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Abatraat oo

. . The :direaad’ Linpunav mathaed wans appliad far haliceptar reotar blada
motion atahility pnalyein. Tha aloerithm and aamputer ‘cade ara basad on the
" thanram which givas nurflcient candilians for houndadnass of tha.. salution
for nonlinaar ordinary Biffarantial aguation 'ayutam with pnriodia right
hand nidar. Tha aamputer program daveloped allowe teo datarmine the ragions
of inatability far haliaoptnr havnr and ferward, flight : Tha. atability: . of
rigid, articulated rator blada wan cansidaraed. Tha ohtainnd rarults ahow
gaod qualitntiva agraqmant uith rhanomana ochrarved in halicoptar bhlade
motlon : - : : ’

1. Introductlon'a'

‘Problems wh1ch are concerned 1n the hellcopter theory are usually -of
interdisciplinary type This fact is particularly ev1dent in . rotor
aercelasticity where aerodynamlc, dynam1c and tszness Ioadings--act
s1mu1taneous1y [y If all these loadlngs were modeled Mthe -exact
manner", the problem would be dlfflcult to be solved, even numerlcally.
This is the main reason for which 51mp11fy1ng assumptlons are necessary

The most general physical models lead to mathematlcal descrlptlon An
term of partial differential equations which are usually dlfflcult to
solve. Therefore the problem has to be simplified. ~-Some ~ way ‘of
discretization and the proper aerodynamic -modeling allow' to transform
mathemat1ca1 model to ordlnary differential equatlons which are ea51er for
analysis. : ' e

 Usually in rotary wing problems, right hand ‘sides of equations of
motion are perlodlc with respect to time or azimuth .angle. due:. to the
periodic excitation and cyclic blade pltch

'For these reasons rotor blade aeroelastlc problems can be descrlbed
by the system of equations of motion in the form: -

= h(w,z), S I o 'f_ :_ : .. ; . 3,s31.{i)is

where: - “h(w+T,2) = h(w,z),
z — generalized cocrdinates,

¢ - azimuth angle,
_T - period of excitation,
¢ 2Ty ~differentiation with reSpect to aZImuth

The solution of these equations usually can not be obtazned in the' closed
form and some klnd of numerical work is.needed. S

There are two kinds of analysis of the equations of phys1ca1 system
motion. B

First one is to solve these equations by one of numerical ‘codes,
supplied by software companies. This analysis leads to appreximate solution
of equations, but only in the finite period of time and for limited number
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of 1n1t1a1 cond1t1ons

Second one is qualitat1ve analyszs of solution, aimed to obtain
strictly defined information about solution properties without solving the
equations [2]. The méthdds'of this kind, commonly used in rotor analysis,
are based on Floquet theorem. They require a linearization of system (1).

There are soime disadvantages created by ' linearization. The steady
motion for which 11near1zat10n is done, should be known. Since equations of
motion are linearized, some of their propertles can dlsappear (for instance
“limited cycles) 'The linearized equat1ons are - valid - orily. in- the  near
nelghborhood of the po:nt where 11nearzzatlon has been done._ The :"large
dlsplacements and large ve1001t1es are excluded from ana1y51s.- e

These facts suggest looking for new methods of the sysfem (1)
analysis allowing to cancel some of the mentioned restrlctlons -

The method presented in this work 1is aimed to ena1y51s :0f the
boundedness of system @) solutlon wlthout 11near12at10n This property -of
solution is called "technical steb111+y" or "stablllty in Lagrangian
sense". For ‘stability con51deratlons 'any steady motlon, periodic - with
respect ‘to azimuth "¢ can be chosen. The ana1y31s and the : numerical
algorzthm is based on the dlrect L1apunov method. '

The method was successfully applled to hellcopter . rotor blade
stability'anﬁIYSiS}:"
2. Theoretlcal backgg_pnd.

e _fﬁ The solution of the -system (1),1 stability of whlch is _fo_ oe'
1nvest1gated, should be defined before starting the analysis. ‘This soiotion:
we call "steady state motion", -

Let E(w) be the. arbltrary chosen steady state solutlon perlodlc to W

CEW) = EWH T L : e (2
The blade motion generailzed coordlnates z(w) can be wrltten in the form:

