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Abstract

An aerodynamic optimization method is developed to define robust shapes for morphing airfoils for helicopter
blades. The morphing strategy consists of a conformable camber airfoil which changes over the period of
rotation of the blade to cope with the variable flow conditions encountered in forward flight. A robust or
uncertainty-based approach is used to compute a reliable morphing airfoil, providing a low variance with
respect to uncertainty affecting the operating conditions. In order to assess the effectiveness of the robust
method, several optimization problems are performed, from a classical two-point drag minimization with lift
coefficient constraint to a robust morphing camber optimization. The results of the optimization problems are
compared and discussed to highlight the features of the robust approach.

1 INTRODUCTION

Helicopter rotor blades present a real challenge to
aerodynamic design. In fact, rotor blades are re-
quired to operate with satisfactory performance in
extremely different conditions, depending on the az-
imuthal position and the advance ratio, and good
performance in one condition does not transfer to
another one. A trade-off solution must be pursued,
whose performance in each condition over the flight
envelope is sub-optimal. A very attractive solution
to this problem is the employment of a blade ca-
pable of changing its shape during flight, that is a
morphing blade. Morphing rotor design is a challeng-
ing and active area of research [1]: recent studies
have focused on conformable airfoils to reduce vibra-
tion [2] or postpone dynamic stall onset [3]. Because
morphing structures typically imply increased weight,
complexity and cost, an in-depth assessment of the
potential aerodynamic benefit of such an approach is
strongly recommended [4].

Additionally, the flow conditions encountered by
rotor blades may vary due to the effects of the blade
dynamics and flexibility, as well as the interaction
with vortices and wakes trailed from preceding blades.
It follows that the flow conditions considered at the

design stage for the definition of the optimal two-
dimensional section are usually affected by uncer-
tainty, not only because they are estimates of the
actual condition, but also because modelling involves
some level of approximation of the real flowfield. In
such a context, taking into account the variability of
the modelling parameters in the optimization proce-
dure is a possible way to result in a more reliable
optimal design. This is the goal of uncertainty-based
optimization. Specifically, robust optimization seeks
an optimal design that is minimally sensitive with re-
spect to changes of the uncertain parameters that de-
fine the problem. The result is a robust design that
maintains satisfactory performance also in off-design
conditions. Few works consider uncertainty in the
field of helicopter design [5, 6, 7]. In the application
to morphing structures, a high level of uncertainty
affects the modelling of the environmental conditions
encountered by the airfoil, and therefore robustness
becomes critical to define reliable design.

In this work, a robust aerodynamic optimization
method is developed to define robust shapes for mor-
phing airfoils. The morphing strategy consists of a
conformable camber airfoil which changes over the
period of rotation of the blade to cope with the vari-
able flow conditions encountered in forward flight.
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1. Advancing side2. Retreating side

Figure 1: Scheme of operating conditions.

Because the employment of robust strategies is new
to this application, an assessment of the performance
of the robust optimization and the morphing strategy
is presented. To this end several optimization prob-
lems are performed and compared, that may be cat-
egorised in the following types of optimization. The
first kind is a“classical”airfoil optimization in forward
flight condition, with a minimization of the drag coef-
ficient subject to a target lift coefficient for trimming
purposes. The second type is the robust optimization
in forward flight condition, namely an optimization
that seeks a shape with a lift-to-drag ratio robust
against uncertain operating conditions. Finally, an
aerodynamic optimization with a morphing camber
airfoil is tackled. These optimization problems are
described respectively in Sections 2, 3 and 4. Sec-
tion 5 presents a comparison of the results of these
problems.

2 FORWARD FLIGHT
OPTIMIZATION

The optimization method presented in this work are
developed to improve the aerodynamic performance
of the airfoil for a rotor blade in forward flight con-
ditions. Using a multi-point approach, two operating
conditions are considered, i.e. advancing side and re-
treating side, the conditions encountered by a specific
blade section at 90 and 270 degrees azimuth angles
(see Fig. 1). In the former condition the rotor blade
encounters transonic flow and low values of the angle
of attack. In the latter, the angle of attack is typi-
cally high and the local Mach number is close to the
incompressible limit. For the optimization problem
tackled in this work, the operating conditions for ad-
vancing and retreating sides are taken from the Mach
number–angle of attack cycle presented in Ref. [8,
p.296] and they are reported in Tab. 1.

