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ABSTRACT 

The aeroelastic stability and response problem of the coupled flap-lag­
torsional dynamics of a hingeless rotor blade in forward flight is treated in 
a comprehensive manner. The spatial dependence of the partial differential, 
nonlinear, equations of motion is discretized using a multimodal Galerkin 
method. The aeroelastic problem is coupled with the trim state of the heli­
copter obtained from improved, representative, trim procedures. The nonlinear 
time dependent equilibrium position, or response, about which the equations are 
linearized is obtained by solving a sequence of linear periodic response pro­
blems, using quasilinearization. Numerous results illustrating blade behavior 
in forward flight are presented. 

1. Introduction 

In recent years, considerable attention has been focused on a variety of 
aeroelastic stability and response problems associated with isolated rotor 
blades and coupled rotor/fuselage systems in hover and in forward flight. A 
review of this research up to 1976 can be found in Ref. 1. In particular, the 
hingeless rotor, in which the blades are cantilevered to the hub, has become 
an increasingly attractive concept due to its mechanical simplicity of con­
struction and favorable control characteristics. A number of successful hinge­
less rotored helicopters have been built and are in service, both in military 
and civilian applications, clearly indicating that the hingeless rotor is 
starting to fulfill its initially envisioned potential. 

A further'development of the hingeless rotor is the bearingless rotor in 
which even the pitch change introduced by the pilot through the actuation of 
the controls is accomplished by introducing a purely elastic twist, thus eli­
minating the need for the pitch change bearing. Preliminary research and test­
ing of bearingless main rotors and tail rotors indicates even further signifi­
cant potential for weight saving due to its simple and rugged mechanical config­
uration. While considerable research on hingeless rotor and bearingless rotor 
aeroelastic stability problems in hover has been performed1-6, the studies 
dealing with the aeroelastic stability and response of such rotors in forward 
flight, have been much fewer in number and somewhat limited in scope1•5,7-l 2 . 
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The limited scope of the studies dealing with the forward flight aero­
elastic stability and response problems is mainly due to the complicated nature 
of this subject both from a mathematical modeling point of view (i.e. compli­
cated and lengthy equations) and also because of the need to deal with differ­
ential equations with periodic coefficients when solving the stability or 
response problem, which introduces some mathematical problems inherent in the 
solution of such equations. This statement can be further clarified by review­
ing some of the requirements for reliable modeling of rotary-wing aeroelastic 
phenomena which are evident from the various references cited in this paperl-11 

(a) It has been established that for a wide class of aeroelastic stability 
and response problems, the initial formulation of the equations of 
motion, in partial differential form, should be nonlinear such that 
geometric nonlinearities due to the moderate deflections are included 
in the structural, inertia and aerodynamic operators associated 
with this aeroelastic problem. 

(b) Reliable solutions for stability or response can he obtained by 
linearizing the nonlinear equations of motion about an appropriate 
equilibrium position. In aeroelastic problems associated with for­
ward flight the appropriate equilibrium position is a time dependent 
periodic solution. 

(c) Calculation of the time dependent periodic equilibrium position, 
representing the response solution of the blade is inherently coupled 
with the trim state of the complete helicopter in forward flight. 
The degree of sophistication with which this coupling is accomplished 
can affect the accuracy of the aeroelastic analysis. 

The present paper has a number of objectives. First, it extends the for­
mulation presented in Ref. 9, for the coupled flap-lag-torsion dynamics of a 
hingeless blade in forward flight, which was treated9 using only one normal 
mode for each elastic degree of freedom to a complete multimodal representation, 
in which an arbitrary number of modes can be used to represent the flap, lag 
and torsional degrees of freedom. This approach retains the realistic aspects 
of the elastic blade model9 when compared to the simplified centrally hinged 
model7,10-12 and enables one to deal with the response problem, in which a 
number of modes might be required for meaningful response calculations. 

The second objective of the paper is to present improved trim procedures, 
which are more accurate and comprehensive than previous trim procedures7,9. 

The third objective of the paper is to present a new convenient and 
efficient method for evaluating the response of periodic systems.. The des­
cription of a linear version of this method and its application to wind turbine 
aeroelastic problems was presented in Ref. 13. In the present paper, an ex­
tension of the method to nonlinear problems is presented and it is shown that 
by solving a sequence of linear problems in an iterative manner enables one to 
obtain solutions for both the nonlinear stability and respons.e problems with 
a desired degree of accuracy. In mathematical terminology this method is 
usually denoted by the term quasilinearization. This method is expected to be 
of considerable practical value in a variety of blade vibration, blade loads 
and rotor blade aeroelastic stability studies in forward flight. 

the results presented illustrate several important aspects of hingeless 
blade aeroelastic behavior in forward flight. First some typical results from 
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the new trim procedure and its coupling with the aeroelastic analysis are 
presented. Next it is shown, that various approximations in the periodic 
equilibrium position can yield quite different stability trends. The import­
ance of the nonlinear terms, in forward flight, on blade response and blade 
stability is also clarified by the results. Details of the numerical scheme 
are discussed and the sensitivity of the results to the number of modes used 
is indicated. Finally, some interesting trends associated with the effect of 
forward flight on the aeroelastic stability of soft in plane hingeless blades 
are compared to those of a stiff in plane rotor. 

