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Abstract 

Helicopters of the new generation will show a very high 
portion of structural components made of fiber com­
posites. To take the best advantage of these materials 
modern tools for structural design and analysis are nec­
essary. With methods of structural optimization at panel 
level, already in early design phases the best fiber ori­
entation and laminate thicknesses can be chosen. By 
means of a helicopter fuselage sidewall and a sandwich 
panel of the horizontal stabilizer it is shown that large 
weight savings can be achieved with optimal laminates. 

Combination of composite materials with very different 
Poisson's ratios in barlike components result in addi­
tional stresses perpendicular to the load direction. which 
may have a noticable influence on the tension and bend­
ing stiffness. The basic theory is given and a special test­
bar shows the large influence these stresses may have. 
Investigations of a helicopter rotor blade as a typical 
application of such a non-homogeneous structural part, 
however, shows that in this case the influence of the 
additional stresses is small. 

In future helicopter projects often thickwalled compos­
ite parts for rotor components are used. The stress 
and stiffness evaluation of such components require a 
finite element analysis. To reduce the necessary effort 
a computer code was developed to determine the ma­
terial properties of a thick laminate and to evaluate the 
stresses in a single layer of this laminate due to mem­
brane and bending forces. 

L Introduction 

In actual and in new helicopter projects fiber reinforced 
materials play an important role for structural compo­
nents. Nearly all load transferring structures are made of 
such materials. only in areas. which are loaded by higher 
temperatures. conventional isotropic metals are used. In 

the current MBB projects PAH/HAC [I] and BOlOS [2] 
the airframe structures are mostly made from carbon 
and aramid fiber reinforced materials. For both heli­
copters advanced rotor concepts are used. The hub of 
the PAH/HAC FEL rotor (fiber-elastomer rotor) mainly 
consists of two thick carbon fiber plates while the BOlOS 
rotor is a bearingless rotor made from glass and carbon 
fiber reinforced materials. 

Due to the anisotropic character of the FRP materials. 
the analysing of such structures is very demanding. The 

necessary tools as theories and computer codes have to 
describe the essential problems correctly and beside this 
they have to be very reliable and easy to use. 

In recent years. three new computer codes have been 
developed which deal with special problems of analysing 
and designing structures made out of fiber reinforced 
material. These modern tools make it possible to de­
velop and design structures for new helicopters with 
higher quality in a shorter time than it was some years 
ago. 

In this context. especially the structural optimization 
must be mentioned. In the field of structural opti­
mizatior. there exist two principle approaches: First 
the whole structure can globally be optimized by us­
ing one of the great computer codes based on the finite 
element theory (e.g. MBB-Lagrange, MSC-NASTRAN. 
etc.). Second, it can also be useful to analyse s9ecial 
components or parts of structures by means of small 
computer codes which also make use of methods of 
numerical optimization. OLGA is one of these small 
codes for the optimization of fiber reinforced laminates 
at panel level. Single layer thicknesses and fiber orienta­
tion angles are varied in such a manner that optimal stiff 
and light laminates are achieved under consideration of 
certain design constraints. 

Another area of interest is the analysis of non­
homogeneous barlike structures like rotor blades. In such 
parts the different materials influence each other in their 
deformation due to different Poisson's ratios. Additional 
stresses. which are usually neglected in the engineering 
theory of bending. may have a noti10able influence on the 
tension- and bending stiffness and also on the coefficient 
of thermal expansion. This influence can be determined 
by the use of the code SABINA. It allows the evaluation 
of the effective stiffnesses and coefficients of thermal 
expansion by calculating the additional stresses. 

For the structural analysis of thickwalled structures 
the finite element method is necessary. To simplify 
such a three dimensional analysis the computer code 
ETHERM3D was developed. The underlying theory is 
an expansion of the classical laminate theory. With 
this theory all three dimensional effective moduli of any 
multi-layered laminate can be evaluated. Therefore it is 
no longer necessary to idealize each single layer. Com­
bining some layers of a thick laminate to a new material 
with special properties considerably reduces the effort of 
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idealizing a three dimensional structure. 

2. Structural Optimization at Panel Level 

When designing helicopter parts such as fuselages or sta­
bilizers one is faced with the question of what lay-up 
shall be used for the different laminates. In general lam­
inates of the O' /!10' / ± 4!)' family are used. But are 
they really the right selection in all cases? To answer 
this question it is useful to have a computer code which 
supports the designer in the selection of the best lami­
nate for a special application. So. already in early phases 
of a project, a good design can be achieved. 

2.1 General Remarks 

The code OLGA (Optimierung von Laminaten mit 
Geschichtetem Aufbau, which means: optimization of 
laminates with a layered structure) is based on the clas­
sical laminate theory and uses a numerical optimizer 
working with the method of the interior penalty function. 
With the aid of OLGA it is possible to determine the op­
timal lay-up for any laminate (figure 1) under nearly any 
design constraints. 

1st Layer 

2nd layer 

3rd Layer 

n-th Layer 

Figure 1: Geometry of general laminate 

As design variables the thickness t and the fiber orienta­
tion angle . .J of any layer of the laminate can be chosen. 
The vector of the design variables [x] has the form 

I [ IT [x = l; .... ,t,.,,J;. .}1 . 

For a laminate with 11 layers the vector [x] can contain 
up to 11 layer thicknesses and n fiber orientation angles. 
In general. however. the number of design variables will 
be less. Layer thicknesses and fiber angles respectively 
can be linked together either to reduce the number of 
design variables or to achieve a special form of lay-up (for 
instance for a symmetric or an orthotropic laminate). 
The linking is accomplished by the linking matrix [LI. 
which connects the set of design variables [x] with the 
real laminate thicknesses I i and fiber orientation angles 
.lj: 

[II .... , In. ,]1 . . 1,]1 = [LJixl. 

