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Abstract

This work explains the methodological setup of a variable fidelity framework for the aerody-
namic optimization of helicopter rotor blades and demonstrates its capabilities for a single and
multi-objective test case. The optimization approach utilizes a Hierarchical Kriging surrogate
model. First, a benchmark for single objective optimization containing up to three fidelities
demonstrates that the variable fidelity technique significantly reduces the required computa-
tional resources, if high fidelity optimizations are necessary. For the hover optimization sav-
ings up to 45.0% are achieved and in forward flight optimizations even 83.1%. Extending the
framework to multi-objective problems, the usefulness is tested for mid-fidelity optimizations.
The resulting Pareto fronts of the single and variable fidelity optimizations are compared to
a reference solution. The accuracy of variable fidelity Pareto fronts is generally higher mea-
sured by the distance to the reference Pareto front. In the end, three different rotor designs
are picked from the Pareto front and the advantages and disadvantages of each rotor are dis-
cussed.

1 INTRODUCTION

The aerodynamic optimization of helicopter rotors
is demanding due to the complex nature of their flow
field. On the one hand, the rotating system causes the
downwash as well as the tip vortex to interact with the
following blades, while on the other hand dynamic stall
and shocks can occur in forward flight. At the same
time, the structural analysis cannot be neglected. The
deformation of the blade has a considerable impact on
the performance, and thus fluid-structure coupled sim-
ulations are necessary for optimization as mentioned
by Imiela [14].
There are multiple fidelities available for computing
the aerodynamics of a rotor blade, with some of them
sketched in Fig. 1. Low fidelity models comprise the
blade element theory with inflow corrections meth-
ods like simple wake models. Mid fidelity ranges
from more advanced wake models with panel method
to simplified CFD models, such as the inviscid for-
mulation of the flow equations. Solving the Navier-
Stokes equations which model boundary layer effects
are considered and high fidelity methods. Detached
or large eddy simulations are even more accurate, but
are still not applicable for industrial problems. While
the fidelity increases, the resources required grow
enormously.
Recent optimizations are either speed up using the ad-
joint methodology for computational fluid dynamics as
done by Dumont et al. [1] and Choi et al. [21], or
through surrogate and low fidelity models connected
with global optimizers. Visingardi et al.[4] use a blade
element method coupled with a wake model to di-
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Figure 1: Fidelity range of Aerodynamic Models for
Rotor blades

rectly optimize performance and acoustics of a vari-
able speed rotor and deploy a genetic algorithm to lo-
cate viable configurations. Surrogate models in the
form of artificial neural networks are adopted by Mas-
saro et al. [3], who construct their surrogate model
based on simplified aerodynamics. There are also
high fidelity optimizations with computational fluid dy-
namics performed by Imiela [13], who exploits a Krig-
ing model, or Johnson and Barakos [15] who train an
artificial neural network.
The weighted function approach is often applied for
multi-objective optimizations as for example done
by Johnson and Barakos [15], who have a specific
methodology on selecting the weights. The Nash
game methodology is presented by Leon et al. [10]
to obtain the Pareto front. The Nash game methodol-
ogy gradually shifts from one goal function to the other.



However, there is also the methodology of searching
directly for the Pareto front, as for example Visingardi
et al. [4] for two mixed goal functions.
The research by Hollands et al. [18] reveals that for
more advanced blade shapes the fidelity of simpli-
fied aerodynamics can be insufficient, and Wilke [23]
presents a study on suitability of different aerodynamic
modeling depth for planform optimizations. There is
a concept followed by Collins [7], who takes advan-
tage of different stages of fidelity in the optimization
to achieve a speed up in the overall optimization pro-
cess.
This paper focuses on the methodology of combining
aerodynamic models of varying fidelity as an accel-
eration technique in surrogate based optimization for
multiple objectives. Recent works by Han and Görtz
[12] show a technique of data fusion they refer to as
Hierarchical Kriging. A similar principle is investigated
by Xiong et al. [24]. The idea is to build a surrogate
model of the low fidelity aerodynamics, such as blade
element theory coupled with prescribed wake models
and calibrate this surrogate model with high fidelity
CFD samples. The gain comes from using a lot of low
fidelity samples to cover the global landscape of the
optimization and only refine the model in the regions
of interest with the high fidelity model.
The outline of this paper explains in detail the em-
ployed variable fidelity optimization framework from
the general outline to the employed surrogates up the
optimization techniques and goes over practical aero-
dynamic models for the planform optimization of rotor
blades. The suitability of this methodology is demon-
strated with two test cases. A single objective viscous
high fidelity CFD optimization as well a multi-objective
optimization for inviscid mid fidelity CFD using multiple
planform parameters.

2 SURROGATE BASED OPTIMIZATION
WITH VARIABLE FIDELITIES

This section explains the general outline of surro-
gate based optimization (SBO) and the additions to be
made if variable fidelity methods are employed. The
general aim of surrogate based optimization is to de-
crease the amount of required (high fidelity) simula-
tions in an optimization process and substitute these
with a surrogate model. The optimizer then seeks the
point of interest in the surrogate model. Usually this
point is recomputed with the simulation, and the result
is fed back into the surrogate model to enhance it and
re-perform the optimization. This is repeated until a
stopping criterion is met. A good stopping criterion is
the design confidence, which is explained in detail by
Xiong et al. in [24]. The design confidence expresses
the probability that the current best design cannot be
improved by a pre-specified value anymore. For ex-
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Figure 2: Variable Fidelity Optimization Process

ample if the a design confidence is above 90% twice
in a row during the update cycle, the optimization is
stopped.
The single fidelity surrogate based optimization is
sketched in the gray box in Fig. 2. At the beginning
of a surrogate based optimization, a design of experi-
ments (DoE) is executed in which samples of the high
fidelity simulation are spread out in the design space
to gather initial information of the goal function. After-
wards the adaptive or update sampling is started. One
well known approach given from the Efficient Global
Optimizer (EGO) algorithm, as presented by Jones et
al. [8] is to then seek for the expected improvement
(EI) within the surrogate model, which yields a good
trade-off between improving on the accuracy of the
surrogate model as well as finding the best design.
The point with the highest expected improvement is
then sampled with the simulation.

