

PRESSURE FLUCTUATIONS ON ROTOR
bLADES GENERATED BY BLADE
VOTEX INTERACTION
G. NEUWERTH and R. MÜLLER

TECHNICAL UNIVERSITY OF AACHEN
AACHEN,F.R.G.
TENTH EUROPEAN ROTORCRAFT FORUM
AUGUST 28 - 31, 1984 - THE HAGUE, THE NETHERLANDS

Abstract

During some flight operations of helicopters the main rotar blades pass clase or intersect the trailing tip vortices of the main rotar. These Blade-Vortex-Interactions (BVI) generate strong fluctuating blade pressures leading to dynamic structural loads and impulsive noise radiation. Currently, accurate load predictions are limited by the lack of knowledge of the tip vortex structure. Therefore, a special test facility was built to investigate the basic mecharism of BVI: a special delta wing generates two leading edge vartices with a structure measured by a five hole probe. One of these vartices interacts with a rotor which represents the main rator. The forwand flight af the helicapter is simulated by a windtunnel. By this arrangement a tetter physical understanding of the EUl can be obtained. Additionally, theoretical methods for computing the local unsteddy blade pressures can be checked more reliabry. The pressure: fluctuations are computed by means of a theory which was derived from the unsteady airfail theary of NADMANN and YEH. Measured and computed pressure fluctuations are in good agreement.

1. Introduction

The use af helicopters moy became severely limited due to the radioted noise generated by the rotor system. Noise regulations which govern the operation of these vehicles may limit their use. Noise has to be freated thoroughty early in the desion process. An "acaustic design change" may deerease vehicle performance and must be weighted against ather competing factors. Therefore, a fundamental understanding of the aerodyramio moise generation by the rator system is necessary. The impulsive noise is the most prominent of the helicopter noise events. It occurs during special flight conditions as the dominant noise source. B.t least two different mechanisms are responsible for the impulsive noise: compressitility effects and blade-vortex interaction (BYI). Full-scale measurements of BUI noise have been carried out by BOXWELL and SCHMITZ /1/.

In this paper some aerodynamic aspects of the BUI mechanism are analysed. The experimental and theoretical investigations are dane of lowerrotar tip Mach numbers $M_{t} \leq 0,52$. Thus, compressibility effects are nearly of no consequence. BUl accurs if a main rotor blade interacts with previously generated tip vortices. These vortices are shed from the tips of the thades and pass near to the rator disk (s. figure 1). Under cer tain sets of flight conditions, especially during steady descending flight, the vortex path goes through the rator disk plane; the vortices are cut by the blades leading to strong BVI. Unsteady disturbances which rapidly change the local blade flow field are generated by the vartices. The lacal angle of attack and the dynamic pressure at the blades yield impulsive changes of air pressures and forces. This effect leads to impulsive noise and structural loads.

Fig. 1
Unfortunately the tip vortex strength, shape and position are currently hard to calculate accurately enough. It makes as well great problems to measure these characteristics just before the interaction with a blade. Therefore , on merpretation of the measurements of the ungteady blade pressures is limited and it is difficult to obtain a betier physical understanding of the Eyl. An accurate computation of the unsteady blade pressures induced by the vortices is not possible.
In that situation a special test facility (s. figures 5 and 14) was designed to bring us a step foreward. A special delta wing in front of the rotor generates two concentrated leading edge vortices with a well known structure measured by a tive hole probe. These vartices interact with a small two-bladed rator. In a preliminary test phase an orientation of the rator, shown in figure 5 , was selected. Here the vortex axes are yertical to the rotor disk. In a secand phase the rotor orientation was changed turning the vartex axis nearly parallel to the rotor disk. This or ientation is similar to that of a helicopter during forward flight. The forward speed is simulated by the windtunnel flow. One of the delta vartices interacts with the rotor, the other passes downstream the rotor disk.

For the different vortex-rotar arientations the lacal velocity perturtations of the blades were calculated. Then, the unsteady blade pressures and forces were computed by yarious theories (see chapter 2). The local pressure fluctuations were measured with Kulite transducers at various pusitions of the rotor blades. Measured and computed values are compared in the time-domain (see chapter 3).