The optimization of helicopter rotor airfoil in for-
ward flight consists typically in the minimization of
the drag coefficient CD ensuring the satisfaction of
lift and moment constraints. Examples of such an

Case α[deg] M [-] Re [-]

1. -1.5 0.75 4.6e6
2. 12.5 0.28 1.7e6

Table 1: Operating conditions.

Case CL CM

1. 0.025 0.08
2. 1.411 0.04

Table 2: Lift and moment constraints.

approach are given in Refs. [9, 10, 11]. In this work,
a target lift coefficient is set to consider a specific
trim condition and the moment coefficient is bounded
with a given threshold to avoid excessive loading on
the blade structure. The minimization problem can
be formulated as a multi-objective optimization. In
fact, an optimal shape for the advancing side would
be a thin, slightly cambered airfoil to postpone drag
rise to higher Mach number values, whereas the op-
timal shape in the retreating side should adapt the
camber to higher angle of attack, for instance with a
nose-droop. In mathematical terms, the bi-objective
optimization reads

minimize: (CD1
(x), CD2

(x))

subject to: CL1
(x) = CL1

CM1
(x) ≤ CM1

CL2(x) = CL2 CM2(x) ≤ CM2

by changing: x (1)

where x are the design variables. The subscript is
used to indicate (1) the advancing side and (2) the
retreating side. The values of the lift constraint CL
and moment constraint CM are set for each side with
the intent of producing a design that improves the
performance of the NACA 23012 airfoil, a classical
shape for helicopter rotors (see Tab. 2).

2.1 Design variables

Particular attention is drawn to the design variables.
First, to describe an airfoil shape with a finite set of
variables, a shape parameterization is required. The
airfoil shape is decomposed into the camber mean
line and the thickness distribution, with the intent
of changing the camber distribution over the blade
rotation period, while holding the thickness distribu-
tion fixed. In fact, the morphing airfoil considered in
the work is a conformable camber airfoil that changes
with a 1/rev frequency to enhance the aerodynamic
performance.

In particular, the camber mean line ζc(ψ) and the
thickness distribution ζt(ψ), expressed as a function
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of the chordwise coordinate divided by chord length
(ψ = x/c), are obtained by means of a shape param-
eterization based on the Class/Shape function Trans-
formation [12]. The parameterization is based on two
functions: a geometry class function C(ψ), which de-
termines a group of geometries, and a shape function
S(ψ) that defines the specific shape of the geome-
try. The parameterization for the camber line and
the thickness distribution reads

ζc(ψ) = Cc(ψ) Sc(ψ)

ζt(ψ) = Ct(ψ) St(ψ) (2)

where the subscript c and t refers to the camber and
thickness respectively. With respect to the original
formulation, the coordinate of the camber mean line
and thickness at the trailing edge are set to zero to
consider closed leading edge and zero geometric angle
of attack. In addition, the class functions are defined
as follows

Cc(ψ) = ψ(1− ψ) Ct(ψ) =
√
ψ(1− ψ). (3)

While the class function for the thickness distribu-
tion is the one suggested in Ref. [12] to define a
rounded nose distribution close to the leading edge,
the class function for the camber presents a linear
term to avoid vertical slope of the camber distribu-
tion at the leading edge.

The shape function S(ψ) is given by a Bernstein
polynomial of order n, whose coefficients represent
the design variables xs of the optimization problem.
A convergence study, not reported here for brevity,
suggested the employment of 4 design variables for
each distributions that yield to 10 design variables.
Finally, from the camber line and thickness distribu-
tion the upper surface ζu and lower surface ζl are
obtained applying the thickness perpendicular to the
camber line

ζu = ζc + ζt cos(θ)

ζl = ζc − ζt cos(θ), (4)

where θ = arctan
(

dζc
dψ

)
. Please note that also the

ψ coordinate of the resulting airfoil will be affected
by this addition of vectors.

