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INVESTIGATION OF HELICOPTER ROTOR BLADE MOriON STABILITY 
BY DIRECT LIAPUNOV METHOD 

'Janusz Narkiewicz and Wieslaw Lucjanek 
Warsaw Technical University, Warsaw, Poland 

Tho dirA~l LiApunov mAlho~ WAA appliAd for hAli~oplAr rotor hl~dA 

motion -labi.lily ~nAlyAiR. Th~ algori~hm and AompuLAr ~od~ ArA bAAAd o~ .lhA 
lhAorAm whiQh givAA au(fiQiAnl ~ondiliona for boundAdnAAA of tho aolulion 
tor nonlinAar ordinary diffAronliAl oquation RYALAm with pAriodi~ right 
hand Aidoa. ThA ~~mpulAT program davolopAd allo~A to dAlorminA lhA rAgionA 
of inAlabililY for holiQoplor hovAr and forward flight. ~hA alabilily of 
rigid, arli~ulalorl rotor bladA w~A QAnAidorod. ThA ohlainad rAAUllA Anow 
good qualilativo AGTAAmAnl wilh phonomAna O~RATVAd in hAli~oplor bladA 
motion. 

1. Introduction. 

Problems which are concerned in the helicopter theory are usually of 
interdisCiplinary type. This fact is particularly evident in · rotor 
aeroelasticity where aerodynamic, dynamic and stiffness loadings act 
simultaneously [1]. If all these loadings were modeled in "the exact 
manner", the problem would be difficult to be solved, even numerically. 
This is the main reason for which simplifying assumptions are necessary. 

The most general physical models lead to mathematical description in 
term of partial differential equations which are usually difficult to 
solve. Therefore the problem has to be simplified. Some way of 
discretization and the proper aerodynamic modeling allow to transform 
mathematical model ·to ordinary differential equations which are easier for 
analysis. 

Usually in rotary wing problems, right 
motion are periodic with respect to time or 
periodic excitation and cyclic blade pitch. 

hand sides of 
azimuth angle 

equations 
due to 

of 
the 

For these reasons rotor blade aeroelastic problems can be described 
by the system of equations of motion in the form: 

z = h(w,z), 

where: h(w+T,z) = h(w,z), 
z - generalized coordinates, 
111 - azimuth angle, 
T - period of excitation, 

(-) - differentiation with respect to azimuth. 

(1) 

The solution of these equations usually can not be obtained in the closed 
form and some kind of numerical work is needed. 

There are two kinds of analysis of the equations of physical system 
motion. 

First one is to solve these equations by one of numerical codes, 
supplied by software companies. This analysis leads to approximate solution 
of equations, but only_ in the finite period of time and for limited number 
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of initial conditions. 

Second one is qualitative analysis of solution, aimed to obtain 
strictly defined information about solution properties without solving the 
equations [2]. The methods of this kind, commonly used in rotor analysis, 
are based on Floquet theorem. They require a linearization of system (1). 

There are some disadvantages created ·by · linearization. The steady 
motion for which line.arization is done, should be known. Since equations of 
motion are linearized, some of their properties can disappear (for instance 
limited cycles). The linearized equations are valid only in the near 
neighborhood of the point where linearization has been done. The "large 
displacements and large velocities" are exc~uded from analysis. 

These facts suggest looking for new methods of the system (1) 
analysis allowing to cancel some of the mentioned restrictions. 

The method presented in this work is aimed to analysis of the 
boundedness of system (1) solution without linearization. This property of 
solution is called "technical stability" or "stability in Lagrangian 
sense".· For stability considerations any steady motion, periodic with 
respect to azimuth w can be chosen. The analysis and the numerical 
algorithm is based on the direct Liapunov method. 

The method was successfully applied to helicop~er rotor blade 
stability analysis. 

2. Theoretical background. 

The solution of the system (1), stability of which is to be 
investigated, should. be defined before starting the analysis. This solution 
we call "steady state motion". 