2. Computation of the unsteady blade pressures and forces

Figure 2 illustrates the flow fluctuations for the case where the orientation of the vortex axis is normal to the rotor disk (according to figure 5). The flow distortions, caused by the tangential velocity ψ_{t} of the vortex, are shown at three radial positions at the rotor blade. The vortex induces a velocity component y in the rotor plane normal to the
leading edge of the blade. The component of the induced velocity parallel to the leading edge is neglected due to the law influence on the blade forces.

Fig. 2
In the figure Ωr is the thade velocity and v_{z} the axial velacity. The axial velocity distribution of the vortex is not shown. The figure reveals that both the direction and the magnitude of $\psi_{\text {rel }}$ fluctuates. The general case of a yortex axis oblique to the rator disk is shown in figure 3.

BY A TIP VORTEX

Fig. 3

The arientation of the vartex axis is given by the angles ξ_{c} and η_{C} where ξ_{c} is the angle between the rotar plane and the vartex axis and n_{c} is the angle between the projection of this axis into the rotor disk and the x-axis. \&.t a point a in the rotor plare a velocity is induced by the tangential velacity Yf of the vartex. Now, this induced velocity has now two components y and $\%$, where $\%$ is normal to the rotar plane. The eartations of the components y and w during one revolution can be computed for any blade element. The coordinate system $x^{\prime} y^{\prime} z^{\prime}$ that is fixed on the blade elements. The axial velacities $v_{a x}$ in the delta vorticies influence the components y and w and must be computed. Far various radial positions the resultant fluctuations of y and w were Faurier anolysed. The fluctuations of Y and w are periodical and so the Fowier components have the disyrete trequencies $f_{m}=m b n(m=1,2,3, \ldots\}$, b being the number of rotor blodes, n the rotor rotational speed and m the harmonic order.
These Fourier components are the input to the theories for computing the unsteady blade forces and pressures.

The applied theories neglect compressibility and friction effects and are based an singularity methods. An early contritution to the unsteady airfoil theory was made by KEMP and SEARS $/ 21$ reducing the rotor to a two-
dimensional plane blade row. The interference with rieighbour ing blades are ignored. The authors computed the unsteady lift of a flat plate only considering flow distortions normal to the plate. HORLOCK/3/ determined the lift fluctuations including distortions parallel to the undisturbed flow. Starting from these theories, NAUMANN and YEH/4/ developed the unsteady lift for a cambered airfoil that has angle of attack relative to the steady flow and velacity distortions normal and parallel to the chord. As shown in figure 4 the airfoil is represented by a vortex sheet arranged along the chord. The inflow can be represented by a mean velocity v_{0} and the Fourier components of the flow disturbances.

DISTRIBUTION OF VORTICITY Y

Fig. 4
Due to this inflow, the varticity γ along the chord consists of a steady and a time dependent yorticity $\gamma=\gamma_{s}+\gamma_{b}$. Due to the yariation of the bound vorticity (γ_{b}) free vortices (γ_{f}) will be shed. It is assumed that they are carried away with the mean velocity along a plane in the direction of the chord. The unsteady vorticities γ_{b} and γ_{f} induce unsteady velocities at the cambered airfoil. The tatal flow - mean flow plus disturbances plus total induced yelocity - must be tangent to the camber line at all points. Using the known relation between γ_{b} and γ_{f} an interdependance between the flow disturbances v and w and the unsteady induced velocities can be develaped. The result is an integral equation between γ_{b} and the known Fourier components of the flow disturbances v and w. Applying the Euler equation, the unsteady pressures harmonics $\tilde{F}_{m}(x, t)$ can be computed using the following equation:

$$
\tilde{p}_{m_{p}, s}(x, t)=e^{i 2 \pi f_{m}+} \frac{\rho}{2}\left\{ \pm\left[v_{0} \bar{\gamma}_{b m}(x)+\bar{v}_{m}(x) \gamma_{s}(x)\right]-\frac{1}{2} \gamma_{s}(x) \bar{\gamma}_{+m}(x)\right\}
$$

