
 1

A METHODOLOGY FOR THE DERIVATION OF A ROTOR BLADE 
FLUTTER DETERMINANT IN FORWARD FLIGHT  
AND ITS APPLICATION TO STABILITY ANALYSIS  

OF ROTOR BLADE 3D-MOTION 
 

Sergey A. Mikhailov , Eugene I. Nikolaev, Nataliya A. Shilova 

 
Tupolev Kazan State Technical University 

10 K.Marx Street, Kazan, 420111, Russian Federation 
e-mail: nata_shilova@mail.ru  

 
Key words: periodic motion, flutter, stability analysis, blade coupled oscillations. 

 
Abstract: Presented is a method for the derivation of a flutter determinant by using a model of 

coupled blade motions in forward flight. The convenient algorithm for flutter parametric 
investigation based on the derived determinant has been developed. Possibilities are given for 
simple and quick estimation of different rotor design modifications. The algorithm is successfully 
applied to obtain flutter critical angular velocities of rotor rotation and investigate the influence of 
blade parameters on flutter stability margin for Russian helicopter Ansat. Results of numerical 
calculations are presented. 
 
INTRODUCTION 
 

Flutter is generally understood as aeroelastic dynamic instability of lifting surfaces. For a 
helicopter it may be self-excited violent coupled blade flap-lag-torsion oscillation that occurs due to 
the interaction of inertial, aerodynamic and elastic forces of main rotor (MR) blades [1, 2]. 
Oscillating motion can become unstable and lead to undesired consequences at some regimes of a 
helicopter flight. For newly designed stiff main rotor helicopters with blades on the elastic element 
the problem of the stability of coupled blade motion is of current importance. 
 
Due to rotor rotation helicopter blade flutter is far different from that of a fixed wing aircraft mainly 
because of the periodicity of rotor dynamics in helicopter forward flight through periodic variations 
of aerodynamic forces and moments. The set of differential equations governing coupled vibrations 
of a rotor blade in forward flight consists of non-linear differential equations with periodic 
coefficients. Numerical implementation of stability analysis of periodic equations even in linear 
case, for example, by using the well-known method based on the Floquet-Lyapunov theorem [3, 4], 
is time consuming that creates difficulties in its application for parametric analysis of rotor 
alternative designs. 
 
While rotor system engineering development continuous control of MR parameters is necessary in 
order to maintain them within specified limits that provide the required flutter stability margin. 
Various structural and technological modifications made during design and factory test stages as 
well as during helicopter full-scale production may force blade parameters to change. So, 
development of engineering approaches to flutter analysis, which would enable to carry out simple 
and quick estimation of different design modifications, is of big importance. 
 
The method for flutter determinant construction based on a well known harmonic balance technique 
[5l] is proposed to make stability analysis of flap-lag-torsion coupled motion of a helicopter rotor 
blade in forward flight. The method is tested on a three-degree-of-freedom non-linear mathematical 
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model, which approximates the blade motion in both hover and forward flight. Stability analysis of 
the developed linear perturbation equations enables us to obtain flutter critical angular velocities of 
rotor rotation and investigate the influence of blade parameters on flutter stability margin which is 
demonstrated for Russian helicopter Ansat. The developed method has been verified by numerical 
integration using the Runge-Kutta method for linear equations of perturbed motion of helicopter 
blade. 
 
1. BLADE DESIGN MODEL 
 
We consider hingeless MR with blades attached to the rotor hub via torsion. In the model the 
torsion is represented by equivalent hinges with concentrated stiffness. The stiffness is determined 
by dynamic similarity between blade attached by the torsion and the hinged blade. Blade natural 
flapping and lag frequencies can determine this stiffness and can be obtained whether from 
calculations, or from experiments. The system of differential equations governing oscillation of the 
elastically attached rigid blade during helicopter forward flight is derived using the hub-fixed, 
rotating coordinate system (definition of the frame is shown in Figure 1).  
 