In addition to the coefficients describing the shape
of the airfoil, the angle of attack can be regarded as
a design variable. In fact, it is possible to solve the
constrained optimization problem stated in Eq. (1)
by acting on the airfoil design variables xs to mini-
mize the drag coefficient and on the angle of attack
to track the target lift coefficient inside two nested
loops. In this sense, each airfoil tested in the opti-
mization loop is obtained with a specific set xs, and

its performance are evaluated computing the angle
of attack α that provides the desired lift coefficient.
The nested optimization loops used to implement this
procedure are better described in Sec. 2.3. Thus, the
resulting set of design variables is x = {xs, α}.

2.2 Aerodynamic models

A model describing the aerodynamic load acting on
the airfoil is necessary to compute the objective func-
tion of the optimization problem. The aerodynamic
models used in this work are different for each side of
the blade in order to capture the specific features of
the flow in such different operating conditions, while
limiting the computational effort.

In the advancing side, a numerical solver of the
Euler equations is used, namely the Stanford Univer-
sity Unstructured (SU2) software suite [13, 14]. The
solver provides several space discretization schemes,
among which the second-order Jameson-Schmidt-
Turkel scheme is employed. An implicit Euler, local
time-stepping is used to converge to the steady-state
solution, and the GMRES method in conjunction with
the LU SGS preconditioner is used to solve the result-
ing system. For this computation a two-dimensional
coarse unstructured mesh of 20480 rectangular cells is
used. Because the Euler equations are used, a contri-
bution associated with viscous effects is added com-
bining the van Driest II method and a form-factor
correction as presented in Ref. [15].

In the retreating side featuring subsonic condition
below the static stall boundary, the XFOIL code is
adopted, which is an aerodynamic code with coupled
panel and integral boundary layer methods developed
for the analysis of subsonic, isolated airfoils [16]. This
code is chosen because it provides a fast and suffi-
ciently accurate estimation of the aerodynamic force
coefficients for a two-dimensional section.

2.3 Optimization algorithm

To solve the optimization problem in Eq. (1) a multi-
objective optimization algorithm is required. In this
work, the Non-dominated Sorting Genetic Algorithm
is chosen for its ability to explore the design space and
to deal with multiple objectives. Inside the genetic
algorithm loop, an inner loop is nested to deal with
the lift coefficient constraint. In particular, for each
design vector xs,k of the k-th iteration in the genetic
loop, a secant method is used to find the angle of
attack αk that guarantees CL,k = CL. The method
converges in a few iterations, owing to the linearity
of the lift coefficient for most airfoils in the vicinity
of the considered values of the angle of attack. Lack
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of convergence within few iterations is not critical,
because this happens for airfoils with poor values of
the lift coefficient that should be discarded anyway.
The result of the two nested loops is a set of optimal
solutions defined by a design vector {xs, α}.

3 ROBUST OPTIMIZATION

The objective of robust optimization is to design an
airfoil that is minimally sensitive to the variation of
the operating conditions. In this case, it is consid-
ered that the operating conditions at which the blade
section will operate are affected by the uncertainty
arising due to modelling assumptions of physical pa-
rameters necessary at the design stage.

Due to the uncertainty, the objective function f is
no longer only a function of the design variables x,
but it also depends on the uncertain variables ξ. If the
uncertain variables are defined within a probabilistic
framework, the objective function is a stochastic vari-
able with a probability distribution function. Thus,
the optimization problem has to define a measure of
the variability of the function to be optimized. In
robust design, the shape of the airfoil is sought to
simultaneously optimize the mean value of the objec-
tive µ(f) and to minimize the variance σ2(f) of the
objective function f , computed with respect to the
uncertainties of the operating conditions. By mini-
mizing the variance as well, the optimal shape results
more reliable against variation of the design operating
conditions.

Within this uncertain framework a minimization
with a target lift coefficient in a specific design condi-
tions loses its meaning. However, a robustly optimal
airfoil with a satisfactory lift-to-drag ratio in a range
of conditions could be used to trim the aircraft in
a specific condition keeping always a low drag coef-
ficient. In addition, if the robustness of the lift-to-
drag ratio will translate into the drag coefficient at a
specific target lift coefficient, a robust shape would
ensure less variability of the required power due to
aerodynamic drag.