Equations for computing the unsteady vorticity

$$
\gamma_{t m}=\bar{\gamma}_{t m} e^{i 2 \pi f_{m} t}=\left(\bar{\gamma}_{b m}+\gamma_{f m}\right) e^{i 2 \pi f_{m} \dagger}
$$

the unsteady bound varticity

$$
\gamma_{b m}=\bar{\nu}_{b m} e^{i 2 \pi f_{m} t}
$$

and the steady yorticity γ_{s} are deduced by SCHREIER /5/. The unsteady vorticities are influenced by the Fourier components of the flow distortions
and

$$
\begin{aligned}
& v_{m}=\bar{v}_{m} e^{i 2 \pi f_{m} \dagger} \\
& w_{m}=\bar{w}_{m} e^{i 2 \pi f_{m} t}
\end{aligned}
$$

hode tove to de compute whi -) on (+ sign respectwely. To compute the resultant unsteady pressure $\tilde{p}(x, t)$, the pressure harmonics $\tilde{p}_{\mathrm{m}}(x, t)$ have to be superponed considering the phase relations reeulting from the Faurier analysis of the flow distortions and from the computation of \tilde{p}_{m}. Then, the unsteady blade farces can te computed by integration of the pressures over the whole surface of the blades.

Additional to the methad of NALMANN and YEH a theory af HENDERSON /E/ can be applied to compute the unsteady blade forces. This theary additionally the interference effects of neightoring blades includes.

Furthermore, a three dimensional theory can be used for calculating the blade forces. This theory is based on the paper of FATHY /7/. The blades are allowed to be arbitrarily tapered and twisted. The reference blade is represented by a continuous distribution of yorticity while the other blades are replaced by concentrated radial lines of yortices. This theary was modified by KELLNER /8/ for ircluding variable flow distortions at different radial pasitions. Furthermare, the influence of cambered leading and trailing edges can be calculated.

As shown by NEUWERTH /9/ the results of two and three dimensional theories show only small differences. To reduce the amount of computing time, the results in this paper are calculated by the theory of NAUMANN and YEH.

3. Theoretical and experimental results

3. 1 Vortex axes normal to rotor disk

In a preliminary test phase an orientation of the rotor shown in fioure 5 was selected - the vortex axes are vertical to the rotor disk. The geometry of the rotor blades is illustrated in figure 6. The blades have the symmetrical profile NACA, 0012.
Six pressure transducers have been installed. The signals of the transducers 4 and 5 on the suction side are analysed below. Figure ? shows the position of the two leading edge vortices relative to the rotor disk. The circle described by the pressure transducers 4 and 5 has a radius of 455 mm. The lacation of the vartex cores in the vertical position (y-axes) was varied.

Fig. 5

GEOMETRY OF THE ROTOR BLADES

geometry of the vortex-blade arrangement

Fig. 7
The velocity distribution behind the delta wing was measured using a five hale probe. The axial speed $\psi_{a x}$ and tangential speed v_{t} acrass the vortex cores are plotted in figure 8. Both components are related to the windtunnel speed $y_{o n}$.
Figure 9 demanstrates the pressure distribution in the vartex. In the core, the underpressure p - boh $^{\text {has values of nearly seven times the dynamic }}$ pressure q_{00} of the inflow.
A top view of the yortex path, visualized by smoke, is shown in figure 10. On the upper side of this figure the trailing edge of the delta wing and on the lower side the rotating rotar can be seen.
A.t this rotor orientation relative to the windtunnel the tip vortices of the rotor biades quickly travel downstream. Thus the induced velocities of the tip yortices in the rotor area being very small can be neglected. A. result of this type of BUI is demonstrated in fioure 11. The inflow has a speed of $v_{00}=25 \mathrm{~m} / \mathrm{s}$. The rotational speed of the rotar is $\mathrm{n}=2900 \mathrm{~min}^{-1}$. The angle v_{t} between the blade chord and them rotor area at the blade tip is 30°.