The quantity to be optimized (i.e. maxi- or minimized) 
is called the objective function. This objective function 

is given as an explicite or implicite function of the design 
variables. In OLGA as objective function any result of 
the classical laminate theory can be chosen. Especially 
the weight and the laminate stiffnesses (Young's moduli. 
shear moduli, coefficients of the stiffness matrix, etc.) 
can be maxi- or minimized. It is also possible to com­
bine some results to a new function, which then will be 
optimized. 

The design constraints can also be any result of the lam­
inate theory, especially the laminate strength (stresses in 
the single layers and factors of safety respectively, eva!~ 
uated by application of a proper failure criterion such as 
that from Tsai-Wu), the laminate stiffness (again moduli 
or coefficients of the stiffness matrix) or the tempera­
ture expansion of the laminate. Up to ten load cases can 
be considered for the optimization. Again it is possible 
to combine some results of the laminate theory to get 
further constraint functions. Additional to the standard 
output of the classical laminate theory an extension for 
the treatment of face sheet wrinkling of sandwich struc­
tures was carried out. So, also this kind of local instabil­
ity may be used as design constraint. A future extension 
will deal with the global stability of rectangular plates. 

MAIN ROUTINE __, General 
Output 

l t l t 
Problem -- Output 

OPTIMIZER 
ANALYSIS 
MODULE 

Problem - Input 

t t 
Option~ Material 

Parameters Library 

--
Figure 2: The structure of OLGA 

Figure 2 shows the structure of OLGA. It consists of 
three routines. the main program, the analysis modul 
and the optimizer. The clear structure of the program 
allows it. to make extensions. concerning additional ob­
jective functions or design constraints very fast. 

The input data for OLGA consist of two datasets. One 
contains special control parameters for the optimizer. 
These parameters usually need not to be altered Their 
values are chosen in such a manner that in most cases 
the convergence will be sufficient. Only for very special 
problems. it will be necessary to change these parame­
ters in order to improve convergence. The other dataset 
is the problem input file. which contains all data to de­
scribe the physical problem. 

Herein first the inital laminate is given by the specifi-
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cation of the materials used, the layer thicknesses, the 
fiber orientation angles and the fiber content of volume. 
After the applied loads the information concerning the 
optimization follows. In this part, the design variables, 
the objective function and the design constraints are de­
clared. In order to keep this input dataset small and 
clear and to avoid errors due to wrong material data all 
material data are taken from a special data base. 

2.2 The Main Routine. 

In the very short main routine only the file handling, 
the control of data flow and the determination of the 
gradients are performed. The gradients of the objective 
function and the constraints with respect to the design 
variables are evaluated by finite differences. The i-th 
design variable is changed very little 

T'f = .1· 1 + D..r; 

and the change of the objective function and the con­
straint values are obtained from the formula 

where !!" means the objective function respective the 
constraint values, [x] is the set of design variables. and 
.l'i the i-th design variable. This way of determining the 
gradients is a little bit costly, but as the whole theory 
consists only of some simple matrix operations this ef­
fort is justifiable. The advantage of this method is the 
simplicity and the generality in its application. 

Before calling the optimizer the value of the objective 
function, which is delivered from the analysis module, 
has to be scaled. The values of the constraints are al­
ready normalized, as they are always defined by 

( ) I 
l'o•,'/Hdi(X) 

[/i X ::::: -
/'limit 

for an upper limit, respective 

( ) -1' a"-·-'-·'"-'":::' 1-'-( _xc) - l 
!/i X = 

I'JiJJlil 

for a lower limit of the constraint tfi· ~'limit denotes the 
applied limit for that constraint, l'a··tual means its actual 
value. These formulations imply that within the feasible 
domain all values of the design constraints !/(X) have to 
be positive: 

!li(X) 2: II 

Scaling is necessary. as the optimizer sums up the values 
of the objective function a nO the constraints and as these 
values can be of very different magnitudes. Only with 
scaling, sufficient convergence can be achieved. 

2.3 The Analysis Module. 

In the first run of the analysis module all problem specific 
input and the definition of the constraints, the objective 
function as well as the design variables (determination 
of the linking matrix [L]) are done. Beside this all prob­
lem specific calculations which do not depend on the 

design variables (i.e. stiffness matrices of the unidirec­
tional layers) are performed in order to minimize the run 
time. In the subsequent calls of the analysis module, 
this part is ignored. In the remaining code, the actual 
laminate analysis is performed and the values of the ob­
jective function and of the constraints are evaluated and 
returned to the calling main program. 

Basis of this analysis module is the classical laminate 
theory ( CLT, in detail described in many monographies, 
e.g. [3] and [4]), which delivers the material law of a 
general layered laminate in the form 

(")=('1 ")('".)-("')llT (1) 
"' II U "" 0 

This material law is calculated from the data of the uni­
directional layers and the information about the laminate 
lay-up (layer thickness and fiber orientation angle). By 
use of this material law the stresses in the individual 
unidirectional layer and the factor of safety against fiber 
failure and interlaminar failure can be determined. For 
the calculation of factors of safety the Tsai-Wu failure 
criterion is used. 

2.4 The Optimizer. 
The optimization routine PEFOP is an available rou­
tine from the Institute for Computer Applications (ICA) 
at the University Stuttgart (Prof. Argyris). It works 
with the method of the interior penalty function which 
is modified in such a way that the start design need 
not to be a feasible design. With this modification the 
optimizer is suited well for the application of laminate 
optimization. 

In the method of the interior penalty function, the orig­
inal optimization problem with constraints is changed 
into a problem without constraints by introducing a new 
objective function Z, which is the the original objective 
function <I) plus the sum of all reciprocal design con­
straints, weighted with a scalar factor l'k· 

with 

- ,. l 
Z(x) = <l>(x) + ,.,. L --. 

i::::! y;(x) 

.'li(X) 2: II. 