 
 

Figure 1. The rotation-plane-fixed coordinate system 
 
The following assumptions provide practically satisfying accuracy for flutter analysis and are used 
in the derivation of blade motion: 
− The blade is assumed to be flexural rigid. Due to the compliance of the springing element, blade 
swings in rotation and flap planes as a rigid body around equivalent flap and lag hinges. 
− The blade is also assumed to be rigid in torsion. Swinging as a rigid body around the feathering 
hinge, it executes a torsional vibrations due to flap and lag compensators as well as to deformations 
of control links and swash plate. 
− The blade axis is straight and coincides with the feathering hinge axis. 
 
2. EQUATIONS OF COUPLED BLADE MOTION 
 
While considering the equilibrium of moments about the equivalent flap hinge, lead/lag hinge and 
feathering hinge axes the following designations are used in the derived below equilibrium 
equations: R – blade radius, β  – blade flapping angle, ζ  – blade lag angle; m – mass per unit blade 
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of rotor blade; xF ′  –aerodynamic force per unit length of rotor blade parallel to disk plane; yF ′  –
aerodynamic force per unit length of rotor blade normal to disk plane; aM  – aerodynamic moment 
per unit length of rotor blade; mx  – the distance from blade longitudinal axis (passing through 
elastic center of blade section) to section center-of-mass; ; ; ;y x z u rβ ζ= η β = η ζ = −  

; ;
r r r r

R R
R r R r

β ς
β ζ

β ς

− −
η = η =

− −
 ;z u=  ;y β′ ′= η β  ;x ζ′ ′= η ζ  ( ) ( )2 21

2

r

r

u x y dr
β

⎡ ⎤′ ′= − +⎣ ⎦∫ . 

A dot over a variable indicates differentiation with respect to time t and primed variables indicate 
differentiation with respect to radial distance r. 
 
The following moments and forces per unit length of rotor blade, which produce the flap moments, 
are acting on the blade section: 
 
1. Centrifugal force 2mzω  acting at a distance y  about the flap hinge.  
2. Inertia force ( )cosmm y x+ θ θ  and aerodynamic force yF ′  acting at a distance ( )r rβ−  from the 

flap hinge. 
3. Centrifugal moment 2 sinmmx zω θ . 
4. Because of a spring in flap hinge the moment Kβ(β – βconstr) is acting on the blade element.  
 
Integrating the moments along the blade radius gives the following equilibrium condition about the 
flap hinge axis: 
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 (1) 

 
For the lag motion the forces and moments per unit length of rotor blade acting on two-dimensional 
blade section are the following: 
 
1. Centrifugal force 2mzω  acting at a distance x  about the lag hinge. 

2. The forces acting at a distance ( )z rς−  about the lag hinge: inertia force mx , centrifugal force 

( )2 cosmm x x−ω θ + , Coriolis force 2 mzω  and aerodynamic force xF ′ . 

3. Centrifugal moment 2 cosmmx zω θ . 

4. Due to the spring in the equivalent lag hinge the moment Kζζ is acting on the blade element. 
 
Taking moments about the lead/lag hinge and integrating the moments along the blade radius and 
collecting similar terms give the following equilibrium condition of moments about the lead/lag 
hinge axis: 

 ( ) ( )2 2 ( ) .
R R R R

x
r r r r

mx z r dr mxr dr mz z r dr C K z r F dr
β β β β

ζ ζ ζ ζ ζ ζ ′− − ω + ω − + ζ + ζ = −∫ ∫ ∫ ∫  (2) 
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Hub of the hinge rotor has a mechanical damper in the lag hinge. Therefore, the term Cζζ  is added 
into the lag motion equation, where Cζ is a derivative of the damper moment with respect to angular 
rate of blade rotation about the lag hinge. 
 