The surrogate based optimization process is ex-
tended for variable fidelity optimizations by including a
design of experiments for the low fidelity simulations,
too. The low fidelity samples allow for the creation
of a variable fidelity surrogate model in combination
with the high fidelity samples. Looking at Fig. 2, the
difference between single fidelity and variable fidelity
optimizations is the top part above the gray box. The
plan is to reduce the computational effort required to
generate an accurate surrogate model. A demonstra-
tion is given in Fig. 3, where a 1D-slice through a 4D
surrogate model is plotted. The three given lines are
the visualizations of different surrogate models. The
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ŷHFM
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Figure 3: Demonstration of the improved accuracy of
variable fidelity models.

dashed blue line corresponds to the surrogate model
of the low fidelity model, here inviscid Euler computa-
tions, while the red line corresponds to the surrogate
model of the high fidelity viscous Navier-Stokes solu-
tions. The blue line was generated using 256 Euler
samples, while the red line consists of only 8 Navier-
Stokes samples. Combining both sample sets yields
the green line, the variable fidelity surrogate model,
which matches the validation samples with black Xs
the best.
In the following, the technique behind the variable fi-

delity surrogate model is explained, as well as the opti-
mization technique employed for this surrogate based
optimization. Lastly the selected aerodynamic mod-
els are presented, before presenting the optimization
results.

3 VARIABLE FIDELITY SURROGATES

The underlying variable fidelity method is referred
to as Hierarchical Kriging as published by Han and
Görtz [12]. It is similar to the technique presented by
Xiong et al. [24] and is also related to Kriging with a
drift. It differs from Co-Kriging as it does not directly
correlate low- and high fidelity samples within the
correlation matrix. To understand this method, the
principal of universal Kriging is explained first, which
is used for comparison between single- and variable
fidelity surrogate based optimizations.

3.1 Regular Kriging

This section briefly covers the Kriging methodology.
It shall help to understand the difference of single and
variable fidelity Kriging. For a more detailed descrip-
tion of Kriging, the book by Forrester et al. [2] is rec-
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Figure 4: Trend Function and Kriging

ommended.
While ordinary Kriging assumes a constant trend re-
ferred to as the weighted mean of the sampled data
responses ~ys, universal Kriging employs a trend func-
tion ftrend(~x) of higher polynomial degree based upon
the design variables ~x. Kriging then corrects the er-
ror between the trend function and the the sample re-
sponses through the use of radial basis functions ex-
pressed by εrbf (~x), and can be written as follows:

(1) ŷ(~x) = ftrend(~x) + εrbf (~x)

A graphical interpretation is depicted in Fig. 4. The
blue dashed curve is obtained from a polynomial trend
function of degree two from the four samples in black.
It regresses the data points as the system of equations
is overdetermined for this type of polynomial function.
The correction is represented by the red curve, which
is the trend function ftrend(~x) plus the added radial
basis function correction εrbf (~x).
In Kriging the determination of the coefficients differs

slightly from a regular regression model. While the
ansatz function looks the same for a polynomial model
of the degree of two:
(2)

ftrend(~x) = β0 +
d∑
k

(βkxk +
k∑
l

(β(d+l)xkxl)) = ~β · ~f

the determination of the these coefficients ~β is
weighted with the inverse of the correlation matrix Ψ:

(3) ~β = (FT Ψ−1F)−1(FT Ψ−1~Ys)

with F being the regression matrix composed of the
regression vectors ~f = (1, x1, ..., xd, x

2
1, ..., x

2
d) for each

data point ~xi. The correlation matrix is composed of
the corrections of each sample with each other. The
here applied basis function is the classical Kriging ba-
sis function, and an entry in the correlation matrix is



computed as follows:

(4) RBFKriging = exp(−
d∑
k

θk|~xi − ~xj |pk)

where θk and pk are hyper parameters of the Kriging
model, which allow it to be tuned for best prediction ca-
pabilities. To determine these hyper parameters, the
concentrated maximum likelihood is maximized:

(5) ln(L) ≈ −n
2

ln(σ̂2)− 1
2

ln |Ψ|

with the model variance σ̂2 being:

(6) σ̂2 =
(~Ys − F~β)T · (Ψ−1(~Ys − F~β))

n

For a better condition of the correlation matrix as
well as to deal with noisy functions, which can occur
when flow solutions cannot be converged sufficiently,
a noise constant λ can be added to the diagonal of the
correlation matrix. This will regress the model slightly,
yet not as much as a regression model. This pro-
cedure is valuable for deterministic computer exper-
iments, where the error is of systematic nature and
cannot be attributed to chance. A repetition of a sam-
ple will yield the same results again. This constant is
then also tuned by adding it to the parameter list of the
concentrated maximum likelihood optimization. A note
on the tuning process is made in Section 4.2.
The Kriging error function is then determined by:

(7) εrbf (~x) = ~ψ(~x)Ψ−1(~ys − F~βT )

with ~ψ being the correlation vector build from all in-
dividual correlations of the predicted point with the
points in the data set. The term Ψ−1(~ys − F~βT ) is
stored as the weight vector ~W for computational effi-
ciency.