Near the border of the feasible domain. the values of the 
active constraints are near zero and the new objective 
function /: will reach infinity. To find the minimum 
of the objective function (I) under consideration of the 
design constraints. it is therefore sufficient to minimize 
the new unconstraint objective function /.. By reducing 
the scalar faktor 1'~- after every iteration. the minimum 
of <11 will be found. Near the optimum there may be 
some numerical difficulties (7 =(I)+ U ·"-}but for real 
tasks this was never a problem. 

Another optimizer was also tested in this program. 
It was the routine DNCON F from the IMSL library. 
With this optimizer, too, very good results have been 
achieved. 
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2.5 Examples for the application of OLGA. 

In the following, two examples for the application of this 
laminate optimization code are shown_ The fuselage of a 
new helicopter (figure 3) will be an all composite struc­
ture. Preliminary analysis delivers the loads for some 
typical areas of the airframe. With this data, for in­
stance, the panel in the upper part of the helicopter 
sidewall can be dimensioned. This part is designed as a 
monolithic panel made out of carbon fiber material. 

Figure 3: Helicopter fuselage 

Another area of interest is the horizontal stabilizer. In 
the inner part of the upper sandwich panel very special 
loads (due to maintainance) have to be applied. With 
the application of OLGA the optimal sandwich configu­
ration can be determined. 

2.5.1 Tension- shear pane!. The loading of the heli­
copter sidewall panel is sho~n in figure 4. For this mono­

lithic pane!. made from carbon fiber reinforced material, 
the following loads are given as an example: 

n, I 1111 [N/mm]. 

n,.,1 lOU [N/mm]. 

The laminate shall endure these loads under considera­
tion of fiber and matrix failure, objective function shall 
be the weight of the laminate. The initial laminate is 
a quasiisotropic lay-up with fiber orientation angles of 
U0 . !l0° and ± 1:)0

. In table 1 a summary of the optimal 
laminates is shown. 

11,~.,, 

II.,. l .I' 1 
L 1/,~. 

Figure 4: Panel under tension and shear 

From this table it can be seen that dependent on the 
chosen design variables very different weights for the 
optimal laminates result. The quasiisotropic lay-up shall 
be the reference -laminate. 

First. the thicknesses of the three different layers (the 
+lG' and the -IG' layer are linked together) are design 
variables: 

[x] = [tn,.t,..,,,,t±·'"'fl'· 

This results in a weight reduction of about 29% com­
pared to the quasiisotropic lay-up. In this case, the 
thickness of the D0° layer reaches its lower limit (given 
to 0.01 mm). This shows that the 00° layer is not neces·· 
sary for the load transferring. Removing this layer yields 
additional 3% weight saving. Allowing an anisotropic 
laminate (by removing the linking between the +lf>' 
and the -·IG' layer) further 15% weight can be saved. 

Till now. only the thicknesses of the individual layers are 
varied. Now, also the fiber orientation angles J) shall be 
changed. The vector of design variables reads in this 
case 

[x) = [lno,lc,no.l±d·;Jf. 

The 5th line of table 1 shows a weight reduction of 
50% for a laminate with tiber angles of II' ;uo' 1 ± n.T' 
compared to the quasiisotropic laminate. In this lam­
inate the thickness of the 0' as well as the !.IU' layer 
have reached their lower bound (given to 0.01 mm). 
\Nhen these layers are removed. further 8% weight can 
be saved. The lightest possible laminate for the given 
loads is an anisotropic one with fiber orientation an­
gles of -t<~:2.f) 0 and -:H-i.J 0

. This laminate has only one 
fourth of the mass of the quasiisotropic laminate. 

From this example it can be seen that it is very useful 
to do such studies concerning optimal light laminates. 
Even if an anisotropic laminate is not desirable due to 
the shear - tension coupling, large weight savings can 
be achieved by using optimal layer thicknesses and fiber 
orientation angles. 

2.5.2 Sandwich panel. Another example for the applica­
tion of the--program OLGA is the upper panel of the 
horizontal stabilizer of a helicopter. In the area near the 
fuselage the stabilizer must be walkable to enable main­
tainance of the tail-rotor. To fulfill this requirement the 
panel must withstand the following plate moments 

Ill,,. = /11 11 = !()() [ Nmmmml 

(one mechanic (80 kg) plus tools (30 kg) and an applied 
load factor of 1.2)_ The pane! is designed as a sandwich 
with ararnid fiber face sheets and a honeycomb core. 

In this case the question is: what honeycomb core and 
what thicknesses of core and face sheets shall be chosen 
in order to get a panel with minimal weight. Critical 
failure of a sandwich. loaded in compression or bending 
is usually face sheet wrinkling. This failure can be taken 
into account as a design constraint in the laminate opti .. 
mization code OLGA. To answer the above qucstior~ ':.' 
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Table 1: Optimal laminates for a panel under tension and shear loads 

Design Ortho- f !,)0 t [1()0 +i.1 
Variable tropic [mm] [mm] [o] 

t quas1 0.1449 0 1449 45.0 
t yes 0.0951 0.01 45 0 
t yes 0.0894 - 45.0 
t no 0.0691 - 45.0 

t, ;! yes 0.01 0.01 22.7 
t. ;I yes - - 35.5 
t, ,j no - - 32.6 

optimal laminate (objective function is the weight, de­
sign constraints are the face sheet wrinkling and the face 
sheet strength) is determined for some different honey­
comb cores. Preliminary studies showed that the opti­
mal laminate of the face sheets will be a 0' /U0° lay-up. 
Therefore the set of design variables ls defined to 

lr [x] = [/ 0 o, /:•no, /,,,., . 