Let l;(W) be the arbitrary chosen steady state solution periodic to w 

l;(W) = ~(W + T). (2) 

The blade motion generalized coordinates z(W) can be written in the form: 

z(w) = x(w) + l;(w), (3) 

where .x(w) are the coordinates of disturbed motion. 
By putting (3) into (1), the system (1) can be transformed to the form: 

x = f(w,x), (4) 

where right hand sides of (4), due to (2), are periodic with respect tow: 

f(w+T,x) = f(w,x). (5) 

This transformation allows to investigate the stability of null solution 
(4) i.e. 

X = 0, (6) 

instead of investigating stability of l;(w). 

For ordinary differential equations there are· several definitions of 
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solution stabilily (3]. They are related to different properties of 
soluUon. The property ul solution, we investigilte in this work, is called 
"technical stability" or "stability in Lagrangian sense". 

Def. The solution of the system is stable in Lagrangian sense, if: 

(7) 

where A
0

, A- real, positive numbers, and A0 ~A. 

It means (Fig.l), that for stable system if the solution starts from 
the <appropriate neighborhood of initial conditions near the null solution 
x=O, it will stay close to x = 0 "forever". 

The method und numerical algorithm for analysis stability of this 
kind is based on the following theorem [4]: 

Tbeorem: If the system ( 4) : 

(a) has the right hand sides periodic in respect to 1/J, 

i.e. j:here exists such T > 0 that: f(tp,x) = f(tp+T,x), 
(b) has the unique and continuous solution in the domain: 

Q = { cw.x): 1jJ E: [0, ro ), II X II < H }, H =constant > 0, 

and there exists such Liapunov function W(w,x) that in the Q domain it 
fulfills conditions: 
(c) W(w,x) is continuous and differentiable with respect to<11J and x, 
(d) W(w,x) > 0 for (w,x) E: Q, 
(e) W{tp,x) is periodic with respect to 1/l, 

(f) fist derivatives 9f W(w,x) with respect to 1/J and x are 
also periodic functions of 1/J, 

(g) if there exist.s X
0

(tp
0

) such that 0 < A
0

(1j1
0

) < A < H and 

sup W(w,x) < inf W(lji,X), 1jl E[O,T], 
lbdl = X

0
(tp

0
) llxll = A 

and in the domain: 

(h) 

Q
0 

= { (w,x): 1jl E: [O,T] A 0 < II x II< A}, 0 <A < H, 
I 

the derivative W of Liapunov function W calculated along the 
of equations (5) is not positive, i.e.: 

, aw 
W(w,x) = +grad [W(~.x)]•f(w,x) ~ 0, 

iiop 

then the solution x(ljl) of the system (1) which fulfills condition: 

II X(1j1
0

) II < >.
0

(1j1
0

) 

is stable i.e: 

II x(w) II < A for each 1/J > ~0 • 

system 

This theorem can be illustrated as it is shown in Fig.2 in the state space. 

The methods of stability investigations based on properties of 
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scalar function W(w,x) are called "direct (or second) Liapunov methods" [5]. 

The assumptions (a) and (b) of the theorem concern the system of 
equations· and are easily satisfied in practical applications. The condition 
(b) states, that there exists the solution of the system for all 1jJ > w

0 
and 

II x II < H. The positive number H is tpe maximum value of the solution norm 
which can be taken into account. 

The conditions (c) - (g) concern the Liapunov function W(w,x). These 
are the main difficulties in the application of this theorem and Liapuno:v 
direct method. 

There are no general rules for constructing.Liapunov functions. It 
has to be assumed a priori and then its properties are investigated. The 
theory gives usually only sufficient conditions for solution stability. 

Because of the problem periodicity, the conditions (g) and (h) 
may be checked only in one period of w. Thus the computations are limited 
only to one period of azimuth and the obtained results are valid for w > w

0
• 

3. Application of the theory. 

The numerical algorithm and computer code were developed to analyze 
the stabi~ity of the system (4) based on the above given theorem. For each 
azimuth angle "'j the magnitude Aj(Wj). of stable solution initial conditions 
domain is calculated. . 

Before starting computations the conditions 
system· solutions existence and continuity should be 
problems these conditions are usually fulfilled. 