3.2 Hierarchical Kriging

The concept of Hierarchical Kriging is to exchange
the polynomial trend function with a low fidelity surro-
gate model, which itself is based upon regular Kriging,
or, in case of multiple fidelities used, upon another Hi-
erarchical Kriging model. The proposal by Han and
Görtz [12] is to multiply the low fidelity model ŷlfm with
a model constant ρ which then yields the trend func-
tion:

(8) ftrend(~x) = ρŷlfm(~x)

while Xiong et al. [24] add an additional constant off-
set γ to the trend:

(9) ftrend(~x) = ρŷlfm(~x) + γ

The author has his own variation and uses:

(10) ftrend(~x) = ρŷlfm(~x) +
d∑
k

(βkxk)

which yields a mix of first order polynomial model and
the low fidelity. The to be determined coefficients are
handled similarly to universal Kriging, thus the exten-
sion to Hierarchical Kriging from an existing univer-
sal Kriging framework is made quickly. The regres-
sion vector is rewritten as ~f = (ŷlfm(~x), x1, ..., xd). An
advantage of Hierarchical Kriging, compared to Co-
Kriging is that the problem is split into two smaller
correlation matrices, instead of a big single one. The
number of entries in correlation matrices for Hierarchi-
cal Kriging is n2

lfm+n2
hfm, which grows slower than the

size of a Co-Kriging correlation matrix (nlfm +nhfm)2.
The statistical properties of expected improvement are
then based upon the low fidelity trend and the high fi-
delity error estimation, which leads to an improved cor-
rection as high fidelity samples are further spread out
than with Co-Kriging. Here the variable fidelity error
estimation is also based upon the statistical error of
the low fidelity error, which is zero at places where low
fidelity simulations exists, thus the chance of placing a
high fidelity sample there for correction is smaller.

4 OPTIMIZATION TECHNIQUES

4.1 Pareto Front Search

The optimization framework follows a similar idea
as the EGO algorithm as presented in Jones et al.
[8]. The surrogate model is sought for the point with
the best expected improvement. A sample is then
placed at this position and the response is fed back to
the surrogate model. This technique is adapted with
the major difference in the search strategy and the
application of a variable fidelity surrogate.

The general outline of the multi-objective optimiza-
tion technique is sketched in Fig. 5. First a design
of experiments is spawned upon the surrogate
model, which is used as the initial population of of an
differential evolutionary algorithm. This algorithm is
used to find the Pareto front. In the last step, a local
search algorithm refines the front.
In detail, the design of experiments is based upon a
central voronoi tessellated (CVT) hypercube as de-
scribed in Ju et al. [17] with a Hammersley sequence
[11] as the initial hypercube before the tessellation.
This ensures a good space filling hypercube which
allows to capture as much information as possible.
The differential evolutionary algorithm is based upon
the development by Das et al. [22] and is modified in
such a way that individuals are replaced if they are
superseded by their offspring in all goal functions.
This yields the Pareto front after a sufficient amount of
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generations. In the last step, each sample of the then
given Pareto front is handed over as starting point for
the simplex algorithm by Nelder and Mead [19] which
is applied for each goal function. The history of points
of the local searcher is kept, and later on the Pareto
front is extracted from this history. The point with
the highest statistical error from the Kriging model is
sampled. This guarantees that samples do not bunch
up in the same region and a certain diversity of the
members on the Pareto front of the truth function is
achieved.

4.2 Tuning of Surrogate Models

As mentioned in Section 3.1, the hyper parame-
ters of the Kriging models can be tuned to increase
the maximum likelihood function. The optimization
process is similar to the one for finding the Pareto
front, yet posed as multiple single objective problems.
During the multi-objective optimization process, for
each goal function an individual Kriging model is con-
structed and tuned.

5 AERODYNAMIC MODELS

A wide range of aerodynamic models for helicopter
rotor blades is available. With increasing fidelity the
computational effort of these methods grows rapidly.
Simple aerodynamic models such as the blade ele-
ment theory, or blade element theory enhanced with
wake modeling can be computed in matter of minutes
on current work stations, while panel methods with
free wake models require hours to complete, and CFD
methods can easily obtain run times of days or even
weeks. Depending on the parametrization of the ro-
tor blade, some methods may not be applicable. As
the anhedral of the blade is strongly driven by the

blade-vortex interaction, a model neglecting this effect
would be improper for (pure) anhedral optimizations of
a blade. The selection of the different stages for the
individual flight conditions are introduced in the follow-
ing.

5.1 Low Fidelity Simulations

In this work, the aero-mechanic code HOST [6]
computes the blade deformations and also takes over
the role of trimming the rotor blade. For low fidelity
hover simulations, the FISUW model based on an
accelerated potential theory and developed by Basset
et al. [20] improves the downwash computations of
the blade element theory. The computational times
are small and FISUW is robust, yet will not capture
direct blade vortex interaction effects. For forward
flight computations, the prescribed wake model
METAR [5] corrects the induced velocities, which is
not robust enough for hover computations, but grants
good results in forward flight cases.

5.2 Mid Fidelity Simulations

For the mid-fidelity setup, Euler computations are
performed using similarly coarse grids as Imiela
[14], yet without resolving the boundary layer, which
reduces the number of cells by a third, mesh size are
printed in Table 1. Hover is assumed to be steady,
while forward flight computations are modeled using
a single blade approach. The flower solver is the DLR
FLOWer code [16].