Caw ex@ +E@, oy

where x(w) are the coordinates of disturbed motion.
By putting (3) into (1), the system (1) can be transformed to the form:

- where right hand sides of (4) due to (2), ere perlodlc w1th respect to w:

Thls transformat1on allows to investigate the Stablllty of 'nullzgsoiufion.

s 0, (6)
instead of investigating Stablllty Of E(w). o S

~For ordlnary dlfferentlal equatlons there are several deflnltlons of
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solution stabilily {3}. -They are. related to different - properties" of:
solution. The property ol solution, we investigate in this work, is -called
"techn1ra1 gtab111ty"'or'"stabllaty in Iagranglan sense

Def. Thp solutlon of the system .is stable in Lagranglan sense, if:
A I 1HE N )+ Wxy Hea, o ‘-_ - (7)'
where 1 A - real, p051t1ve numbers, and 1 < A ' o

It means (Flg 1), tha+ for stable Jystem if the solutlon starts from
the approprzate nelghborhood of initial conditions near the null solution
x=0, it will stay close to X = O "forever"

. The method uﬂd numerlcal algorlthm for analy51s 'Stability. of this,
kind is based on the followlng theorem {4]
Theorem If the system (4)

(a) bas the right hand 51des per10d1c in respect +to w, SN
i.e. there:exists such T > 0 that: f£f(u,x) = FWT,x),
(b) has the unique and continuous solution in the domaln

Q=1 (w,x) we [0, ©), Hxii<n?y, H = constant > 0,

and there exlsts such Llapunov function W(w,x} that in: the Q domain:'it'
fulfills. conditions; o : : ' . o
{c) W(w,x) is cont1nuous and dlfferent1ab1e with respect to ¢ and x,
(d) Wiwp,x) > 0 for (w,%) € Q, y
(e) W(m.x) is perladlc w1th respect to w,;. _ _ :
(f) Fist” “‘derivatives of W(w,x) w1th respect to w and X . .are.

also periodic functions of W, _
{(g) if there existsg A (w ) such that’ 0 < A (w ) A<H and

sup W(w,x) iaf Wop,x), v e[O T}, .
skt =2 oW, ) 'iku = '

and in the domain: o

Q={mu:we [0,T] A0 <CHxII<CAY, 0<ACH,
(h) the derivative-wlof*LiapunOV“fuﬁqﬁion W calculated éléﬁg::thei syéﬁem

of equations (5) is hot positive, if.e.: R
; aw

W(w,x) = ~— + grad [W(w,x)]=£(w,x) = 0,
then the solution x(p) of the system (1) which fulfills condition:

il x(w ) H < 2 (w )
is stable i.er :

- x(w) H < A for each w > w, N .
This theorem can be illustrated as it is shown in Fig.2 in the state space.

The methods of stability investigations based on properties of

46-3



scalar function W(w,x) are called "direct (or second) Liapunov methods“ {51.

“The assumptzons (a) and {b) of ‘the theorem concern the system of
equations and are easily satisfied in practical applications. ‘The condition
(b) states, that there exists the solutiocn of the system for all v > mo and
Il x {] < H. The positive number H is the maximum value of the solution norm
which can be taken into account. '

The cond1t1ons (c) - (g) concern the Lzapunov functlon W(w,x). These
are the main dlfflcultles in the appllcatlon of thls theorem ond Llapunov
direct method. '

There are no general rules for constructing L1apunov functlons It
has to be assumed a priori and then its properties are 1nvest1gated The
theory gives usually only sufficient conditions for solutlon stablllty

Because of the problem perlodlcity, the condltlons (g) and (h)
may be checked only in one: period of w. Thus the computatlons are llmlted
only to one period of azimuth and the obtalned results are valld for m > w .