The main steps'of this algorithm are: 

(a) and (b) of the 
checked. In practical 

1. Assume the maximum value A of norm II x II. It means that the upper bound 
for displacements and velocities should be chosen. For greater 
flexibility of computations the norm of x is defined in the form: 

I 2' 
II x II = i l: (xi/ai) , 

i.e. the components of vector x are divided by assumed numbers ai' 
2. Chose the function W(w,x) which fulfills the conditions (c)-(g). 
3. Check the condition (h): 

I 
W(w,x) s 0 for wE [O,T] and II x II= A. 

If this condition is fulfilled, the motion can be stable; go to the step 
(6) of computation. 
If this condition is not fulfilled: compute the value A1 such that the 
condition (h) is satisfied. If this value is not acceptable . look for 
another Liapunov function W, otherwise put A= A1 and go to next step of 
computations. 

4. Compute the value: 
"'= inf [W(w,x)] for wE [O,T] and for II x II= A. 

5. For the set of azimuth values wj (j=l,,.N): 
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find the greatest value of 1..
0

• which satisfies the condition: 
sup W(wj,x) < inf wiwj,x) =a, w E[O,T). 
Jlxll = J.. 0 (wj 0 ) llxll =A 

If l..
0

j= 0 the motion is unstable for Wj• 
6. For the set of azimuth values wj (j=l, •• N) check if: 

I 
W(w.,x) s: 0 for l..

0
J·< II x II= A. 

J . 
If it is true, the motion is stable. 

4. Application of the method to blade stability analysis. 

The method was applied to the analysis of .the motion of helicopter 
rotor blade in hover and in forward flight. 

The main assumptions for physical model are (Fig.3): 
1. A motion of isolated rotor blade is considered for helicopter insteady 

forward or vertical flight. 
2. The rotor shaft angular velocity is constant. 
3. The blade is stiff, fully articulated. 
4. There are three hinges in the hub with perpendicular axis. These hinges 

are separated one from another by stiff elements. The hinges sequence 
is: flap, lag and pitch. In pitch hinge the blade collective and cyclic 
control is applied. Pitch- flap coupling is taken into account (Fig.3). 

5. The equivalent blade stiffness, control stiffness and structural as well 
as artificial damping can be applied in each hinge. 

6. The rigid blade is pretwisted, with different section airfoils and chord 
length along its span. 

7. The aerodynamic loading is calculated with strip · theory using 
two-dimensional, quasi-steady approximation. In each section drag, lift 
and aerodynamic moment are obta1ned using nonlinear steady aerodynamic 
coefficients for. instant angle of attack. · 

8. The induced velocity is calculated using Glauert's· formulae for hover 
and forward flight. 

Three degrees of freedom: blade rotations in hinges were taken as 
generalized co-ordinates: 

a1 - flapping, a2 - lagging, a3 - pitching. 

The equations of motion were derived with Lagrangian formulae using 
matrix calculus, All_ geometrical and aerodynamic nonlinearities were 
attained. The final system of equations. consisted of three nonlinear second 
order ordinary differential equations with periodic right hand sides. 

The sum of kinetic and potential energies was taken as . Liapunov 
function. There were two reasons for it: 
1) during the derivation of equations of motion both: kinetic and potential 

energies have to be determined; this fact simplified computer code 
constructing, 

2) if the blade motion is unstable, its 
the displacements and velocities 
assumption (h) of the theorem is not 

energy increases during.the motion; 
increase too; this means, that 
satisfied. 

Although this function showed to be efficient .in rotor blade 
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applications, it should be understressed, that it is not the proof for the 
sum of kinetic a~d potential energies to be the best Liapunov function. 

The angles of rotation in hinges for hover were taken into account 
as the rotor blade steady motion coordinates. This allowed to include into 
analysis also helicopter trim. 

5.·sample results. 

Only the limited amount of calculations was done for testing the 
method and proving its efficiency. The sample data concern medium size 
helicopter blade. The blade data are given in Table I. 