5.3 High Fidelity Simulations

The high fidelity aero-loads are also computed by
FLOWer with which a complete helicopter [9] has al-
ready been simulated. In both cases, hover and
forward flight, Navier-Stokes computations are per-
formed, which sufficiently resolves the boundary layer
as well as the tip vortex of the blade. In hover a peri-
odic mesh is generated, which reduces the computa-
tional effort as only one blade is computed. In forward
flight, the Chimera technique is applied to model the
unsteady effects of all five blades. The Wilcox k − ω
turbulence model is used. The grid setup is identical
to the one by Imiela [14], with the mesh dimensions
also listed in Table 1.

6 SINGLE OBJECTIVE OPTIMIZATION

This initial tests demonstrates the overall applicabil-
ity of variable fidelity methods to the optimization pro-
cess of helicopter rotor blades.



case hover forward flight
locations radial chord radial chord
FISUW/METAR 31 - 25 -
Euler 25 61 32 96

197,142 cells 380,016 cells
Navier-Stokes 61 201 64 193

1,376,256 cells 10,101,760 cells

Table 1: Discretization of the blade and flow field for
the individual solvers and flight conditions.

Parameter baseline lower upper
value bound

hover/forward flight
anhedral [∗cref ] 0.0 -1.0/-0.3 1.0/0.3
tip chord [∗cref ] 1.0 0.5 1.5
sweep [∗cref ] 0.0 -1.0/0.0 1.0
twist [◦] -4.32 -20.0/-16.0 0.0/-4.0

Table 2: parameter ranges. reference chord length
cref = 0.14m. hv=hover and ff=forward flight variables

6.1 Parameters and Flight Conditions

In order to have a reference to the multi-objective
simulations, a single fidelity optimization is performed.
This has been done for both flight conditions, hover
(hv) and forward flight (ff). Both have been trimmed
for a vertical force of 4400N at a tip Mach number of
0.646. In forward flight the rotor had to counter a virtual
fuselage drag of 530N at an advance ratio of µ = 0.38.
The considered parameters include anhedral, chord,
sweep, and twist. Anhedral and sweep are specified
through the offset at the blade tip, while chord refers
to the tip chord length. All three parameters are varied
parabolically, and start at 80.6% of the rotor radius.
Twist on the other hand is varied linearly over the full
radial span. The parametrization of the rotor is visu-
alized in Fig. 6 and the ranges of the design parame-
ters are listed in Table 2. The baseline values match
the 7A description, a rectangular blade with a small
blade twist. In forward flight the parameter bound-
aries are shifted towards a smaller design space, as
for example a forward sweep or a strong an/- dihedral
will cause severe aero-elastic problems leading to un-
achievable trim conditions. Hover in contrast allows a
greater spectrum and thus the parameter space is en-
larged in comparison.
The resulting goal function values are always scaled

with results of the reference blade for each individ-
ual methodology and flight condition. Written out this
means:
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Figure 6: The parameter anhedral, chord, sweep and
twist for the modification of a 7A rotor.

6.2 Optimization Setup

As the single objective optimization is part of the
benchmark between single- and variable fidelity sur-
rogate based optimizations, a set of various design of
experiments is created. For the single fidelity (SF) op-
timizations three different design of experiments are
created. The first sampling only includes one sam-
ple, which is the baseline rotor. The other two design
of experiments are central voronoi tessellated (CVT)
Hammersley sequences, one is created with 8 sam-
ples, the other one with 20.
For the variable fidelity (VF) optimizations, two dual-
fidelity test are created and one triple fidelity case. The
first dual fidelity cases also only consist of one sample,
yet this sample is generated at the location of the op-
timum found in the mid-fidelity surrogate model. The
mid-fidelity surrogate model is created by running a full
factorial design of experiments with 256 inviscid Euler
CFD computations. As the second design of experi-
ments is for the dual-fidelity case, the central voronoi
tessellated (CVT) Hammersley sequence with 8 sam-
ples from the single fidelity optimization is recycled.
The triple fidelity setup uses the surrogate models,
which are the results of the optimizations in [23]. The
design of experiments for the low fidelity model con-
sists of a full factorial with 256 samples, while the
mid fidelity Euler computations have 20 samples in
the design of experiments and 40 in the update cy-
cle. This yields a very accurate mid-variable-fidelity
model around the mid fidelity optimum. The overall
computational effort for the low- and mid fidelity sam-
ples is slightly less than two high fidelity computations
in hover and forward flight for this case. The best rotor



case low mid high updates
fidelity

SF Point - - 1 15
SF 08 CVT - - 8 15
SF 20 CVT - - 20 15
VF Point - 256 1 15
VF 08 CVT - 256 8 15
VF Point 3F 256 20+40 1 15

Table 3: Number of samples used for each single ob-
jective test case.

from this mid-fidelity surrogate model is sampled as
the initial sample for the high fidelity surrogate model.

Table 3 summarizes the sampling strategies and
number of simulations performed for each optimiza-
tion.

6.3 Results of Single- and Variable Fidelity Opti-
mizations

Fig. 7 plots the convergence of the different opti-
mization runs for the hover case. The dashed lines
represent the single fidelity optimizations (SF), while
the continuous lines are for the variable fidelity opti-
mizations (VF). Iteration 0 is the first iteration where
the surrogate model is sought for the point of the great-
est EI. The iterations before the thick red line belong to
the design of experiments and are thus random. Rotor
designs that performed worse than the baseline rotor
are not shown.