Table 2 shows the results for a sandwich with 11°/00° 
face sheets made from aramid fiber reinforced material, 
when fiber and matrix failure as well as face wrinkling 
failure are considered. 

Table 2: Optimal sandwich configurations for a panel 
due to different honeycomb cores 

p,.,,., r: .. ,,., Weight' f IIO i[lf)O f •'l.'!'f 

[~] [m%,J [~] [mm] [mm] [mm] 

24 41 1.981 0.147 0.142 19.59 
32 76 1.842 0.121 0.121 17.91 
48 138 2.086 0.103 0.102 21.09 
64 193 2.408 0.121 0 119 17.90 

It can be clearly seen that the core with a weight of 32 
kg/m" results in the lightest sandwich. Lighter cores 
as well as stronger cores result in heavier sandwiches. 
For lighter cores. face sheet wrinkling is the active con­
straint. But with decreasing the core stiffness, the core 
thickness and with it the sandwich weight has to be in­
creased in order to reduce the force (stress) in the face 
sheets to achieve a sufficient factor of safety with re­
spect to face sheet wrinkling. For stronger cores the low 
strength of the aramid fiber laminate in the compres­
sion direction is the active constraint. As in this case 
the core type has no influence on the laminate strength 
of the face sheets. heavier cores always result in heavier 
sandwiches. Figure 5 dearly shows these facts. The best 
compromise with respect to the weight is the sandwich 
with the 32 kg/m" core. 

3. Analysis of inhomogeneous bars 

With the use of the fiber reinforced materials. effects 
become important. which often could be neglected for 

!+,} -·1 ·f-} Weight rei. Weight 
[mm] [o] [mm] [kg/m"] [%] 

0.1449 45.0 0 1449 1.781 100.0 
0.1543 45.0 0.1543 1.271 71.4 
0.1541 45.0 0.1541 1.222 68.6 
0.1974 45.0 0.0442 0.955 53.6 
0.1346 22.7 0.1346 0.888 49.9 
0.1199 35.5 0 1199 0.737 41.4 
0.1277 36.1 0.0279 0478 26.8 

Weight per volume of core material {kg/m*•3] 

Figure 5: Weight of an optimal sandwich panel 

isotropic materials. One of these effects is the influence 
of different Poisson's ratios in non-homogeneous barlike 
structures on the deformation under tension, bending 
and temperature loads. These barlike structures can be 
helicopter rotorblades, transmission shafts for the tail 
rotor. control links or every other bar in helicopter struc­
tures. 

When loading non-homogeneous bars, the different ma­
terials want to deform independent from each other. But 
as they are bonded together, their deformations are re­
straint by the neighbouring materials (figure 6). This 
results in additional stresses perpendicular to the bar 
axis which increase the resulting bar stiffness compared 
to a beam where all materials have the same Poisson ·s 
ratio. 

In helicopter structure analysis it is particularly impor­
tant to know the exact resulting bar stiffnesses as heli­
copter structures are dynamically high loaded structures. 
whose eigenfrequencies are in tune with each other. 
Therefore a special theory was developed to determine 
the influence of restrained tranverse strains on the stiff­
nesses. This theory allows to determine the resulting 
stiffnesses and coefficients of thermal expansion as well 
as the stresses perpendicular to the bar axis with a rela­
tively low numerical effort. For the special geometry of 
a circular tube analytical solutions exist. 

MuBchelischwili [5] shows a way to calculate the stiff­
nesses of non-homogeneous bars by using complex stress 
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without load 

non connected materials 
loaded with f,. 

cry::::::: cr: = ru.- = 0 

z 

Cross section 
loaded with f'.,. 

CTy oF a-, oF Ty 0 oF 0 

Figure 6: Non-homogeneous bar under a load m axial 
direction 

functions. Some other authors follow his way to calcu­
late the stresses in non-homogeneous tubes ([6], [1]). 
For genera! geometries this approach is not suited, so 
that in the following a theory based on the theory of 
finite elements is shown. The analytical solution for 
non-homogeneous circular tubes is described in detail 
in [8]. 

3.1 Engineering theory of bending 

In the engineering theory of bending (ETB) the relation 
between the strain in axis direction (linear distributed 
over the cross section) 

(2) 

and the resulting cross section loads f, .. . \1!1 and ,\/ 
(figure 7) is given by the equation 

( :~1 I.'S,. I'")(") ( /, +!'"·' } 1.1 lc'l., !, = -.\I - .\lu, (3) 

J-:.<,1 I. !., /_' /,_1 r· .·Hu + .\luru 

This equation is an analytical solution of the fundamen­
tal equations of th':: theory of elasticity (the equilibrium. 
the compatibility and the material law) for the one di­
mensional state of stress (the stress rr_,. is the only non­
zero stress component) and the linear strain distribution 
(2) over the bar cross section. The coefficients in the 
left matrix describe the stiffnesses of the bar: 

z 

X 

Figure 7: Definition of the resulting cross section loads 

F.'.-\ tension stiffness, 
E,S'.v 
ES. 
Ely 
E/. 
E l,,., 

elastic moment about y-axis, 
elastic moment about z-axis, 
bending stiffness about y-axis, 
bending stiffness about z-axis, 
bending deviation stiffness. 

The thermal loads F1h.1·, ,1{1hy and Jfnr:· in the right 
vector result from a temperature difference D.T and the 
coefficients of thermal expansion. With these loads the 
deformation of the bar under thermal loading (i.e. the 
strain coefficients a, band c) can be determined. 