Rotor radius 
Blade length 

Table I 

R = 7.850 m 
R1= 6.772 m 

Lengths of hub elements (divided by blade length): 
e1 = 0.01, e2 = -0.005, e3 = 0.02, e4 = 0.03, e5 = 0.0 

Blade chord (constant along the blade span) 
Pitch - flap coupling coefficient 

c = 0.4 m 
tan(cS3) =-0.4 

Rotor shaft angular speed (constant) 
Blade twist 

0 = 28.35 rad/s 
~ = 00 

Pitch hinge linear stiffness 
Lag hinge linear damping coefficient. 
Aerodynamic center location (behind the 
Blade profile (constant along the span) 

Ka = 6.304 kNm/rad 
Ya = 10.0 kNmsjrad 

leading edge) 0~235 c 
NAeA 0012 

·· There were two kinds of computation parameters: 
- blade section center of gravity (e.G.) positions 

1 - forward 0.02c, II -neutral, III - backward 0.02c; 
-rotor advance ratio~ E [ 0.0, 0.25 ]. 

At the beginning of computations the equilibrium blade angles of 
rotation in hinges were computed for helicopter trim in hover for three 
cross section e.G. positions (Fig.4). These angles were taken as steady 
blade angles for the all flight conditions considered. This part of 
computation was also utilized as one of the computer code tests. 

I . 

·The value of W(\ll,x) can be considered as the .measure of instability. 
The instability occurs, when the value of w(w,x) is positive. 

J 
· The value of W(w,x) for hover is shown in Fig.5 as a function of 

blade e.G. position. When the e.G. moves to the trailing edge of the blade, 
the stability decreases. 

I 
The magnitudes of W(w,x) for ~ = 0.15 and forward e.G. 

shown in Fig.6 as the function of azimuth angle and size of 
boundary A. When the size of A increases, the values 
decreasing. 

position are 
stable motion 

. I 
of W(\ll,x) is 

I 
The values of W(\ll,x) for forward flight are shown on Fig.7 and the 

regions of instability for this case are summarized in Fig.8. In hover the 
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blade motion is stable for all w. When ~ increases first region of 
instability arises at the retreating blade side (it suggests stall flutter) 
and then for ~=0.25 at advancing side. 

The results obtained show good qualitative agreement with phenomena 
observed in helicopter blade motion. 

6. ·ConClusions. 

The new method for investigation helicopter rotor blade motion 
stability was developed. Two well known facts lie in the background of this 
method: 
(1) analysis of rotor blade motion stability is an inherently nonlinear 

problem, 
(2) blade motion can be described by the system of ordinary differential 

equations with periodic right hand sides. 

The method is based on the theorem, which states sufficient 
condition~ for boundedness of the solutions (stability in the Lagrangian 
sense) of the system of ordinary differential equations with periodic right 
hand sides. The proof of this theorem allows to construct algorithm and 
computer code --for stability investigation using properties of Liapunov 
function. The regions of initial conditions of blade stable motion as well 
as the regions of instabilities can. be determined. The steady motion, 
stability of which is determined, need not be the solution of the 
investigated system of equations. 

· The stability of single rotor blade in helicopter hover and forward 
flight was studied_ using this method. The blade was rigid, fully 
articulated. At each of three hinges the stiffness and damping could be 
applied. The steady two dimensional aerodynamic model was applied with 
Glauert's induced velocity distribution and static aerodynamic 
characteristics of blade airfoil sections. The final system of equations of 
mot i "" """ sl r nrr:,:l.) rr ,_,1 incm· due to the fact that geometrical and 
aerodynamic nonlinearities were attained. 

The sum of_kinetic and stiffness potential energies was taken as the 
Liapunov function.The stability of periodic steady motion was investigated. 
The calculated regions of instabilities are in good · qualitative agreement 
with the phenomena observed in helicopter flight. 

7. References. 

1. Friedmann P.P., Recent Trends in Rotary. Wing Aeroelasticity, Vertica, 
Vol.ll, No.1j2, 1987. 

2. Yoshizawa T., Stability Theory and the Existence of Periodic and Almost 
Periodic Solutions, Springer - Verlag, 1985. 

3. Gutowski R., Ordinary Differential Equations (in Polish), Wydawnictwa 
Naukowo-Techniczne, Warsaw, 1971. 

4. Narkiewicz J., Lucjanek W., The Stability of Motion of Nonlinear Model 
of a Helicopter Rotor Blade (in Polish), Archiwum Budowy Maszyp, Vol. 