The following moments and forces per unit length of rotor blade, which produce the moments about 
the feathering hinge, are acting on the blade section: 
 
1. Centrifugal force 2 cosmmxω θ  acting at a distance y about the feathering hinge. 

2. Linear torsion moments: inertia moment cosm mmx y Jθ + θ , where 2
m mJ J mxθ = + , propeller 

moment 2 sin cosJθω θ θ  and centrifugal moment 2 sinmmx x−ω θ . 

3. Restoring moment CS CSM C= ϕ  about the feathering hinge axis conditioned by control system 
torsional stiffness. CSC  – control system stiffness coefficient. 

4. An aerodynamic moment aM , acting around the feathering hinge axis, which is positive when 
acts to increase the pitch angle. 
 
Integrating the moments along the blade radius gives the following equilibrium equation of all the 
moments acting about the feathering hinge axis: 

 2 2

0

cos cos sin cos .
R R R R R

m m m m CS a
r r r r

mx ydr mx ydr J dr J dr C M dr
ϕ ϕ ϕ ϕ

ω θ + θ + θ + ω θ θ + ϕ =∫ ∫ ∫ ∫ ∫  (3) 

 
The blade pitch angle θ equal to 

 ( ) 0 1 1cos( ) sin( )c s P Pr t t K Kβ ζθ = ϕ + ∆θ + θ + θ ω + θ ω − β − ζ  (4) 

is the most complicated angle function. It consists of so-called control system compliance angle ϕ – 
the angle of blade torsion about the feathering hinge caused by deformability of blade control links, 
blade collective pitch 0θ , lateral cyclic pitch 1cθ  and longitudinal cyclic pitch 1sθ , ( )r∆θ  – linear 
blade twist rate; as well as of angles induced by the operation of flap compensator PK β− β  and 
lead/lag compensator PK ζ− ζ . All of these angles except for blade collective pitch 0θ  are small over 
flight envelope and their sum is not more than 10°. Hence, following simplifying assumption can 
be used:  
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⎡ ⎤θ ≈ θ − ϕ + ∆θ + θ ω + θ ω − β − ζ θ⎣ ⎦

 (5) 

 
Substitution of expressions (4) and (5) in equations (1), (2) and (3) permits us to express their 
coefficients explicitly in terms of compliance angle ϕ, and of collective pitch 0θ , which is 
important for parametric analysis of the stability margin of blade oscillating motion in three 
mutually perpendicular planes. Values of blade collective pitch θ0, lateral cyclic pitch 1cθ , 
longitudinal cyclic pitch 1sθ  are determined from helicopter trim calculation. 
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3. FLUTTER ANALYSIS METHOD 
 
3.1. Linearization of blade motion equations 
 
The representation of blade motion equations after the above substitution is clumsy and they are not 
presented in the paper. The equations are written in the unknowns β, ζ , ϕ, β , ζ , , , ,ϕ β ζ ϕ  and 
their products and are non-linear differential equations with periodic coefficients, which are 
functions dependent on blade design and flight parameters and trim characteristics. It can be shown 
[5] that the expressions 
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are the particular solution of system (1), (2), (3) and describe undisturbed blade motion. 
 
It is assumed that during the dynamic process variables β, ϕ and ζ change so that their 
displacements from steady-state values β*, ζ* and ϕ* remain sufficiently small during the whole 
process. The perturbed angles β = β* + ∆β, *ζ = ζ + ∆ζ  and ϕ = ϕ* + ∆ϕ are introduced into the 
equations of blade motion (1), (2), (3). Here ∆β, ∆ζ and ∆ϕ are perturbation angles, that are the 
angles of displacement from steady-state blade motion. The angles β*, ζ* and ϕ* satisfy blade 
motion equations (1), (2) and (3). Retaining the perturbation terms and discarding the terms of high 
order smallness, that are products and powers of perturbation angles ∆β, ∆ζ , ∆ϕ and of their 
derivatives, will give the linear perturbation equations about the steady-state motion of the blade. 
Thereinafter symbol ∆ is omitted to simplify expression form. 
 