A greater design of experiments increases the
chance of a sample being closer towards the optimum,
which can be seen for the run of SF 20 CVT. Here
a good point is spotted in the design of experiments
early on, and thus the update cycle becomes more ef-
fective. In Table 4 the cost for reaching a hover perfor-
mance better than 0.915 is listed, which is the highest
best goal function value obtained from all runs. The
cost is scaled with the average computational time for
one high fidelity sample. For single fidelity, the differ-
ence between sampling a single point or 8 samples
up front is similar in total cost, yet using 20 samples in
the design of experiments already decreases the effi-
ciency in terms of cpu time. However, a design of ex-
periments of 20 samples can be parallalized if a suffi-
cient number of processors is available and a theoret-
ical wall clock time of 6 samples would be necessary
if the load can be split up as such. For the variable
fidelity optimization case, the number of required high
fidelity samples is the lowest as expected. However,
for dual fidelity case, the number of samples computed
in the mid fidelity design of experiments is fairly costly.
A shrinkage of design of experiments of the mid fidelity
simulations or re-using the surrogate models of opti-
mizations done in [23] might be beneficial. The triple
fidelity sampling demonstrates this as less than fourth

case low mid high total cost
fidelity

SF Point - - 18 18.0
SF 08 CVT - - 18 18.0
SF 20 CVT - - 25 25.0
VF Point - 8.0 7 15.0
VF 08 CVT - 8.0 12 19.0
VF Point 3F 3.5e-3 1.9 8 9.9

Table 4: Cost for each hover optimization test case
measured in theoretical number of high fidelity sam-
ples. The mean cost of a high fidelity sample is 160
cpu hours.

case low mid high total cost
fidelity

SF Point - - 16 16.0
SF 08 CVT - - 16 16.0
SF 20 CVT - - 29 29.0
VF Point - 7.3 5 13.3
VF 08 CVT - 7.3 10 17.3
VF Point 3F 1.6e-3 1.7 1 2.7

Table 5: Cost for each forward flight optimization test
case measured in theoretical number of high fidelity
samples. The mean cost of a high fidelity sample is
2600 cpu hours.

of the mid fidelity samples is necessary, while the cost
for the lowest fidelity is negligible. As shown in [23], a
mid-fidelity optimization with single-fidelity converges
sufficiently with around 20 samples, 12 in the design of
experiments and 8 in the update process. This would
in theory be the cost of a less than one high fidelity
sample. Under this assumption the application of the
variable fidelity framework leads always to a reduction
in total computational time in hover.

Looking at the examples in forward flight, the effec-
tiveness of the variable fidelity technique increases.
Fig. 8 shows that the triple fidelity setup already finds
the best point as the first sample, which is attributed to
the similarity of the mid- and high fidelity optimum as
well as the good low fidelity trend, which was already
observed in [23]. Similar to hover, the point sampling
proves to be the most efficient technique for this op-
timization. Yet, for the 8 CVT run, the cost for vari-
able fidelity is higher than the single fidelity, due to
the expensive mid-fidelity sampling. Overall, the for-
ward flight optimization requires less high fidelity up-
date samples with the exception of the 20 CVT single
fidelity run. Reason for this is that the large number of
points in the initial stage already saturates the model
too much that the best point has a fairly low expected
improvement as the predicted error is too low. The
costs for each individual optimization reaching a goal
function smaller than 0.944 is given in Table 5.

Deducting from these optimizations the triple fidelity
route proves to be viable and the most efficient way for
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Figure 7: Comparison single (SF) and variable fidelity
(VF) optimization in hover.
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Figure 8: Comparison single (SF) and variable fidelity
(VF) optimization in forward flight.

aerodynamic rotor blade optimizations. On the other
hand, single point samplings in the initial design of ex-
periments is a possibility to decrease the overall com-
putational cost. However, if parallel computing is avail-
able, small random design of experiments minimize
the number of update samples significantly, and de-
pending on the resources available a larger design of
experiments should be run.

7 MULTI OBJECTIVE OPTIMIZATION

This section covers the findings when applying the
variable fidelity methodology towards multi-objective
optimizations. The same planform parametrization is
kept while the parameter boundaries for forward flight
are chosen. A benchmark suite for mid-fidelity is per-
formed, which allows the testing of different design of
experiments setups. Later on, three different blade
designs from the Pareto front are investigated.

7.1 Optimization Setup

Benchmarking single objective optimizations is eas-
ier in the sense that if the optimal configuration is
known the current best objective function call can be
compared against it and the strategy which reaches
this point faster is the better. For multi-objective this
is rather tricky as in the Pareto sense not one but
multiple ’best’ solutions exist. In order to determine
the efficiency of single- and variable fidelity optimiza-
tions, the Pareto front is sought for a specific number
of simulation calls after different initial design of exper-
iments. The better optimization strategy should have a
more refined Pareto front, which is compared to a ref-
erence solution. The reference solution is generated
by a large sampling of the design space to create a

case low fidelity mid fidelity
DoE updates DoE updates

SF 2 Points - - 2 40
SF 04 CVT - - 4 40
SF 12 CVT - - 12 40
SF 20 CVT - - 20 40
VF 2 Points 40 16 2 40
VF 4 CVT 40 16 4 40
VF 12 CVT 40 16 12 40
VF 20 CVT 40 16 20 40

Table 6: Number of samples used for each test case
in the mid-fidelity multi-objective setup.

very accurate surrogate model. To minimize the com-
putational effort, chord and sweep is set to 0.5 and
1.0, which are the optimal settings in both flight con-
ditions for the mid-fidelity simulations. Thus, only the
anhedral-twist design space is sampled uniformly with
five samples in each direction leading to a full facto-
rial cube of 25 samples. The reference Pareto front
is then found by applying the optimization technique
mentioned in Section 4.1.
The different sampling strategies are listed in Table 6
for the mid-fidelity optimization based on inviscid Euler
CFD computations.