3. Application of the’ theory

The numerical“algorithmﬁaﬁd:dombufer'oodeiweréIdevelopéd to analyze
the stability of the system-.(4) based on the above given theorem. For each '
azimuth angle w. the magnltude l (w ) of stable solutzon 1n1t1&1 condltlons:'
domain is calcuiated. : : = Lo e '

Before starting computations the conditions (a) 'ohd (b) ofi.the
system solutions existence and cont1nu1ty should be checked : In practical
problems these conditions are usually fulfllled ' -

The main steps ‘of this algorlthm are:

1. Assume the maximum value A of norm |} x |, It means that the upper bound
for displacements and ve1001t1es should . be:: chosen. For . greater
flexibility of computations the norm of x is defined in the form:

i:x|1=Jz(x./a.)2,'

_1 .e. the components of vector x are divided by assumed numbers ai.
2, Chose the function W(w,x) which fulfills the condltlons (c) (g)-
3. Check the condition (h):

W(m,x) £ 0 for w € [0,T] and Hxlf=

If this condition is fulfilled, the motion can be stable; go to the step

(6) of computation. _ _ L
If this condition is not fulfilled: compute the value'Al such that the
condition (h) is satisfied. If this value is not acceptable 1look for
another Liapunov function W, otherwise put A = Ay and go to next step of
computations,

4, Compute the value:

o = inf [W(p,x)] for w € [0,T] “and for Hx Il =
5. For the set of azimuth values wj (i=1, ..N):
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find the greatest value of 1, ; which satisfies the condition:
sup W(ws,x) - < inf W wj,x) =a, . wel0,T].
IEH = X (w o) !h“

._If k 03> 0 the motzon is uustable for w L
6. For the set of azimuth values s (j=1,..N) check 1f'

- w(w ,x) < 0 for A .< Itx Il = A,
If it is true, the motion is stable.

4. Application of the method to blade stablllty ana1y31s

The method was applled to the ana1y31s of the motlon of hellcopter'
rotor blade in hover and in forward flight,

The main assumptions for physical model are (Fig.3):

1. A motion of isolated rotor blade is con51dered for helzcopter insteady
forward or vertical flight. oy : e

2., The rotor shaft angular veloolty is constant
3. The blade is stiff, fully articulated.

4, There are three hinges in the hub with perpendlcular axis. These hinges
are separated one from another by stiff elements.. The -hinges sequence:
is: flap, lag and pitch. In pite hlnge the blade collective and cyelic
control is applied. Pitch - flap coupling is taken into account (Flg N

5. The equivalent blade stiffness, control stiffness and structural as well"
as artificial damping can be applied in each hinge.. :

6. The rigid blade is pretwisted, with different section azrf01ls and chor& -
length along 1ts span.

7. The aerodynamlc loading calculated w1th strlp theory usin
two-dimensional, qua31mstead approx1matlon. In.each section . drag, 1if
and aerodynamic moment are obtained using nonllnear steady aerodynamic
coefficients for instant angle of attack. '

8., The induced velocity is calculated u51ng Glauert s formulae ‘for hover
and forward flight. _ i e et
o Three degrees of: freedom: blade rotations .in: hlnges :were . taken as
generallzed coordlnates N o : o F
- flapping, By = lagglng, a3-— pltchlng

The equations ‘of ‘motion were ‘derived with Lagrangian formulae ﬁsiﬁg”:_
matrix calculus, All - geométrical  and aerodynamic ~nonlinearities were
attained. The final system of equations consisted of three nonlinear ‘second
order ordlnary differential equations w1th periodic right hand 31des.

The sum of kinetic and potential . energies was - ‘taken - as Llapunov
function. There were two reasons for it: B S
1) during the derivation of equations of mot1on both klnetlc and potential-*
energies have to be _determlned, this fact _51mp11f1ed__computer; code
construct1ng, ' ' o | o iy
2) if the blade motlon is unstable, 1ts energy 1ncreases ﬂurlng the motlon,:,
the dasplacemonts and velocities increase too; +this means, that
assumption (h) of the theorem is not satisfied. '

Although this function showed to be efficient in rotor blade.
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applications, it should be understressed, that it is not the proof for the
sum of kinetic and potential energies to-be'the best Liapunov function.