In particular, for the problem under analysis, in the
advancing side the lift-to-drag ratio CL/CD is the
objective f1 of the optimization: f1 = CL/CD. The
function f1 is maximized with the constraint of pro-
viding a positive lift coefficient. The second condi-
tion is the retreating side, where airfoils are generally
sought to have the greatest maximum lift coefficient.
Thus a measure which privileges the lift coefficient is

used, that is f2 = C
3/2
L /CD. Finally, the constraints

on the moment coefficient used in the deterministic
case (and presented in the preceding section) are still
considered.

In mathematical terms, the resulting optimization
problem can be stated as:

maximize : µ (f (xs, ξ))

and minimize : σ2 (f (xs, ξ))

subject to : g (xs, ξ) ≤ 0

by changing : xs, (5)

where the moment constraints are collected in vec-
tor g. It is clear that function f is equal to f1 for
the advancing side and equal to f2 in the retreating
case. The design variables are the variables defining
the shape of the airfoil, while the angle of attack is
considered as one of the uncertain variables in the
design problem.

For this problem, the angle of attack α and the
Mach number M encountered by the two-dimensional
section of the blade are considered as uncertain, be-
cause they are affected by uncertainty on the mod-
elling of the physical parameters considered in the
design stage. For instance, both aerodynamic and
structural uncertainties, such as blade chord, air den-
sity, and rotor angular velocity, may affect the value
of the angle of attack and Mach number. Following
a probabilistic framework, the uncertain variables are
modelled as uniformly distributed random variables
around a nominal value. The nominal conditions are
reported in Tab. 1 and the uncertainty band is set to
5% for the Mach number and the angle of attack.

The objective functions of Eq. (5) are the statistics
of the performance f . These are computed by means
of an uncertainty propagation technique, that is a
method to propagate the uncertainty affecting the
operating conditions into the quantity of interest f .

3.1 Uncertainty quantification

With regard to the method used to compute the
statistics of function f , the uncertainty quantification
is performed by the Polynomial Chaos (PC) expansion
method [17]. Considering function v(ξ) (e.g. the per-
formance for a given design vector v(ξ) = f(ξ,xs),
a polynomial expansion is computed in a stochas-
tic space spanned by a complete set of orthogonal
polynomials Ψ that are functions of the random vari-
ables ξ

v(ξ) =

∞∑
k=0

βkΨk (ξ) , (6)

where Ψk are the PC orthogonal polynomials and βk
the coefficients of the expansion [17]. In practice,
the series has to be truncated to a finite number of
terms, which is determined from the number of un-
certain variables and the order of the univariate poly-
nomial expansion φi(ξi) from which the multivariate
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Case Objective Constraints Design variables

DO min(CD,1, CD,2) CL = CL, CM ≤ CM xs, α
RO1 max(µ(f1)) and min(σ2(f1)) CM ≤ CM xs
RO2 max(µ(f2)) and min(σ2(f2)) CM ≤ CM xs

DMO1 min(CD,1) CL = CL, CM ≤ CM xc, α
DMO2 min(CD,2) CL = CL, CM ≤ CM xc, α
RMO1 max(µ(f1)) and min(σ2(f1)) CM ≤ CM xc
RMO2 max(µ(f2)) and min(σ2(f2)) CM ≤ CM xc

Table 3: Summary of optimization problems.

polynomials Ψk(ξ) are obtained via tensorization, i.e.

Ψk (ξ) =

nξ∏
i

φi(ξi).

The polynomial basis φi(ξi) is chosen according to
the Wiener-Askey scheme to select orthogonal poly-
nomials with respect to the probability density func-
tion pξ. In this work, because a uniform distribution is
considered, Legendre polynomials are employed. The
orthogonality property can be advantageously used to
compute the PC coefficients of the expansion βk in a
non-intrusive PC framework, i.e. the so-called Non-
Intrusive Spectral Projection [18]. The computation
of the PC coefficients requires an integration of the
polynomials, obtained by means of a quadrature for-
mula whose quadrature points have to be evaluated
with samples from the exact function v(ξ). As a re-
sult the reconstruction of the statistics is based on the
evaluation of the exact function for a set of samples
ξk in the uncertain variables domain for each design
vector xs. The uncertainty-based optimization pro-
cedure is thus the combination of two loops: an outer
loop given by the chosen optimizer and and an inner
loop which computes the statistics for each design.