7.2 Results of Multi-Objective Optimizations

The Pareto fronts which are obtained after each
optimization run are presented in Fig. 9 and Fig. 10 for
single- and variable fidelity optimizations respectively.
The scattered dots present the simulated samples,
while the continues lines are the Pareto fronts which
are found within the surrogate model after the final
optimization run. The magenta line depicts the
reference solution.
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Figure 9: Single Fidelity Pareto front after 40 samples.
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Figure 10: Variable Fidelity Pareto front after 40 sam-
ples.

case forward flight hover
design vector performance design vector perfomance

reference (0.17,0.5,1.0,-7.40) 0.903 (-0.3,0.5,1.0,-10.9) 0.903
SF 2 Points (0.15,0.5,1.0,-7.20) 0.904 ( 0.01,0.5,0.0,-16.0) 0.905
SF 04 CVT (0.13,0.5,1.0,-7.20) 0.904 ( 0.02,0.5,0.0,-14.1) 0.904
SF 12 CVT (0.14,0.5,1.0,-7.31) 0.904 (-0.3,0.5,1.0,-11.9) 0.904
SF 20 CVT (0.20,0.5,1.0,-7.71) 0.904 (-0.25,0.5,1.0,-11.2) 0.904
VF 2 Points (0.16,0.5,1.0,-7.28) 0.904 (-0.3,0.5,1.0,-10.6) 0.904
VF 4 CVT (0.16,0.5,1.0,-7.29) 0.903 (-0.25,0.5,1.0,-10.7) 0.904
VF 12 CVT (0.19,0.5,1.0,-7.63) 0.904 (-0.3,0.5,1.0,-12.8) 0.903
VF 20 CVT (0.16,0.5,1.0,-7.41) 0.904 (-0.3,0.5,1.0,-10.7) 0.904

Table 7: The Pareto optimal anchors of the simulated samples. The design vector consists of (anhedral, chord,
sweep, twist).
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Looking at the Pareto front of the single fidelity run
in Fig. 9, it can be seen that for small design of
experiments the samples are far away from the Pareto
front, and the resulting surrogate model is still very
inaccurate. In the case of the 2 Points sampling,
the surrogate Pareto front under predicts the goal
functions greatly, as the red line is far off to bottom
right of the plot. The 4 CVT and 12 CVT optimizations
gradually move towards the reference front. The
20 CVT sampling yields acceptable results, yet the
hover goal function is over predicted. The samples
are sparse in the region of better hover performance,
the bottom right part on the plot leading to these
inaccuracies. In comparison, all the surrogate Pareto
fronts of the variable fidelity test cases are in close
vicinity of the surrogate model with the simulated
samples being closer to the Pareto front. However,
the updates from the 2 Points sampling case of the
variable fidelity optimization are also further away
from the reference solution, and the same effect as for
single fidelity is seen. A larger design of experiments
improves the prediction accuracy of the surrogate
model and as well will place more update samples
on the Pareto front. In contrast to the single objective
optimizations the saturation of the surrogate models is
not seen. Reason for this is that the region of interest
is greater than in a single objective optimization, thus
the samples are further spread out and not centered
around one optimum.
Another sanity check is the comparison of the anchor
points of each Pareto front found. If these anchors
match with the ones from reference front, it is clear
that the multi-objective optimization also includes
the optimal locations of individual objectives. In
Table 7 the reference Pareto anchors along with
the anchors of the different optimization runs are
compared against each other. Except for the first two
single fidelity optimizations, which indicate a different
location of the hover optimum, all anchor points are
found within an acceptable tolerance. The reason
for the two single fidelity optimization predicting a
different anchor point is that the hover optimum is
shallow in the direction of sweep. On the one hand,
this expresses the overall robustness of the process,
while on the other hand the variable fidelity proves to
be superior when using a reduced number of initial
samples.
A different way of measuring the accuracy of the
surrogates is to look at the spread of design variables
on the Pareto front. Thus in Fig. 11 and Fig. 12 the
variation of twist over anhedral is plotted, where it
can be seen how one parameter is traded for the
other. Hence the determination cannot be done
analytically, the determination is done by using the
numerical Pareto front search algorithm as mentioned
in Section 4.1. This does not yield a smooth line, yet
the trend of a hook like shape for the parameters on

the Pareto front is identified.

The parameters on the single fidelity front are more
spread out in the anhedral-twist space. The more
initial samples are used, the closer the agreement
with parameters of the reference front. For the vari-
able fidelity optimizations all samplings show the hook
shape spread of the samples thus demonstrating
that the accuracy of the resulting surrogate model is
greater than that of the single fidelity model. Still,
greater design of experiments lead to more points
closer to the reference Pareto solution.

7.3 Rotors on the Pareto Front

With the Pareto front available the trade-offs of the
different designs can be discussed. Three designs
from the Pareto front are selected for a closer inves-
tigation. The two anchor points, namely the best for-
ward flight and the best hover flight rotor, and a trade-
off rotor are chosen, with the results taken from the op-
timization runs. The trade-off rotor is found in the mid-
dle of the Pareto front, where the change of hover per-
formance is payed by almost the same change in for-
ward flight performance. The design variables along
with their respective performances are given in Ta-
ble 8, and the rotors are visualized in Fig. 13, Fig. 14,
and Fig. 15.