2. Brief Description of the Equations of Motion 

The coupled flap-lag-torsional equations of motion upon which this study 
is based were presented in Ref. 9, a more detailed version of these equations 
will also be published in the near future14. 

The geometry of the problem is shown in Figs. 1 and 2. The equations 
of dynamic equilibrium used are based on a considerable number of simplifying 
assumptions presented in Ref. 9. The most important one, is the assumption that 
the blade undergoes moderate deflections, implying small strains and finite 
rotations or slopes. In deriving these equations, it is also assumed that 
squares of the slopes and products of the slopes are negligible compared to 
terms of order unity. As a consequence of this assumption, a large number of 
geometrically nonlinear terms are introduced in the inertia, structural and 
aerodynamic operators associated with this aeroelastic problem. Some of the 
higher order nonlinear terms are neglected, in a systematic manner by using an 
ordering scheme1,9. 

The most important capabilities and limitations of these equations are 
briefly outlined. The equations are capable of simulating general coupled 
flap-lag-torsional dynamics of hingeless rotor blades with arbitrary mass 
and stiffness distributions and offsets between blade elastic axis, cross 
sectional center of mass and cross sectional aerodynamic center. The aero­
dynamics are applicable to forward flight at arbitrary advance ratios including 
an exact representation of reversed flow. Time dependent and radially dependent 
inflow is also incorporated. Cyclic pitch terms are included. Provisions 
for including higher harmonic control inputs also exist. Viscous type of 
structural damping is included in the formulation. 

The restrictions present in the equations are due to the neglect of 
compressibility and dynamic stall effect, Furthermore, quasisteady aerodyna­
mics were used. The equations are restricted to isolated blade dynamics because 
shaft motions were neglected. It should be noted however, that a version of 
these equations, including fuselage or shaft motions is also available in 
the literature15. 

For the sake of completeness, the coupled equations of equilibrium are 
presented in Appendix B. Two minor terms associated with the structural effects 
of pretwist are not included in Eq. (B-4), since the proper form of these terms 
has become available only recently16,17. 

14-3 



3. Solution of the Eguations 

3.1 Modal Substitution 

The system of general, coupled, partial differential equations of motion 
presented in Appendix B is transformed into a system of ordinary nonlinear 
differential equations by using Galerkin's method to eliminate the spatial 
variable. In this process the elastic degrees of freedom in the problem are 
represented by the uncoupled free.vibration modes of a rotating blade. The 
elastic degrees of freedom w, v and $ are represented by 

NF 
w = L ~gi(~)niCxo) 

i=l 

NL 
v = -L ~hj(~)nj(x0 ) 

j=l 

NT 

$ = L f (~)$ (x0) (1) 
m=l m m 

The various algebraic details as well as the final equations are not 
presented in this paper and can be found in Reference 14. In the actual 
implementation of these equations, two elastic modes were used to represent 
each degree of freedom, i.e. NF = NL =NT = 2. After applying Galerkin's 
method, one obtains a set of coupled nonlinear ordinary differential equations 
with periodic coefficients. A total of six second order equations are thus 
obtained. 

3.2 Improved Trim Procedures 

When solving the nonlinear aeroelastic equations described in the previous 
section, one must recognize that these solutions are inherently coupled with 
the trim state of the complete helicopter. The trim state of the helicopter 
can be obtained by performing a trim analysis. In previous research, relatively 
simple trim procedures have been used to obtain the trim state8,9, In the 
present study, more comprehensive and improved trim procedures were developed 
and used. These trim procedures are briefly described below, additional details 
are available in Reference 14. 