4 MORPHING CAMBER
OPTIMIZATION

The morphing strategy considered in this work is a
conformable camber airfoil, which changes over the
period of rotation of the blade. Several technolog-
ical solutions can be employed to achieve this goal:
for instance, the FishBone Active Camber [4], the
controllable camber presented in Ref. [2] and chiral
structures as the one developed in Ref. [19]. The
basic idea in the definition of a camber morphing air-
foil is that the thickness distribution is held fixed,
while the camber is allowed to change its shape dur-
ing flight. In general, the camber line cannot be mod-
ified at any chordwise coordinate, but it is held fixed

in particular areas to maintain the internal structure
of the blade and to accommodate morphing mecha-
nisms. In particular, the region close to the leading
edge is fixed, where the D-shaped spar used in the
helicopter blade structure is found. For the remain-
ing part of the blade section, the camber can morph
to work as a trailing-edge flap with a larger extension
and continuous shape modification.

A suited parameterization is required to describe
and optimize a morphing camber airfoil. The param-
eterization introduced in Sec. 2.1 treats separately
the camber line and the thickness distribution per-
pendicular to the local camber line. For the morph-
ing modification, a piecewise cubic function is used
which are defined to ensure continuity up to the sec-
ond order. Following an approach similar to the one
presented in Ref. [20], the morphing camber line is
described as follows

ζc(ψ) = Cc(ψ) Sc(ψ) +

nc∑
i=1

hi(ψ) (7)

and each cubic function hi(ψ) reads

hi(x) =

{
0, if ψ ≤ ψ0,i

ai
(x−x0,i)

3

(1−x0,i)3
, if ψ > ψ0,i,

where ai are the coefficients of the cubic functions
and x0,i are the locations of the start of the morph.
The number of cubic functions nc is equal to two in
order to represent also reflex cambered airfoil and
the locations of the morphs are x0,1 = 0.4 and
x0,2 = 0.7. The coefficients of the cubic func-
tions are the design variables of the morphing airfoil
xc = {a1, a2}.

5 RESULTS

As presented in the previous sections, several opti-
mization problems are performed. A summary of all
the optimization cases presented in this section is
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Figure 2: Pareto front of deterministic multi-point
optimization (DO).

given in Tab. 3. Letters D, R and M stand for the de-
terministic, robust and camber morphing cases, while
numbers 1 and 2 refer to advancing and retreating
side, respectively.

5.1 Deterministic multi-point opti-
mization

The first case is the optimization stated in Eq. (1),
that is the minimization of the drag coefficient by
changing the airfoil shape and the angle of attack.
Because this is a multi-objective optimization, the
result is a set of solutions representing the trade-off
between the two objectives. The set is called Pareto
front and it is presented in Fig. 2. In the objective
space, a few airfoils are highlighted: (i) the airfoil
with optimal drag coefficient in the advancing side
called DA1, (ii) the airfoil with optimal drag coeffi-
cient in the retreating side called DA2, (iii) the airfoil
with best trade-off called DA0, and a reference air-
foil, the NACA 23012. Please note that the NACA
23012 has been reported for comparison, but it does
not satisfy the lift constraint in the advancing side
and therefore it does not belong to the population of
the optimization.

The airfoils highlighted in the front are shown in
Fig. 3. It is possible to note that the slope of the
camber line at the leading edge is greater in the case
of airfoil DA2 to cope with the higher angle of attack.
Airfoil DA1 minimize the drag coefficient by reducing
the local Mach number as presented in Fig. 4, where it
is possible to note the absence of strong shock waves.

0 0.2 0.4 0.6 0.8 1

−0.05

0

0.05

0.1

0.15

ψ

ζ

 

 

DA0 airfoil

DA1 airfoil

DA2 airfoil

Figure 3: Optimal and trade-off airfoils of DO.

Figure 4: Mach number contour in the advancing side
for airfoil DA1 of DO.

On the other hand, the local Mach number contour
of airfoil DA2 (Fig. 5) presents a shock wave close to
the leading edge on the lower side, which results in a
drag penalty. The trade-off airfoil DA0 represents a
compromise shape between the two optimal airfoils.