Looking at the difference in sectional torque be-
tween forward flight and trade-off rotor Fig. 16, the
trade-off rotor is only little degraded in comparison
with the hover rotor, where the difference to the for-
ward flight rotor is plotted in Fig. 17. As the twist is al-
most similar for the best hover rotor to the twist of the
trade-off rotor, the major losses are attributed to the
strong anhedral. The great anhedral causes a loss of
thrust on the outboard rotor stations and the collective
pitch is increased in order to produce more thrust at
the inner stations. At the same time, the pitching mo-
ment of the full rotor is grows as well as the roll mo-
ment decreased, which is reflected by change in cyclic
control angles listed in Table 9. The rotational position
of the tip is plotted in Fig. 18, which also leads to the
indicator that more thrust needs be generated as the
general angle of setting is greater. Even though the
best hover rotor mostly saves power at the blade tip,
the rise in drag to regain the thrust in the inner stations

case anhedral twist forward hover
flight perfor-

performance mance
Forward 0.170 -7.40 0.903 0.929
Trade-off 0.215 -9.81 0.910 0.915
Hover -0.300 -10.9 0.947 0.903

Table 8: Parameters and performances for the indi-
vual rotors of the trade-off study.



Figure 13: Sketch of best forward flight rotor.

Figure 14: Sketch of trade-off rotor rotor.

Figure 15: Sketch of best hover rotor.

configuration forward flight trade-off hover
collective pitch θ0 17.0 18.4 20.7
cyclic cosine θc 1.2 1.1 -0.3
cyclic sine θs -4.1 -4.2 -4.9

Table 9: Trim angles for the indidual rotor configura-
tions at forward flight.

is an unwanted side effect for forward flight.
Moving onto the hovering performances of the indi-

vidual rotors, Fig. 19 depicts the gains and losses over
the radial span. The forward flight rotor draws more
power on the outside part than the hover optimized
rotor. Due to the straight tip, the outboard station pro-
duces more lift and thus more induced drag at the tip.
On the inboard part the rotor then requires less power
as less lift has to be created in this region. The trade-
off rotor is closer to the hover rotor, yet due the missing
adjustment at the tip to alleviate the lift peak, the drag
remains high in that region.

8 CONCLUSION

Based on findings in [23] the variable fidelity frame-
work for helicopter rotors has been extended from low-
mid fidelity optimization to low-mid-high fidelity opti-
mizations as well as multi-objective problems.
The initial single objective optimizations at high fidelity
accuracy revealed that the triple fidelity approach is
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Figure 16: Torque difference of the trade-off rotor
minus the best forward flight rotor in forward flight.
Red zones indicate a greater power consumption, blue
zones a power saving in comparison to the best for-
ward flight rotor.
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well suited for rotor blade optimizations and saved
up to 83.1% computational time in forward flight and
45.0% hover flight when comparing to the least costly
single fidelity optimization.
The modification of the framework towards multi-
objective capability proved to be very practical. For
the single fidelity optimizations, only a few points could
be placed close to the reference Pareto front and the
according surrogate models required a great increase
in samples to bring these sampled points closer to
the reference front. For the variable fidelity surrogate
model, all extracted Pareto fronts were in good agree-
ment with the reference solution. Yet, for the smaller
design of experiments, not too many update samples
were placed towards the reference Pareto front. This
effect improved with larger design of experiments. The
overall gain of using the variable fidelity technique was
clearly demonstrated.
Comparing three different rotors from the resulting
Pareto front, the drawbacks and benefits of the differ-
ent rotors are seen. With the sensitivities of the de-
sign parameters known from the surrogate models, a
rotor suitable for a specific mission can be selected.
In terms of aerodynamic performance a reduction in
twist and a slight dihedral prove to be more advanta-
geous in forward flight, while the opposite, high twist
and anhedral, are helpful in hover flight, which is in
agreement with the findings by Hollands et al. [18] for
the an-/dihedral settings. A good trade-off has been
identified, a rotor blade which featured a high twist with
a slight dihedral. This blade has to struggle less with
great elastic deformations in forward flight, while still
maintaining a good hover performance.
Future work will include more parameters and con-
straints, while at the same time applying this frame-
work to industrial scaled rotors.

9 Copyright Statement

The authors confirm that they, and/or their com-
pany or organization, hold copyright on all of the orig-
inal material included in this paper. The authors also
confirm that they have obtained permission, from the
copyright holder of any third party material included
in this paper, to publish it as part of their paper. The
authors confirm that they give permission, or have ob-
tained permission from the copyright holder of this pa-
per, for the publication and distribution of this paper
as part of the ERF2013 proceedings or as individual
offprints from the proceedings and for inclusion in a
freely accessible web-based repository.

References

[1] J. Peter A. Dumont, A. Le Pape and S. Huber-
son. Aerodynamic shape optimization of hover-



ing rotors using a discrete adjoint of the reynolds-
averaged navier-stokes equations. Journal of
American Helicopter Society, 56:032002–1–11,
2011.

[2] A. Sòbester A. Forrester and A. Keane. Engineer-
ing Design via Surrogate Modelling - A Practical
Guide. John Wiley & Sons Ltd., 2008.

