced velocities.
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Figure 3: Lift and Drag coefficients, CL and CD, and elemental induced and profile torque, rCLM2 sinφ and
rCDM

2 cosφ, at 1 kt, 60 kts and 140 kts, without and with the x and y induced velocities.
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Figure 4: Power as a function of speed, in HP.
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Figure 5: Pitch attitude as a function of speed, in de-
grees.
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Figure 6: Bank angle as a function of speed, in de-
grees.
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Figure 7: Collective as a function of speed, in %.
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Figure 8: Longitudinal stick displacement as a func-
tion of speed, in%.
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Figure 9: Lateral stick displacement as a function of
speed, in %.
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Figure 10: x, y and z components of the induced velocities at 60 kts and turn rates of -20 deg/sec and 20
deg/sec.
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Figure 11: Angle of attack α at 60 kts, for turn rates of 20 deg/sec and 20 deg/sec without (left) and with (right)
the x and y induced velocities.
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Figure 12: Power as a function of roll angle, φ, in HP.
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Figure 13: Pitch attitude as a function of roll angle, φ,
in degrees.
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Figure 14: Longitudinal stick displacement as a func-
tion of roll angle, φ, in %.
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Figure 15: Main rotor collective as a function of roll
angle, φ, in %.
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Figure 16: Lateral stick displacement as a function of
roll angle, φ, in %.
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