3.2. Flutter analysis 
 
For determination of flutter critical rotor angular velocity it is necessary to analyze linearized 
system, derived from equations (1), (2), (3) for stability of trivial solution [6], that is to show that 
β → 0, ζ → 0, ϕ → 0 at t → +∞. The solution of the system of linear differential equations with 
periodic coefficients can be written down in the form [5]: 
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Here n is constant number equal to the number of harmonic components retained in the solution of 
linearized equations. It is obvious that trivial solution will be stable only at Re(λR) < 0. The case is 
considered when the coefficient vector [ ]0 1 1 0 1 1... ... T

c s cn sn c s cn snb b b b b z z z z z  is not zero. 
 
General algorithm for stability analysis of blade motion in forward flight, that is definition of 
flutter conditions, is presented [7]. 
 
1. Under the given flight and design parameters linearization of the system of non-linear differential 
equations (1), (2), (3) is carried out. As a result, the linear differential equations are obtained 
presenting the system of perturbation equations of the blade in the forward flight. 
2. The value of n – the number of harmonic components retained in the linearized equation solution 
is assigned. Expressions (7) and their derivatives are substituted into the linear system and algebraic 
system is formed linear in m = 6n + 3 expansion coefficients of blade oscillation angles 

0 1, ,..., , ,c cn snβ β β β  0 1, ,..., , ,c cn snζ ζ ζ ζ  0 1, ,..., ,c cn snϕ ϕ ϕ ϕ . Common multiplier 0Rteλ ≠ is discarded. 

3. The value of n*, the number of harmonic components taken into account in steady-state motion, 
is assigned. Expressions (6) and their derivatives are substituted into the system of algebraic 
equations. The values of * * *

0 1, ,..., ,c snβ β β * * *
0 1, ,..., ,c snζ ζ ζ * * *

0 1, ,...,c snϕ ϕ ϕ  are determined from helicopter 
trim calculation [7]. Standard trigonometric transformations are applied to the system coefficients. 
4. The coefficients at the similar harmonic components and at the terms free from harmonics are 
grouped together for each of the system equation and then are equated to zero. 
5. The equations for free terms and n low harmonics are selected from the equations obtained above 
and their coefficients are grouped according to the powers of the characteristic number λR. 
6. The set of homogeneous algebraic equations derived above is written in the matrix form 

2
1 0( ) 0R Rλ + λ + × =2A A A K . 

Here A2, A1, A0 are matrices of order m× m, which elements depend on main rotor angular velocity 
ω, flight parameters and blade design parameters. and K here is a coefficient vector 

[ ]0 1 0 1 0 1... ... ... 0T
c sn c sn c sn= β β β ζ ζ ζ ϕ ϕ ϕ ≠K . 

7. Roots of characteristic equation 2
1 0det( ) 0R Rλ + λ + =2A A A  are determined. The characteristic 

number λR defines areas of stability and instability for the linearized system, depending on system 
parameters [5]. 

8. The criterion function of the algorithm is the quantity max max Re( ),Rkk
Rλ = λ  ( 1, 2 )k m= × : 

max 0Rλ <  means stability; max 0Rλ >  means instability. 

 
The presented method is accurate enough and can be applied to MR flutter analysis in both hover 
and helicopter forward flight. The high speed of the algorithm allows its effective application in 
engineering practice. 
 