The upper plot in figure 11 shows the components y and w af the flow distorsions at the radial postition $r=455 \mathrm{~mm}$ of the pressure transducers 4 and 5 depending on azimuth. The position of the two vartex cores relative to the transducer path can be seen in the drawing right beside the plot.
The positions of the yortices relative to the rotor disk have been found out by means of flow yisualisation with smoke. The flow distorsions have been calculated using figure 8.

VELOCITY DISTRIBUTION BEHIND THE VORTEX GENERATOR

(SECTION ACROSS THE TWO VORTEX - CORES)

Fig. 8

PRESSURE DISTRIBUTION IN
THE LEADING EDGE VORTEX

Fig. 9

Fig. 10
The vortex at the blade azimuth $\psi=164^{\circ}$ diminishes the flow component v (v is negative) while the vortex at $\psi=205^{\circ}$ increases ψ.
At the radial position of tronsducer 4 and 5 the fluctuations of the component warmal to the rotor area, are smoll due to the relatively large distances from the vortex cores (55 mm , respectively 85 mm). The two lower plots show the unsteady part \tilde{p} of the pressure fluctuations on the suction side. The negative values of $\psi\left(a t \psi=164^{\circ}\right)$ reduce the local angle af attock ond the siomotion pressure. Therety the lool undermesabe is reduced, that means an increase of the pressure. The positive values of $v\left(\operatorname{ot} \psi=205^{\circ}\right)$ has the contrary effect. Comparing the shape of the increased pressure fluctuations with the flow distorsions it can be concluded that the component y has a dominant influence. Because of the relatively large distances from the vortex cores the pressure distribution in the vortices has no significant influence on the unsteady pressure. The pressure fluctuations at the pressure transducer 4 (at 12.5% blade chord) are higher than those at transducer 5 (at 25% blade chord). This can be explained by the higher negative values of the steady $c_{p}=\left(p-p_{00}\right) / q_{00}$ at the pressure transducer 4.

VELOCITY DISTORSIONS AND PRESSURE fluctuations due to two concentraied VORTICES WHOSE AXES ARE NORMAL

 10 ROTOR DISK

 10 ROTOR DISK}

Fig. 11
The Fourier components of the fluctuations of ψ and w ore mput for the computation of the pressure fluctuations. A further input are the steady values of the effective angles of attack of the tilades. These were computed by a program given in $/ 10 /$ based on the 3-dimensional Galdstein theary. The unsteady pressures in figure 11, computed the 2-dimeneional theory of Naumann and Yeh, show good agreement with the measurements. Only the extreme values at pressure transducer 5 are a little bit higher in the theory. A comparison of the shape of the measured and computed pressure fluctuations show's that inflow separations due to Byl dan't accur.
In figure 120 case is shown where the vortex cores are closer to the path of the pressure transducer 4. The distances are 10 mm (vortes at $\psi=160^{\circ}$) and 25 mm (vortex at $\psi=209^{\circ}$).

VELOCITY DISTORSIONS AND PRESSURE FLUCTUATIONS DUE TO TWO CONCENTRATED VORTICES WHOSE AXES ARE NORMAL
 TO ROTOR DISK

Fig. 12
Both vortices increase the flow component ψ. The axial velocity $v_{a x}$ in the vortex cores (s. figure 8)increases W (w is positive). The increase of v leads to a decrease of the unsteady pressure \tilde{p} at $\psi=160^{\circ}$ and $\psi=209^{\circ}$. A similar influence is given by the underpressure in the vortex cores. However $\tilde{\mathrm{p}}$ shows an increase at that angles. That means that the influence of the positive w is dominant: the local angles of attack are diminished, the underpressures at the section side are reduced and therefore the p-values are increased. Computed and measured unsteady pressures are in good agreement.
Figure 13 demonstrates that sound power spectrum, generated by that type of BVI , has a great number of harmonics with high sound power levels PWL.

Thot revenls the impulsive character of the radiated noise. The fundamental frequency is $f_{1}=6 n=2 \cdot 2900 / 60=96.67 \mathrm{~Hz}$.