5.2 Robust optimization

Two different robust optimization problems are per-
formed, the first one for the advancing side (prob-
lem RO1) and the second one for the retreating side
(RO2). The Pareto front for the case of the advanc-
ing side is presented in Fig. 6 where the two objective
functions are the mean value and the variance of the
lift-to-drag ratio. The front presents very robust so-
lution that however comes at the expense of poor
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Airfoil CD,1|CL1
α1|CL1

[deg] µCD,1 σ2
CD,1

(σ/µ)CD,1

DA1 5.201e-3 -1.026 5.547e-3 4.399e-07 1.194e-1
RA1 5.209e-3 -1.510 5.369e-3 6.685e-08 4.816e-2

Table 4: Performance of the deterministic airfoil minimizing CD1 (DA1) and the airfoil selected from the front
of the robust optimization in the advancing side (RA1).

Figure 5: Mach number contour in the advancing side
for airfoil DA2 of DO.

performance. In the higher part od the fron solutions
with high mean value are found.

From the solutions belonging to the front, airfoil
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Figure 6: Pareto front of robust optimization for the
advancing side (RO1).

RA1 is selected, which is an airfoil that exhibits a lift
coefficient equal to the target value inside the un-
certainty range considered. The value of the angle
of attack for which the lift coefficient of airfoil RA1
is equal to CL1

is called α1|CL1
and it is equal to

-1.51 degrees at the Mach number used for the de-
terministic optimization DO. As presented in Tab. 4,
in this condition the drag coefficient is only slightly
higher than the one provided by airfoil DA1, owing
to the fact that even this airfoil does not present
extended region of supersonic flow and shock waves
(see Fig. 7). This means that this airfoil is capable of
satisfying the trim condition with a very small drag
penalty with respect to the deterministic airfoil. How-
ever, if an uncertainty band is considered around the
condition ensuring trim requirement, both the mean
value and the variance of the drag coefficient for air-
foil RA1 are smaller than the values of airfoil DA1
(see Tab. 4). The table also presents the coefficient
of variation, defined as the ration of the standard
deviation σ to the mean value µ, to appreciate the
dispersion with respect to the mean value.

The same analysis can be performed for the Pareto

Figure 7: Mach number distribution of an optimal
design selected from the robust front (advancing side)
at α1|CL1

= −1.51 deg.
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front of the retreating side. Figure 8 presents the
optimal set of solutions compared to the reference
airfoil, the NACA 23012. In this case, every airfoil
in the optimal set provides a lift coefficient that is
greater than the target value CL2 . In future work,
it may be appropriate to increase the target lift co-
efficient of the deterministic optimization to result in
airfoils with even better performance. Thus, to se-
lect an airfoil from the front for comparison, airfoil
RA2 has been chosen as a tradeoff between the two
objectives. For this airfoil a lower angle of attack is
needed to satisfy the trim condition, which provides
also lower values of the drag coefficient (see Tab. 5).
Even in this case the mean value and the variance of
the drag coefficient are lower owing to a more flat
distribution of the drag coefficient in the stochastic
space, as shown in Fig. 9.
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Figure 8: Pareto front of robust optimization for the
retreating side (RO2).

5.3 Camber-morphing deterministic
optimization

If a morphing strategy were capable to morph the he-
licopter blade in such a way that the airfoil blade in
the advancing side was airfoil DA1 and in the retreat-
ing side the airfoil was shaped as airfoil DA2, a “per-
fect” morphing could be achieved with a significant
gain as presented in Fig. 2. In practice, obtaining
such a shape morph requires a modification of the
thickness distribution which is difficult to obtain with
the existing technologies. Thus, moving from airfoil
DA0, i.e. the airfoil with the best tradeoff between
the drag coefficient in the advancing and retreating
sides, a camber modification with two cubic functions
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Figure 9: Drag coefficient of DA2 and RA2 in the
uncertainty band around α1|CL1

.
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Airfoil CD,2|CL2
α1|CL2

[deg] µCD,2 σ2
CD,2

(σ/µ)CD,2

DA2 0.02047 12.433 0.02154 2.176e-06 0.0684
RA2 0.01481 10.657 0.01484 3.383e-07 0.0392

Table 5: Performance of the deterministic airfoil minimizing CD2 (DA2) and the airfoil selected from the front
of the robust optimization in the retreating side (RA2).

is considered and computed by means of different op-
timization problems. The first set of optimization is
the deterministic minimization of the lift coefficient
obtained by acting on the design variables xc and
the angle of attach α. The second set of optimiza-
tion is based on two robust optimization problems,
each performed in each side of the blade.