4. CRITICAL MAIN ROTOR ROTATIONAL SPEED IN THE ANSAT FORWARD FLIGHT 
 
The above method for defining stability of disturbed blade flap-lag-torsion motion in forward flight 
was taken as a basis for calculation of flutter critical angular velocity for Russian helicopter Ansat 
during its first test flights. To carry it out and make numerical calculations Maple 6 and MATLAB 
software systems were used. The results of calculations are presented in Figs. 2-4. Fig. 4 shows 
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critical values of main rotor angular velocity evaluated for different rotor parameters. Stability 
region is located under the curve and instability region is located above the curve. 
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Figure 2. Effect of lag hinge damper coefficient on the blade motion stability 
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Figure 3. Effect of blade control links stiffness on the blade motion stability 
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For rotating-wing aircraft, it is the convention to nondimensionalize all velocities by the the blade 

tip speed in hover Rω . Nondimensional rotor advance ratio cosV
R

α
µ =

ω
 (where V  is the 

magnitude of free-stream velocity, α  is the rotor disk angle of attack) is a measure of forward flight 
speed and its values from 0 to 0.4 cover the entire speed range for the Ansat helicopter. Nominal 
operating rotor angular velocity is denoted by ωo. For the Ansat helicopter ωo. = 38.26 rad/sec. The 
critical angular velocities were defined as functions of the so-called “center-of-gravity margin” 

/ 100 %z bσ σ= ∆ , where σ∆  represents the center-of-gravity shift, b  stands for the blade chord 

length. Torsional frequency krp  is a measure of control system torsional stiffness CS
kr

FH

Сp
J

= , here 

FHJ  stands for blade moment of inertia about the feathering hinge. 
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Figure 4. Effect of lag hinge spring rate on the blade motion stability 

 
The developed method has been verified by numerical integration using the Runge-Kutta method 
for linear equations of perturbed motion of helicopter blade. Results of numerical modeling of the 
perturbed blade motion in forward flight are shown in Fig. 5. The plot (a) shows the blade 
perturbations at the boundary of stability. The method gives that such a point for flight speed 
µ = 0.2 and operational angular velocity ωo = 38.26 rad/sec is = 0.04226 m∆σ . The plots (b) and 
(c) demonstrate unstable flight regimes when angular velocity and center-of-gravity shift exceed the 
boundary values; the plot (d) presents stable flight regimes under the boundary angular velocity 
value. 
 
The presented method is accurate enough and can be applied to flutter analysis in helicopter 
forward flight. The high speed of the algorithm allows its effective application in engineering 
practice. 
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Fig. 5. Perturbations about the steady-state motion of the rotor blade; . 

(a) ∆σ = 0.04226 m; ω = ωo = 38.26 rad/sec; (b) ∆σ = 0.04226 m; ω = 40.17 rad/sec;  
(c) ∆σ = 0.05120 m; ω = ωo = 38.26 rad/sec; (d) ∆σ = 0.04226 m; ω = 36.35 rad/sec 
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5. CONCLUSIONS 
 
The method for determination of the main rotor flutter critical parameters in helicopter’s forward 
flight is presented. A detailed flutter parametric investigation for the MR blade of Russian 
helicopter Ansat has been developed using the method. Because of lack of space only few 
numerical results are presented in the paper. The following conclusions are made based upon 
research results: 
 
1. The equations governing the coupled flap-lag-torsion motion for stiff blade attached by torsion 

have been derived. 

2. The accuracy of the presented harmonic method is good and decreases only slightly with the 
increase of the center-of-gravity shift. 

3. The high speed of developed method allows its effective application in engineering practice for 
blade parametric investigation. 

4. No flutter effect exists at operating angular velocities of the Ansat helicopter MR over the entire 
flight speed range. These results are in agreement with experimental data.  

5. Helicopter flight speed has a significant influence on flap-lag-torsion stability in forward flight. 
Stability margin decreases with increasing advance ratio µ. 

6. Increasing lag hinge spring rate Kζ has a strong stabilizing effect on a blade motion. 

7. Increasing mechanical damper qualities of the lag hinge has a strong stabilizing effect on a 
blade motion. 

8. It is important to include harmonic components of blade pitch angle in mathematical model; 
otherwise the model overpredicts the blade stability. 

9. The deformability of blade control links has a grand effect on blade flutter characteristics. But 
too much increase of torsional stiffness does not bring further stability increase as saturation is 
stepping up.  
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