From the stiffness coefficients and the thermal loads the 
position of the elastic and thermal center as well as the 
orientation of the principle axis can be calculated. Fur­
thermore they allow the determination of the resulting 
coefficients of thermal expansion 11 1 and of thermal cur­
vature 1; 19 and li 1 

In the case of homogeneous or of non~homogeneous bars 
with materials. which have all the same Poisson's ratio. 
the stiffness coefficients and the thermal loads can be 
evaluated directly from the material and geometry data: 

L'.\ =JEd.\. 
.I 

L'.'i!J =I :Cd.\, 
..1 

r·,-;· f I" I I . =. !i"--
.·1 

r:r, J:'Cd.\. 
.. I 

Fl fy'Ed.\. 
.·I 

E/!1, =I :yEd.-1. 
..1 

F'1,.,. -"TJ En 1 ,.d.\, 
·I 

.\lu,, = Sf' { /;'n 1 , .. :d.\. 
I 

.\lu, = --"1 J lcn~.,.yd.\. 

Usually these stiffnesses are not only used for homoge­
neous bars. but also for non-homogeneous bars made 
from materials with different Poisson ·s ratios. Generally 
the errors are small. but if the differencies in the Pois·· 
son's ratios are quite large, significant errors can occur. 
Therefore a more exact theory is necessary. 

3.2 Three dimensional theory 

From equation (3) it can be seen that it is possible to 
calculate the stiffness coefficients and the thermal loads 
from a known strain distribution (a, b and 1·) and the 
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resulting cross section loads fc, Jfy and Jf: .. With this 
the way of determining more exact stiffnesses is shown: 

1. Assume a general linear strain distribution over the 
cross section (i.e. define the strain coefficients a, b 
and t from equation (2)). 

2. Determine the resulting cross section loads due to 
this strain distribution. 

3. Evaluate the stiffness and thermal coefficients by 
the use of equation (3). 

To calculate all unknown stiffness coefficients and the 
thermal loads from equation (3) four independent strain 
distributions are necessary (e.g. tension, bending about 
both axis and a thermal load). The main difficulty in the 
application of the above way to determine the stiffnesses 
is item 2. For the evaluation of the resulting cross sec­
t'lon loads conventional three dimensional calculations 
with the method of finite elements can be used. But 
this means a relatively high effort. Therefore a way is 
shown in the following, in which a two dimensional finite 
element analysis is sufficient for the determination of the 
special three dimensional state of stress. The resulting 
cross section loads then can be calculated by integrating 
the stress cr_,. over the cross section: 

r .. = / e>.,d"\. 
,\ 

M, /;r,.od.\. 
,.\ 

;\{ /(>,.yd.\. 

A 

3.3 Determination of the three dimensional state of 
stress. 

(4) 

(5) 

(6) 

The fundamental equation of the theory of finite ele­
ments reads ([9]) 

[K](n] = (F)+ (F;,;,] (7) 

[K] means the stiffness matrix of the whole system. 
[n] is the vector of all gridpoint displacements [E'] 
describes the whole load vector (applied outer loads) 
whereas [F,,,t) denotes the inner loads due to a tem­
perature difference or other inner distortions 

[K] is built from the element stiffness matrices [k] 
Equation (7) can be written down for only one element: 

[k][u] = [f)+(!';,;,) (8) 

Herein the element stiffness matrix and the vector of the 
inner loads can be detailed: 

[/ D
1

EDdl ] (n] = [f)+ [/ D
1

Ebrl\ ] (9) 

or, with d\ ·=tel.\ 

In (10) [D] denotes the differential matrix from the com­
patibility equations, 

[r J = [D][n]. ( 11) 

[E] the mater'ral compl'rance matr'rx and [b] the temper­
ature load vector from the material law 

[r] = [EJ[e>] + [b]. (12) 

Equation (12) needs a further explanation: The Hooke's 
law for an orthotropic material is given by 

( .r (/ II (( I :: a I :.l I) I) () cr,,. nc~-

Cy a 1::a::".!a:::3 u IJ u O'v t.r I !J 

'- a 1 :~ a:::l a:;:3 IJ 0 IJ rr.: f.lt: D. F. = IJ IJ + 
l.l" :· u (( .-j -1 \) 0 r_,.: lJ 

/::v IJ IJ () IJ ar;G II T.:·y II 
}.ry 0 () u II II <1(>13 'r_,.!J II 

(13) 
\IVith a given strain distribution (·.,, equation (13) can be 
reordered by introducing this strain distribution: 

0 cr:- bt: 

( ;".) (~~', ~~;: ~; ~; 
l ,.. = IJ II a+r II ())("'') (f,''') lJ r.,.: + II .C,T. 
1:y 0 0 0 a;,;, IJ T:'l II 
i.··v II IJ 1J U on,; r_,.v 0 

( 14) 
The missing stress cr.,. can be calculated from the equa­
tion 

( 15) 

The stiffness coefficients b;j and (~j from (14) are defined 
as 

[ 
a;tOj[l (/.ij ___ . 

0 l I 
(16) 

[ 
(( i I ( ( ,. )] • , 

1\tj+~ ..::.·T-nu ..::./. ( 1 7) 

Equation (14) corresponds directly with equation (12). 
so that an applied strain distribution (,,.(y. :) via /'.i has 
some influence on the inner loads of an element. Now 
with the above equations it is possible to calculate the 
three dimensional state of stress under the assumption 
of non-varying stresses and strains along the beam axis 
by using a two dimensional finite element model. This 
state of strain is generally called the generalized state of 
plane strain. 

3.4 The computer code SABINA 

The above described theory is the basis of the computer 
code SABINA, which means Stiffness of Any Deam with 
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INhomogeneous cross sections. SABINA is a finite el­
ement code, specially developed to determine bar stiff­
nesses and resulting coefficients of thermal expansion 
[10]. Moreover it can also be used to do simple two 
dimensional calculations, concerning the state of plane 
stress and the generalized state of plane strain. 