The angles of rotation in hinges for hover were taken into account
as the rotor blade steady motion coord1nates "This allowed to include into
analysis also helicopter trim. ' ‘ ST o

5. Samiple results,

Only the 1imited amount of calculations was done for testing the
method and proving its efficiency. The sample data . concern -medium sizeg
helicopter blade. The blade data are glven in Table I-

~Table I

Rotor radius S S e . R=7.850m
Blade length . : R R]‘ 6 772 )

Lengths of hub elements (d1v1ded by b]ade length)

Blade chord (constant along the blade span) Eo :-'-c : 0 4 m

Pitch - flap coupling coefficient = - . . = . tan(8g) =-0.4 : . -
Rotor shaft angular speed (constant) f~_jf'f'-_;" O =28, 35 rad/s o
Blade tw1st e s B e = 00 . T
P1tch hlnge 11near stlffness - _l I “'KS'" 6.304 kNm/rad L
Lag hinge linear damping coefficient. - =+ 7 v’ =10.0 kNms/rad
Aerodynamic center location (behind the leading edge) 0. 235 c- '

Blade proflle (constant along the span) o i, NACA 0012 :'

- There were two klnds cf computation parameters._'f SRR
- blade section center of grav1ty (C G.) positions- el
I - forward 0.02¢, TII - .neutral, III —-backward 0. 020, TRRe
- rotor advance ratio u € [ 0.0, 0.25 ]. o

At the beginning‘of‘computationS'thé equilibriﬁm “blade angles of
rotation in hinges were computed for helicopter trim in ‘hover for three
cross section C.G. positions (Fig.4). These angles’ were taken ~as ~ steady
blade angles for the all flight conditions considered.: This  part of
computatlon was also utlllzed as..one of the computer code tests. g

. The value of W(w,x) ‘can ‘be’ con91dered as the measure of 1nsteb111ty.:”
The 1nstab111ty occurs, ‘when the value ‘of W(w,x) is p081tive o

--The value of W(w;x) for hover is shown in Fig'5 as a“ function of_
blade C.G. position. VWhen the c. G. moves to the tralllng edge of the b]ade,
the stability: decreeses SR : '

The magnitudes of W(w,x) for M= 0 15 and forward C. G posxtlon are
shown in Fig.6 as the functlon of e21muth angle and size of stabie motlon :
boundary A When the 51ze of A increaSes, the values of W(w,x)
decreasing.

The values of W(w,x) for forward fllght are shown on Flg 7 and the
reglons of instability for this case are summarized in Fig.8. In hover the

.
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blade motion is stable for all w»., When u increases first region 'of_
instability arises at ‘the retreating blade: 51de (it suggests stall flutter)
and then for u=0.25 at advancing side,

The results obtained show good qualitative agreement with phenomena
observed in helicopter blade motion.

6. Conclusions.

The new method for - investigation helicopter rotor blade motion
stability was developed. Two well- known facts lie in the background of this
method:

(1) arnalysis of rotor blade motlon stabllzty is an inherently nonlinear
problem,

{(2) blade motion can be described by the system of ordinary dlfferentlal
equations w1th periodic rlght hand 31des

. The method is based on the theorem, which states sufficient
conditions for boundedness of the solutions (Stablllty in the Lagranglan

sense) of the system of erdlnary differential equatlons with periodic rlght ;

hand 31des The - proof of this theorem allews o construct algorlthm and
computer coder for stablllty 1nvest1gat10n u31ng propertles of  Liapunov
function. The regions .of inltlal conditions of blade stab;e motion as well
as the regions of 1nstab111ties can. be ' determined. The steady motion,
stability of which is determlned, need not be the solutlon of the
investigated system of equat1ons A :

" The stability of 51ng1e rotor blade 1n hellcopter hover and forward
flight was studied using this method - The blade was rigid, fully
articulated. At each of three h1nges the stlffness and ‘damping could be
applied. The steady. two d:menszenal aerodynamlc model ‘was. applled with
Glauert’s  induced veleclty dlstrlbutlen - and statle _ aerodynamic”

characteristics of blade airfoil sectlons The flnal system of equations of

molion was  sleongly e.ilinear due  to the fact that geometrical and
aerodynamic nonlinearities were attained.

The sum of kinetic and stiffness potential enefgies_wae taken es_the] i

Liapunov function.The stability of periedic steady motion was “investigated.
The calculated regions of instabilities are in good qualltatlve agreement
w1th the phenomena observed in hellcopter fllght.
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