In the former case, two separate optimization prob-
lems are performed to rapidly converge on the inter-
esting cases, namely the extreme airfoils of the front.
The resulting airfoils share the same thickness distri-
bution of airfoil DA0, but the drag coefficient is lower
in the advancing and retreating side thanks to the
camber morph. The airfoils are presented in Fig. 10,
while the gain with respect to airfoil DA0 are reported
in Tab. 6. The gain is obtained by changing the final
part of the shape and it is not so pronounced, proba-
bly due to the fact that fixing the thickness poses an
excessive constraint to the optimization problem. In
future work, an optimization with the complete set
of variables (xs, alpha and xc) will be considered.

In the second set, two robust optimization prob-
lems are performed. Thus, the results are two Pareto
fronts, similarly to the case presented in the preceding
section. From each optimal set an airfoil is selected
with the same criterion used for the non-morphing
case. Indeed, the chosen airfoil represents the best
trade-off between the mean value and the variance,
but also guarantees the satisfaction of the target lift
coefficient within the considered uncertainty band.
The airfoils coming from the robust optimization for
the advancing side is labelled RMA1 and RMA2 is
used for the retreating side. The mean values and the
variance obtained with an uncertainty band around
the condition providing trim satisfaction are com-
pared in Tabs. 7 and 8. It is possible to note that
the robust airfoils present lower values of the vari-
ance with a small drag penalty of the drag coefficient
in the nominal condition. Further analysis will be re-
quired to completely assess the trend shown in this
preliminary comparison.

Airfoil CD,2|CL2
CD,2|CL2

Percentual gain

DMA1 0.005504 – 1%
DMA2 – 0.01593 4%

Table 6: Performance of the deterministic best CD1

(DMA1) and deterministic best CD2
(DMA2) with

respect to the baseline airfoil DA0.
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RMA1 airfoil

RMA2 airfoil

DMA2 airfoil

DMA1 airfoil

Figure 10: Optimal airfoil with camber morphing:
deterministic best CD1

(DMA1), deterministic best
CD2

(DMA2), selected airfoil from robust Pareto in
the advancing side (RMA1) and selected airfoil from
robust Pareto in the retreating side (RMA2).

6 CONCLUSIONS

A robust approach is presented for the optimization
of morphing airfoils for helicopter rotor blades. The
robust approach enables to limit the variance of the
performance when considering the uncertainty affect-
ing the operating conditions at the design stage. The
robust strategy founds airfoils that can satisfy the lift
coefficient constraint necessary for trim requirement,
suffer only of a low drag penalty in the nominal con-
dition, but provides better variance of the drag co-
efficient and mean value in one of the cases. With
regard to the morphing strategy, a camber morphing
is tested to improve an optimal baseline design with
technological constraints. Further analysis is neces-
sary to improve the preliminary estimates on the gain
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Airfoil CD1
|CL1

α2|CL1
[deg] µCD1

σ2
CD1

(σ/µ)CD1

DMA1 5.484e-3 -1.14 7.075e-03 4.063732e-06 0.285
RMA1 6.393e-3 -1.28 6.258e-03 3.574504e-06 0.267

Table 7: Performance of the morphing camber airfoil minimizing CD1 (DMA1) and the airfoil selected from
the front of the robust optimization in the advancing side (RMA1).

Airfoil CD2
|CL2

α2|CL2
[deg] µCD2

σ2
CD2

(σ/µ)CD2

DMA2 0.01593 10.01 1.609e-02 3.431e-06 0.1151
RMA2 0.01697 11.37 1.694e-02 5.207e-07 0.0426

Table 8: Performance of the morphing camber airfoil minimizing CD2 (DMA2) and the airfoil selected from
the front of the robust optimization in the retreating side (RMA2).

of camber morphing airfoils. Future work will also
address the problem of validating the results with un-
steady CFD computations to better appreciate the
quality of the information that may come from multi-
point approaches such as the one presented in this
paper.
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