SOUND POWER SPECTRUM OF A ROTOR INTERACTING WITH TWO VORTICES WHOSE AXES ARE NORMAL TO ROTOR DISK

Fig. 13
To compute the sound power spectrum, the rotor noise theories of Lowson /11/, Oltertiead and Munch $/ 12 /$ and Wright $/ 13 /$ were extended by Schreier/5/. Inputs for this noise theory are the Fourier components and their phase relations of the computed unsteady blade forces. These inputs are strongly dependent on the radial position at the rotor; this influence is included in the naise theory.

3.2 Simulation of BYI for a helicopter during forvard flight

Figure 14 demonstratesd the orientation of the rotor area. The yortex on the left side of the delta interacts with the rotor. The ather vortex passes for downstream of the rotor, blown to the right by the outflow of the rotor, and thas has nearly no influence on the unsteady blade pressures. The angle between the rotar plane and the direction of the windtunnel flow is $\beta=-10^{\circ}$. In that way the flow speed in the direction of the rotor axis is increased and the tip vortices generated by the rotor itself are quickly blown away from the rotor disk. So their influence on the blodes is largely reduced.

Fig. 14

Fig. 15

Subsequently a EUl with the following set of parameters is onalyzed;
$\psi_{00}=20 \mathrm{~m} / \mathrm{s}, \mathrm{n}=2700 \mathrm{~min}^{-1}, \psi_{t}=10^{\circ}, \beta=-10^{\circ}$. A top view of that case is show in figure 15.
On the upper part, the trailing edge of the yortex generator con the seen. The windtumel flow yo enters the figure from above. The interacting vortex, yisualized by smoke, is cut by the ratar blades. The path of thot vortex axis in this horizontal area is ploted in figure 16 . Also the angle 6 is illustrated.
Figures 17 and 18 show the path of the interacting vartex in the vertical area. Figure 17 demonstrates the instant of intersection while figure 18 is a snap shot a little bit later. The path of the vortex axis in this vertical area is plotted in figure 13. The radial position of the pressure transiucer 4 ($r=$ 455 mm) is far away from the intersection paint of the wortex. The minimum distance between pressure transducer 4 and the vortex care are 77 mm . That means that at the radial position of that pressure transucer the flow distortions are dominantly influenced by the tangentiol velocity y_{t} of the vortex (s. figure 8).

DATH OF THE VORIEX AXIS IE THE MORIZONTA ROEA

Fig. 16

Using the measured vortex path and the flow field in the leading edpe vortex, the flow distortions w^{*} and w^{*} at the radial position of pressure transducer 4 are calculaied (s. figure 20).
W* is equal to w plus the component of the windtunnel flow in the direction of the rator axis. Due to the component of windtunnel flaw parallel to the rotor area, the welocity component normal to the leading edge of the blades fluctuates with the amplitude $\psi_{00} \cos \beta=19,7 \mathrm{~m} / \mathrm{s}$ in a harmonical way. These fluctuations are added to the flow distortions y caused by $B Y$. The orientation of the yortex core relative to the blade element at the radial position of pressure transducer 4 car be seen in the drawing at the right side for three values of blade azimuth ψ. At $\psi=250^{\circ} \vee$ has its maximum and w^{\prime} is equal zero. At $\psi=240^{\circ}$ the component w has a high negative and at $\psi=260^{\circ}$ a high positive value.

Fig. 17

Fig. 18

PATH OF THE VORTEX AXIS IN the Vertical area

Fig. 19

FLOW DISTORSIONS AT THE RADIAL POSITION OF PRESSURE TRANSDUCER 4

Fig. 20

Fig. 21
The unsteady pressure $\tilde{\text { in }}$ at transducer 4 (s. figure 21) shows a fluctuation due to the component of windtunnel flow parallel to the rotor area. These fluctuations ore superimposed by those effected by the vortex. The negative values of w in the region of $\psi=240^{\circ}$ increase the angles of attack and leads to a growing of the underpressure at the suction side. The shape of \tilde{p} in that region has an impulsive character. The computed values of \tilde{p} (theory of NAUMANA and YEH) are in goad agreement with the measured ones. The small discrepances between $\psi=90^{\circ}$ and $\psi=180^{\circ}$ can be interpreted as the influence of the tip yortices of the rotor itself. These interactions are under the way to be analysed in more detail.