[3] A. D’Andrea A. Massaro and E. Benini.
Multiobjective-multipoint rotor blade optimization
in forward flight conditions using surrogate-
assisted memetic algorithms. In 37th European
Rotorcraft Forum, 2011.

[4] L. Federico A. Visingardi and M. Barbarino. Blade
planform optimization for a dual speed rotor con-
cept. In 38th European Rotorcraft Forum, 2012.

[5] G. Arnaud and P.Beaumier. Validation of
r85/metar on the puma rae flight tests. In 18th
European Rotorcraft Forum, 1992.

[6] K. Kampa W. von Grünhagen P.-M. Basset
B. Benoit, A.-M. Dequin and B. Gimonet. Host,
a general helicopter simulation tool for germany
and france. In American Helicopter Society 56th
Annual Forum, Virginia Beach, Virginia, May 2-4,
2000, 2000.

[7] K. B. Collins. A Multi-Fidelity Framework for
Physics Based Rotor Blade Simulation and Op-
timization. PhD thesis, Georgia Institute of Tech-
nology, 2008.

[8] M. Schonlau D. R. Jones and W. J. Welch. Ef-
ficient global optimization of expensive black-
box functions. Journal of Global Optimization,
13:455–492, 1998.

[9] M. Dietz and O. Dieterich. Towards increased
industrial application of rotor aeroelastic cfd. In
35th European Rotorcraft Forum 2009, 2009.

[10] J-A. Desiderie D. Alfano-M. Costes E. R. Leon, A.
Le Pape. Concurrent aerodynamic optimization
of rotor blades using a nash game method. In
AHS 69th Annual Forum, 2013.

[11] J. M. Hammersley. Monte carlo methods for solv-
ing multivariate problems. Annals of the New
York Academy of Science, 86:844–874, 1960.

[12] Z.-H. Han and S. Görtz. A hierarchical krig-
ing model for variable-fidelity surrogate modeling.
AIAA Journal, 50-9:1885–1896, 2012.

[13] M. Imiela. High-fidelity optimization framework for
helicopter rotors. Aerospace Science and Tech-
nology, 23(1):2 – 16, 2012. 35th ERF: Progress
in Rotorcraft Research.

[14] M. Imiela. Mehrpunktoptimierung eines Hub-
schrauberrotors im Schwebe- und Vorwärts-
flug unter Berücksichtigung der Fluid-Struktur-
Wechselwirkung. PhD thesis, Institut für Aero-
dynamik und Strömungstechnik Braunschweig,
2012.

[15] C. Johnson and G. N. Barakos. A framework for
the optimization of a berp-like blade. In 38th Eu-
ropean Rotorcraft Forum, 2012.

[16] Aumann P. Bartelheimer W. Bleecke H. Eisfeld
B. Fassbender-J. Kuntz M. Lieser J. Monsen E.
Heinrich R. Mauss M. Raddatz J. Reisch U. Roll
B. Schwarz T. Kroll, N. Flower installation and
user handbook, release 116. Technical report,
German Aerospace Center (DLR), 2008.

[17] Q. Du L. Ju and M. Gunzburger. Probabilistic
methods for centroidal voronoi tessellations and
their parallel implementations. Parallel Comput-
ing, 28:1477–1500, 2002.

[18] E. Krämer M. Hollands, M. Kessler. Influence of
an-/dihedral and of different blade-shapes on per-
formance and aeroacoustics of an isolated rotor.
In 38th European Rotorcraft Forum, 2012.

[19] J.A. Nelder and R. Mead. A simplex function for
minimization. Computer Journal, 8-1:308–313,
1965.

[20] J.V.R. Prasad P.-M. Basset, O. Heuze and
M. Hamers. Finite state rotor induced flow model
for interferences and ground effect. In American
Helicopter Society 57th Annual Forum, 2001.

[21] K. Lee G. Iaccarino S. Choi, M. Potsdam and
J. J. Alonso. Helicopter rotor design using a
time-spectral and adjoint-based method. In 12th
AIAA/ISSMO Multidisciplinary Analysis and Op-
timization Conference 10 - 12 September 2008,
Victoria, British Columbia Canada, 2008.

[22] U. K. Chakraborty S. Das, A. Abraham and
A. Konar. Differential evolution using a
neighborhood-based mutation operator. IEEE
Transactions on Evolutionary Computation, 13-
3:526–, 2009.

[23] G. Wilke. Variable fidelity optimization of required
power of rotor blades: Investigation of aerody-
namic models and their application. In 38th Eu-
ropean Rotorcraft Forum, 2012.

[24] W. Chen Y. Xiong and K.-L. Tsui. A new
variable-fidelity optimization framework based
on model fusion and objective-oriented sequen-
tial sampling. Journal of Mechanical Design,
130(11):111401, 2008.


	INTRODUCTION
	SURROGATE BASED OPTIMIZATION WITH VARIABLE FIDELITIES
	VARIABLE FIDELITY SURROGATES
	Regular Kriging
	Hierarchical Kriging

	OPTIMIZATION TECHNIQUES
	Pareto Front Search
	Tuning of Surrogate Models

	AERODYNAMIC MODELS
	Low Fidelity Simulations
	Mid Fidelity Simulations
	High Fidelity Simulations

	SINGLE OBJECTIVE OPTIMIZATION
	Parameters and Flight Conditions
	Optimization Setup
	Results of Single- and Variable Fidelity Optimizations

	MULTI OBJECTIVE OPTIMIZATION
	Optimization Setup
	Results of Multi-Objective Optimizations
	Rotors on the Pareto Front

	CONCLUSION
	Copyright Statement