As written above, the stiffness determination requires 
four independent strain distributions. SABINA uses the 
following load cases by default: 

1. Only tension ( < .,. = 1.0), 

2. only bending about they-axis (c.,.=:), 

3. only bending about the z-axis (<"· = y), 

4. only temperature load ("'T = 1 .0). 

Output of SABINA are the three dimensional stress dis­
tribution as well as the bar stiffnesses, the position of 
the elastic and the thermal center and the orientation of 
the principle axes. With the aid of a simple plot routine, 
the deformation of the cross section can be plotted for 
all four load cases. 

All results are stored in a data base. so that it is simple 
to do some post processing such as a stress analysis 
considering all stress components or further plotting of 
stresses or deformations. 

3.5 Examples 

Two examples will show the effect of constraint trans­
verse strain due to different Poisson's ratios. At first 
a special bar is considered to $how the influence differ·· 
ent Poisson's ratios can have. Second, the stiffnesses of 
a typical helicopter rotor blade are calculated and com­
pared with the stiffnesses, obtained with the engineering 
theory of bending. 

3.5.1 Special testbar. To show the influence of different 
Poisson's ratio;~7pecial testbar is investigated. The 

bar is made out of carbon fiber reinforced material. has 
a quadratic cross section and a lay-up shown in figure 
8. 

±·lf)0 

\.)\10 
.<I 

± Jr)o 

Figure 8: Cross section of the testbar 

The results of this investigation are shown in the figures 
9 to ll, where the stiffness respectively the coefficient 
of thermal expansion is plotted versus the portion of 
± 1!)0 layers of the whole cross section. Additionally to 

the result from the above shown theories (the engineer­
ing theory of bending and the three dimensional theory) 
results from the classical laminate theory are plotted. 
These results can be got from equation (I) by introduc­
ing n'f = H.ry = 111 .. 1J = 111,1'!/ = 0. Then the remammg 
stiffness coefficients are the bar stiffnesses. 

',"-----~,~,----~.~,----~.~,----~.-.,----~, . ., 
HS/TGES % 

"' 
'b 
~ 2.5 
• 

w 

·' 

Figure 9: Tension stiffness of testbar 

'~: ~.c:~:e~~----
,>, ~ Gene<allzed Plane S<,aln 

Engineering Theory of Bending 

• 0 ,'-------,, 
~0 GO " >00 
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Figure 10: Bending stiffness of testbar about y-axis 
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• 0 
- ~.s . 
~ 

' = l.S 

Test Value 

Generalized Plane Strain 

Classical Laminate Theory 

.o 
0
_'------,oc,-----,-c,-----,oc

0
------c,cc

0
-----,.,00• 

HS/TGES % 

Figure 11· Coefficient of thermal expansion of the test .. 
bar 

These figures show a very great influence of the con­
straint transverse strain due to different Poisson's ratios 
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Especially the bending stiffness about they-axis deviates 
very much from the real value. The reason for this is the 
very high stiffness of the UU 0 layer in the transverse di­
rection of the bar together with the high Poisson's ratio 
of the +IG' layer (about 0.8). The high stiffness of the 
DUO layer nearly completely restrains the lateral contrac­
tion of the ±·IG' layer and so high additional stresses 
occur, which result in the stiffness increase. Test re­
sults are in good correlation with the three dimensional 
theory. 

3.5.2 Helicopter rotor blade. In general helicopter ro­
tor blades are very ~~n--horn-ogeneous barlike structures. 

Very different materials are used in their cross sections 
(figure 12) in order to meet the requirements. Metals 

Shear Web (GFRP H5') 

\ 

Spar (GFRP 0') 
I 

Lead 

Nickel 
Skin (GFRP ±IG') 

Figure 12: Cross section of a typical helicopter rotor 

blade 

protect the blade against erosion (steel, titanium or 
nickel) and position the center of gravity (lead). Dif­
ferent fiber reinforced materials are responsible for the 
blade properties: ±·!G0 laminate for high torsional stiff­
ness and strength as well as for the shear properties; 
unidirectional laminates for tension and bending stiff­
nesses. In table 3 the material properties of different 
materials are given. 

Table 3: Properties of materials, used in helicopter rotor 

blades 

!'.·, r:'.!. (r' 1'.!. l/t '.!. 

Material lm~,] lm~J lm~,] [-] 

Steel 210000 210000 82000 0.28 
Titanium 105000 105000 39500 0.33 
Nickel 197000 197000 75000 0.31 
Lead 16000 16000 5600 0.44 
GFRP IJ' 43000 10000 7100 0.28 
GFRP ± IG' 17000 17000 11500 0.47 
GFRP ll' /!Ill' 26700 26700 5800 0.17 
CFRP II' 128000 8000 4300 0.28 
CFRP ± IG' 12300 12300 29000 0.80 
CFRP II' /!Ill' 60000 60000 3400 0.08 
Foam 100 100 36 040 

-

As an example the airfoil section of a rotor blade for 
a helicopter of the 2 to class is investigated. In this 
rotor blade nickel. lead, GFRP II' and GFRP ± l'r' are 

the used materials. Figure 13 shows the cross section 
deformations due to three standard loadcases. 

Flapping moment 

Lead-lag moment 

43 ~FfFI·t 
Temperature difference 

Figure 13: Deformations of a rotor blade cross section 
due to typical loads 

In table 4 the stiffness results and the poSition of the 
elastic center are given. The differencies of the stiff­
nesses and the coordinates of the elastic center are very 
small (about 2%), so that in this case the influence of 
different Poisson's ratios can be neglected. The rea­
son for this is the low stiffness of the most materials 
(the foam and the GFRP 0') in the transverse direc­
tion. Fortunately. this is valid for most barlike parts in 
helicopter structures. Nevertheless it always should be 
proved, whether the simpler engineering theory of bend­
ing or the more complicated theory of generalized plane 
strain may be applied. 