These trim procedures have been basically derived for hingeless rotor blades 
in forward flight and elastic blade flap displacements are included in the analy­
sis. No assumptions are made on the number of harmonics in the flap displace­
ment, this represents considerable improvement on previous studies8,9, where only 
first harmonics were included.Variable inflow is included and moment equilibrium 
is enfv:ced. Azimuthally averaged inertial effects are exactly accounted for. 
Reversed flow effects are included. Blade precone and elastic center - aero­
dynamic center offset are also included. A linear built in twist is incorporated 
in the analysis. Stall and compressibility effects are not considered. Rotor 
shaft dynamics and tail rotor effects are neglected. The trim equations con­
tain complete provision for higher harmonic pitch control. 
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Other major assumptions are: (a) The helicopter is in straight and steady 
flight, (b) Only first mode flapping motion is considered important for trim, 
higher modes are not included; however, all harmonics associated with the 
first mode are included, (c) Lead-lag and torsion types of motion are excluded, 
(d) Nonlinear elastic flap displacement terms are not retained, except in the 
rotor drag force H where they are important. 

The inflow ratio is assumed to be of the form 

(2) 

where AQ, Ac and As are specified constants which are determined by the part­
icular lnflow model employed. In general 

Ao- AO(aR,]J'CT) 

Ac- Ac (aR,ll'Sl 

As- As (aR,]J'CT) 

The total pitch angle 6G is the sum of the built-in twist, collective and 
cyclic pitch portions, and any specified pitch due to higher harmonic control 
6H (1/1) , thus 

(3) 

The lift on the blade element is given by14 

2 3- -- - - - -L=apll. Rb{- ~(e1 +x0)A -)lAs:inl/1- ~-~P]J(e1 +x0)co51/J 

- ~]J (~ + x0Jw,XCOS1/J -lw,Xs:inl/JCOS1/J 

-2 - - 2 - - - 2 2 + 6G[~ (e1 + x0) + 2~]J(e1 + x0)s:inl/l + 1l s:in 1/J] 

+ gG(~.- ~)[~(el + x 0) + )lS:inl/J]} (.4) 

The inflow functions are taken to be 

k1 <x> = 1 

k2 (xol = k3 (xol = (el + xol /R = i (el + xol 

and.the constants A6,Ac,As are obtained from one of the following inflow models 
(1) uniforml8 (2) Glauert inflowl8 and (3) Drees type inflowl9. 

Integrating the lift expression, the average aerodynamic moment in the 
thrust direction can be obtained, for one blade, thus 

(5) 
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In the last expression, revers.ed flow effects are taken into account. 
The inplane aerodynamic force H. due to one blade is given by14 

H = 
A 

where 

• * uz = - (rlR) [A + SPJ1C051/J + I w + ]lCOS1/!W,J 

(£) 

(8) 

(9) 

It can be also shown14 that the average inertial contributions for trim, 
to the pitching and rolling moments are exactly zero. Therefore, only the 
aerodynamic part is required for trim. The average pitching and rolling 
moment acting on the blade root, for one blade, are given by 

(10) 

M =- Lxdx R2 f 2rr [J:B J m ~ 0 0 0 0 sinljldljl (11) 

The last ingredient required in the trim calculation is the steady state 
flap equation 

where 

T(x) = rl2 JR mxdx 
X 

-rna + L z 

(12) 

(13) 

(14) 

(15) 
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only the first elastic flapping displacement is included in the trim procedure 
thus 

During the actual trim calculations, the 
rewritten in first order state variable form. 
solved using the method presented in the next 
state response problem for periodic systems. 

(16) 

steady state flap equation is 
Subsequently this equation is 

section for obtaining the steady 

The various forces and moments acting on the complete helicopter can be 
obtained from the ingredients, presented above by multiplying by the number 
of blades nb. These forces are schematically shown in Figure 3. In practice, 
two possible trim calculations are needed: 

(a) Propulsive Trim, which simulates actual forward flight conditions. The 
weight coefficient (approximately equal to the trust coefficient) is given 
and horizontal and vertical force equilibrium is maintained. In addition, 
zero pitching and rolling moments are enforced. The complete equations of 
equilibrium for this case are quite lengthy and are presented in Ref. 14. 

When using this trim procedure, ~ and Cw are specified and the equations 
are solved in an iterative manner. The solution yields glT(W), 80 , Slc' Sis• 
o:R and A. 

(b) Moment Trim or Wind Tunnel Trim,simulates conditions under which a rotor 
would be usually tested in a wind tunnel. Horizontal and vertical force equil­
ibrium is not required for this case because the helicopter is mounted on a 
supporting structure as shown in Figure 3. Therefore, only the requirement of 
zero pitching and rolling moments on the rotor is imposed; The complete trim 
equations for this case are still quite lengthy and can be found in Ref. 14. 

When using this trim procedure, ~. e0 and o:R are specified and the equat­
ions are solved in an'iterative manner. The solution yields CT, Sls' Slc' 
glT (1)>) and A. 