46-7 



XVI, No. 4, 1979. 
5. La Salle J., Lefschetz S., Stability by Liapunov's.Direct Methods with 

Applications, Academic Press New York - London, 1961. 

X 

forYJ= VJ
0 

II xii=:A.o' 
sup W('fl)<c:J-. 

Fig. 1 

Fig. 2 

Fig. 3 

-3,5-

46-8 

x; 
for¢' € [o, TJ 
II xii.,;A, · 
inf W(Y')=~. 

;:fp = 0 

~ 
I D 

F.i.g. 5 

/!J e.G •. 



3 
I~()V) max 

C.G~-I 
2. 

)1=0,15 

1 

0 
45 90 

-1 

_,. -2 
"' I 

"' -3 

-4 

-5 

-6 Fig. 6 

-7 ·p 

.Z5 
.2 

A= 

1,0 
'f/ (0) 

1, 713 

2,0 

.15 C.G.-II 
.I 

.0.5 

we )!I) max 
5 

4. 

3 

2 

1 

0 
4:S 90 

-1 

-2 

-3 

-4 

-5 

-6 

0 oJ;.· -+.4.5. -o;;!s.v""· -.,~M;:!;,;-• ..:.....,w'"=· --::.?.?.::!:::1""'• --=o.:!::'l!"'"· --=3t.k~.,..-...,..J.JErr!fl 
Fig. 8 

A = 1 
C. G.-II 

)1.= 
0,25 
0,20 

·0,15 

0,10 Y'E 
0,05 

Fig. 7 



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Left bottom (275.62 5.93) Right top (572.98 60.26) points
      

        
     0
     275.6229 5.9274 572.9794 60.2616 
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 3 to page 3
     Mask co-ordinates: Left bottom (-7.00 185.10) Right top (58.03 663.37) points
      

        
     0
     -7.004 185.103 58.0328 663.373 
            
                
         3
         SubDoc
         3
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 4 to page 4
     Mask co-ordinates: Left bottom (541.25 241.21) Right top (601.06 578.12) points
      

        
     0
     541.2491 241.2068 601.0557 578.1169 
            
                
         4
         SubDoc
         4
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     3
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 5 to page 5
     Mask co-ordinates: Left bottom (8.99 283.56) Right top (57.91 565.12) points
      

        
     0
     8.986 283.5617 57.9099 565.1235 
            
                
         5
         SubDoc
         5
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 6 to page 6
     Mask co-ordinates: Left bottom (537.42 267.71) Right top (586.81 578.90) points
      

        
     0
     537.4152 267.7118 586.81 578.8989 
            
                
         6
         SubDoc
         6
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     5
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 7 to page 7
     Mask co-ordinates: Left bottom (3.97 286.47) Right top (55.51 559.07) points
      

        
     0
     3.9651 286.4733 55.5113 559.0732 
            
                
         7
         SubDoc
         7
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     6
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 8 to page 8
     Mask co-ordinates: Left bottom (548.82 273.41) Right top (587.59 566.71) points
      

        
     0
     548.8177 273.4064 587.593 566.7057 
            
                
         8
         SubDoc
         8
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     7
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 9 to page 9
     Mask co-ordinates: Left bottom (15.03 280.50) Right top (66.12 565.03) points
      

        
     0
     15.0277 280.5017 66.1221 565.027 
            
                
         9
         SubDoc
         9
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     8
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 10 to page 10
     Mask co-ordinates: Left bottom (561.09 290.03) Right top (590.09 572.08) points
      

        
     0
     561.0857 290.0337 590.0901 572.0767 
            
                
         10
         SubDoc
         10
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     9
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 11 to page 11
     Mask co-ordinates: Left bottom (519.38 545.45) Right top (551.69 580.99) points
      

        
     0
     519.3833 545.4468 551.6933 580.9878 
            
                
         11
         SubDoc
         11
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     10
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 11 to page 11
     Mask co-ordinates: Left bottom (287.56 543.02) Right top (333.60 586.64) points
      

        
     0
     287.5591 543.0236 333.6008 586.642 
            
                
         11
         SubDoc
         11
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     11
     10
     1
      

   1
  

 HistoryList_V1
 qi2base