Table 4: Stiffness properties of a helicopter rotor blade 

Engineering Generalized 
Property Theory of Plane 

Bending Strain 

Tension stiff. [NJ 5.874 111 7 5.194 111 7 

Lead-lag stiff. [Nmm'J 1.992 111 11 2011 lll 11 

Flapping stiff. [Nmm'J 7.618 Ill'' 7.769 Ill" 
Elast. center 

y-coord. [mm] 60.48 60 46 
z-coord. [mm] 4.68 __ __'~.!_~ 

-·~--------· 

4. Structural analysis of thickwalled 
helicopter components 

In modern helicopter structures more and more thick­
walled structures made from fiber reinforced materials 
are used. Examples are for instance the plates of the 
rotor hub of the German-French anti-tank helicopter 
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PAH/HAC [1] or the load introduction areas of rotor 
blades. The thickness of these elements reaches up to 
80 mm, the widths of single parts are in the same mag­
nitude. Therefore these structures can no more be anal­
ysed as thinwal!ed plates or membranes. A real three 
dimensional theory must be used. 

The method of finite elements is suited well for this anal­
ysis, as there exists nearly no limitation concerning the 
geometry. But another difficulty occurs: The material 
properties of general laminates are not known in three 
dimensions. Usually, the material properties of laminates 
are evaluated by using the classical laminate theory ((3], 
(4]), but this theory gives no information about the prop­
erties in the direction perpendicular to the laminate. To 
solve this difficulty, Pagano (11] made an extension of 
the classical laminate theory. With this extension all 
three dimensional properties of laminates can be calcu­
lated. 

So, in finite element analysis it is no longer necessary to 
idealize each unidirectional layer. Several layers can be 
combined to one new material, for which the properties 
can be calculated by this theory. After analysing the 
structure with a finite element code. the element forces 
can be used to determine the three dimensional stresses 
in the single layers with the same theory. By applying a 
proper failure criterion factors of safety can be evaluated. 
In the future this procedure can be easily implemented 
in existing finite element codes as it was done with the 
classical laminate theory some years ago. 

4.1 Extended laminate theory 

In the classical laminate theory all layers are considered 
as connected in parallel. This means. all layers sustain 
the same strain (when only a tension load is applied). 
Due to the plane state of stress no information about 
the direction perpendicular to the laminate plane is nec­
essary. In the extended theory. for this direction it is as­
sumed that in each layer of the laminate acts the same 
stress. So, in thickness direction the layers are connected 
in series (figure 14). 

Figure 14: Definitions for a laminate 

In this case it is useful not to work with forces per length, 
as it is usual in the classical laminate theory, but to work 
with the following average stresses in the x-y plane. 

(18) 

For the strains along the planes :J' = cou.<;f and y 
con.::d the usual formulation is valid: 

(19) 

About the strains in a plane:::= roust, (;,/.:,,.and /.:y 

no statement is possible, but the corresponding stresses 
in each layer are assumed to have the same value (they 
are connected in series in this direction): 

By applying equilibrium conditions, the three dimen­
sional material law of a laminate can be evaluated: 

= -1 -
1 f cr.,. cdc: 

~I < • 

_, .f".'ld:·: 
/')<"' 

-
1
- .f cry ode: 

/'}<• 
(21) 

-
1 .'J''r., .. ,.,d:::.: r.,.-y=~ ' 

" 

Introducing the material law of the unidirectional layers 
into the equations (19) and (21) and with consideration 
of (20) the material law of the laminate is given in the 
form 

cr.,. 0 ~ 
crH (!} cr t.'J 
(/'. (. cr,. 
Ty.: CA] (D]) 

/y~ Tty: 

T.-.1• ")-.~· Tt'.l' :>.T. (22) 
r.•·y [DJT [D] ~ Tt.ry 

Tff; 1\_,. Tii(-; 

TiTV ":v 111ty 

I II.I"!J "·'"!! 111t;l"!j 

The sub matrices [A]. (D] and [D) have the dimensions 6 
by 6. 3 by 6 and 3 by 3 respectively. The equations for 
evaluating the coefficients of these matrices are much 
more complicated than in the classical laminate theory, 
they are given in the appendix. 

(
[A] [DJ)-' 

From the matrix of compliances [DJI' [D] . the 

effective moduli of the laminate can be determined. 
These are the properties. a finite element code needs 
for structural analysis. 

This extended theory was programmed in the computer 
code ETHERM3D. This code allows the determination 
of all three dimensional properties of laminates (i.e. 
Young"s moduli. shear moduli, Poisson's ratios, coef­
ficients of thermal expansion and thermal curvature). 
Moreover the stresses in the unidirectional layers and 
the corresponding factors of safety can be calculated for 
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given loads. So this computer code is an excellent sup­
plement for common finite element codes. 

4.2 Some three dimensional properties of laminates 

In the following some unusual features of the properties 
in thickness direction of laminates shall be shown. In the 
figures 15 and 16 the moduli of elasticity and the coef­
ficient of thermal expansion of a ± 11 laminate (CFRP, 
fiber T300, fiber volume content 60%) in the direction 
perpendicular to the laminate plane is plotted versus the 
angle ti. 

""' 

""' 'ii 
i ·~· 
€ 
11 "'' w 
0 
3 

.. ~ 
" 0 
::; .... 