4. Conclusions

During certain flight conditions the vortices shed from the tips of helicopter rotor tlades pass near the operating rator disk ar are cut by the blades. Unfortunately the tip vortex strength, shape and position are currently hard to predict accurately or to measure just before interaction with the blades. In thes paper a basic understanding of this BVI-mechanism was tried to achieve by using a special test arrangement. In this case, vortices were generated by a delta wing located in front of a small test rotor. The structure of these vartices was measured by a five hole prabe. The position of these vortices before and during the interaction with a two bladed rotor was detected by applying smoke visualisatidn.

The vortices induce flow distortions whose components were calculated for variaus radial blade elements as a function of the blade azimuth. These
flow distortions are the input to theories applied in this paper for computing local unsteady blade pressures and unsteady blade forces. The local unsteady pressures are measured with small pressure transducers and show, for the analysed rotor tip Mach numbers $M_{t} \leq 0.52$, good agreement with the computed values.
Depending on the different orientations of the interacting yortex relative to the rotor, the unsteady blade pressures were investigated. Flow separations due to BUI were not observed.
The pressure fluctuations show an impulsive character. That is demonstrated by the high number of harmonics in the noise spectrum and by the subjective loudness. A noise theory was extended to the application of the noise radiation due to BVI and their results are in quite good agreement with the measured noise levels.

5. References

11/ D. A. BOXWELL, F. H. SCHMITZ, Full-Scale Measurements of Blade-Yortex Interaction Noise, Journal of the American Helicopter Society, Oct. 1982.
/2/N. H. KEMP, W. R. SEARS, The unsteady Forces Due to Wiscous Wakes in Turbomachines, Journal Aeron. Sci. Yol. 22, pp. 478-483, 1955.
/3/ J. H. HORLOCK, Fluctuating Lift Forces on Airfoils Moving through Transverse Chordwise Gusts, Journ. Basic Engineering, Yol. 90 Ser. 0. Nr. 4, pp. 494-500, 1968.
/4/ H. NAUMANN, H. YEH, Lift on Pressure Fluctuations of a Cambered Airfoil under Periodic Gusts and Applications in Turbamaschinery, Paper 72-GT-30, ASME, 1972.
/5/ J. SCHREIER, Experimentelle und theoresche Untersuchungen der Schallabstrahlung von Rotoren und Propellern, die sich in Wirbel Wirbelfeldern bewegen, Dissertation RWTH Aachen, 1983.
/6/R. E. HENDERSON, The Unsteady Response of an Axial Flow Turbomachine to an Upstream Disturbance, Ph. D. Thesis, NTIS, AD-759023, 1972.
/7/ A. F. A. FATHY, The Unsteady Circulation Distribution in Rotars and its Application to Noise Studies, Ph.D. - Thesis, South Dakota State Univ., 1973
/8/ A. KELLNER, Experimentelle und theoretische Untersuchungen über den Einfluß inhomogener Geschwindigkeitsverteilung in der Zuströmung auf die Lärmerzeugung von Mantelschrauben, Diss. RWTH Aachen, 1980.
/9/ G. NEUWERTH, et al., Fluctuating Forces and Rotor Noise due to Distorted Inflaw, ICAS-Praceedingspp. 674-688, 13. ICAS-Congress,_ Seattle, USA, 1982.
/10/MBE- VFW, Propellerrechenverfahren-Programm POPAG, 1975.
/11/M. V. LOWSON, Theoretical Studies of Compressor Noise, NASA CR-1287, 1969.
/12/1. B. OLLERHEAD, C. L. MUNCH, An A.pplication of Theory to Axial Compressor Noise, NASA CR-1519, 1970.
/13/5. E. WRIGHT, Discrete Radiation from Rotating Periodic Sources, Journ. Sound. Yibr., Yol. 17,_pp. 437-498, 1971.