' 

L-----·--.cvoung's Modulus Ez 

• 

·-·-·-·-·-· -----
- -l-- :::::--=~-:-:.::=.j--·-·-·-·-· 

Shear Modulus G:t:y Shear Modulus Gzx 

It ~0 H ,. 50 10 ~ ~ ~ 

:l:f (Degree] 

Figure 15: Moduli of elasticity in thickness direction of 
a ±d CFRP laminate 

f • 
0 

•,!--~,7.--~.~.--~ .. ~~ .. ~--.. ~-.. .. .--,.,.---.~.--... 
±<p (Degree} 

Figure 16: Coefficient of thermal expansion in thickness 
direction of a ±ii CFRP laminate 

Both figures show a maximum at angles .J of !G 0
. This 

results from the very different stiffnesses and Poisson's 
ratios of the unidirectional layers in the longitudinal and 
in the transverse direction. Th-.e strains of the individual 
layer in th'= transverse direction is most restraint when 
the angle between the fibers of neighbouring layers is 
!HJ" (which means the angle .} is lG 0

). 

Figure 17 shows the Poisson"s ratio in thickness direc­
tion of a ::±: J laminate. when it is loaded in the inplane 
direction. For relative small angles.], the Poisson's ra­
tio reaches negative values. which is very unusual for a 
common material 

The above shown laminate properties in the thickness 

·' 
·' o t Test Value 

•• 
' ·' 
~ .I 

w 
~ .oJ--,.-'"';;;---;;;;---;(.--;,~, ---..,~-.,,.~--:..,~--:.., 

-.> 
[Degree) 

-·· 0 

Figure 17: Poisson's ratio in thickness direction of a±;] 

CFRP laminate 

direction emphasize that it is important to use the real 
three dimensional properties in a finite element analysis 
to get the correct results. 

~ 3 Application of ETHERM3D 

Thickwalled fiber reinforced structures are used at heli­
copters mainly for dynamically highly loaded rotor com­
ponents. So, the rotor blades themselves and especially 
their load introduction elements are made of these ma­
terials. Flexbeams are only possible through the exten­
sive use of fiber reinforced materials. Figures 18 and 
19 show the flexbeam and the three dimensional finite 
element model of the rotor blade of the BO 108 [2]. 

Figure 18: Flexbeam of a modern helicopter 

Figure 19: 3D-idealization of the flexbeam 

At the German-French PAH/HAC helicopter [1]. the es­
sential components of the rotor hub are made out of 
fiber reinforced material. Figure 20 shows this rotor hub 
with the two thick CFRP plates. These plates are really 
three dimensional structures. Load introduction and the 
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Figure 20: Rotor hub with elastomeric bearings 

load paths are so complicated that with simpler models 
the results are unsatisfactory. In figure 21 the finite el­
ement idealization of this hub is shown. The results of 
this analysis are in good correlation with test results. 

Figure 21: 3D-idealization of the rotor hub 

5. Summary 

The basing theory and the application of three new de­
veloped computer codes are shown. These computer 
codes have been created to support the process of de­
signing helicopter structures in a very efficient way. 

The computer code OLGA. based on the classical lam­
inate theory and on procedures of the numerical opti­
mization. allows to design optimal laminates in a very 
general sense. As objective functions and design con­
straints any result or any combination of results of the 
classical laminate theory can be chosen. Design vari·· 
abies may be the thickness and the fiber orientation an­
gles of the unidirectional layers. Some examples show 
the usefulness of this program. especially in early design 
phases. 

In the analysis of non-homogeneous bars there are some 
difficulties, if the materials have different Poisson's ra­
tios. Though their influence is usually very small. in 
some cases they may have a noticable influence on the 
bar stiffnesses and the coefficient of thermal expansion. 

The computer code SABINA enables the engineer to 
consider this influence and to determine the real stiff­
nesses. 

Analysis of thickwalled composite structures requires a 
three dimensional finite element analysis. As input data. 
all three dimensional properties of the used laminates are 
necessary. The usual classical laminate theory delivers 
the inplane properties only, the out-of-plane properties 
are unknown. The computer code ETHERM3D allows 
to determine all three dimensional properties as well as 
the stresses in single unidirectional layers due to applied 
outer loads (forces, moments or temperature). So, it 
is a very useful complement to common finite element 
codes, which have no such extension at this time. 
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APPENDIX 
Equations for the determination of the stiffness coefficients for the extended laminate theory: 

With the following arrangement for the indices 

and the abbreviations 

[CK,L] = 

[E;,L] = 

[FK,;] 

[G,,L] 

[HK,,] 

[Si]k 

l,m 1, 2, 3, 

'• J = 1,2,3,4,5,6, 
K, L = 3, 4, 5, 

1', s = 1, 2, 6, 

n 

k::::l 
n 

I;[aK,L]k[aK,j]k 1(zk- Zk-1), 

k::::l 
n 

~ I;[a,,r_Jj: 1[aK,Lh(zl- zf-1), 
k=l 

n 

~ I;[aK,L]k[aK,,]j: 1(zl- zL), 
k::::l 

[a;,; ]i;" 1 [a,;]>. 

the equat'1ons for the coefficients of the submatrkes of equation (22) are given by: 

1 [ n -
1 

- I;[a;,L]i;"1(zk- Zk-d + [E;,LJ[CK,L][FK,j]-
ges k=l 

[A;,,] = 

- I)a;,L]j: 1[aK,L]k[aK,;]k" 1(zk- Zk-1)], 
k:::::l 

[A;,L] [E;,LJ[CK,L], 

[ 

n n z/, I;[a;,,]k" 1(zt- Zf_ 1) + [E;,LJ[CK,L] I;[aK,L]k[ag,,]k" 1(zl- zf_ 1)-
g k=l k=1 

[B;,m] = 

- I)a;,L]k" 1[aK,L]k[aK,,]k" 1(zl- zL1Jl, 
k=l 

~ [~ t(a,,,]k" 1 (z~- zf_1) + [G,,LJ[CK,LJ[HK,,]-
ges k::::l 

-~ t[a,.,L];;- 1 [aK,L]daK,,]j: 1 (z~- zL 1)], 
k=l 
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