Typical trim curves obtained from applying these trim procedures, to a 
two bladed rotor are shown in Figures 4 and 5. As shown, the main difference 
between the uniform inflow model and the Glauert model, which uses a linearly 
distributed inflow with a cos1j> - component, consists of relatively small differ­
ences in the values of elc required for trim is the range of 0.20 < ~ < 0.40. 

3.3 Solution of the Blade Equations of Motion 

The dynamic equations of equilibrium for the hingeless blade in forward 
flight are rewritten in first order state variable form. The mathematical form 
of these equations is given by 

* {q} = {Z(1j>)} + [L(1j>)]{q} + {N(g,1J>)} = {FNL(w,g,gl} 

Since the system is periodic (of period 2rr) 

{Z(1j>)} = {Z(1)>+2rr)} 

and [L(1j>)] = [L(1)>+2rr) 

(17) 
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The vector {Z(W)} represents a known excitation, the matrix [L(Wll contains 
the time dependent coefficients of the linear system, the vector {N(q·,wl} - re­
presents all the nonlinear terms in the equations, and {q(wl} - is the state of 
the system. When two flap, two lag and two torsional modes are employed in the 
analysis, the {q(wl} column matrix has dimensions of (12xl). 

First the linear system is considered 

* {qL<w>J = {z<w>J + lL<w>J{qL<w>J 

and the associated homogeneous equation 

(18) 

(19) 

Urabe20 has shown that for characteristic multipliers of the corresponding 
homogeneous system (19) which are different from one, i.e. a stable homogeneous 
system according to Floquet theory, one has one and only one periodic solution, 
of Eq. (18), given by 

{qL<w>J = l<P<w>l(fowr<P<s>J-1 {zU>J}ds 

+([I]- [<P(2rr)])-1 [<P(2rr)] fo2
1f[<P(s)]-1{Z(s)} ds> (20) 

The general solution for any inhomogeneous equation like Eq. (18), 
whether periodic or not can be mathematically written asZ1,22 

{qL~l}= l<P<wJ]{q(Ol} + [<P(wll J
0
w [<P(slJ-1{ztsl} ds (21l 

where in Eqs. (20) and (21) [<P(Jj!)] is the transition matrix defined by 

* l<P <w> 1 = lL<w> 1 l<P <w>J (22) 

and [¢(0)] = [I] 

Note that the existence of a unique periodic solution of Eq. (.18) is that 
the determinant of ([I] - [<P(2rr)]) be nonzero. This is satisfied if all the 
real parts of the characteristic exponents of the transition matrix, associated 
with Eq. (19), at the end of one period, [¢(2rr)], si # 0. From Floquet theory 
if all ~i's < 0, the homogeneous system is asymptotically stable; if any one 
si > 0, the homogeneous system becomes asymptotically unstable. Some additional 
comments on this topic can be found in Refs. 14 and 22. 

Comparing Eqs. (20) and (.21) it is obvious that Eq. (20) corresponds to 
the general solution of the inhomogeneous system, Eq. (18), with the initial 
condition given by 

(23) 

With this information in mind, the periodic steady state solution of 
Eq. (18) can be obtained in the following manner: 
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(a) The initial condition {q (0)}, Eq, (23) is first evaluated using the 
transition matrix at the end of a period [~(2rr)], This matrix is 
evaluated using the approximate, semianalytical method for determin­
ing [~(2rr)] described in Ref. 23, based upon the fourth order approx­
imation of the matrix exponential. The integral contained in the last 
term of Eq. (23) is evaluated by taking a constant value of the inte­
grand at each step and performing an ordinary summation. Since normal­
ly a revolution, or a period, is divided in over 50 intervals, this is 
an excellent approximation. 

(b) Next, by taking this initial condition, Eq, (23), the linear system, 
Eq. (18), is integrated numerically using a fourth order Runge-Kutta 
scheme, with Gill coefficients, which has also been used in Ref. 23. 
The integration is performed with a constant step size which is also 
identical to the step size used in evaluating the transition matrix 
at the end of a period, This means that the use of Eq, (20) is actual­
ly, completely bypassed. 

(c) Convergence of the method is checked by comparing the displacement 
quantities obtained for the response with the initial conditions and 
subsequent revolutions, or periods, i.e. compare {q(w=Ol} with 
{q(~=2rr)}, {q(w=4rr)} and {q(w=6rr)}, Normally, excellent converged 
solutions are obtained within two or three revolutions. 

It should be also noted that in Ref, 25, Hsu and Cheng have established 
a numerical scheme based on direct evaluation of Eq. (20), this method requires 
considerably more computer time than the method described above. 

Next, the solution of the complete nonlinear system, Eq. (17) is considered. 
The approach used for dealing with this problem is qualilinearization, which is 
essentially a generalized Newton-Raphson type method possessing second order 
convergence25 

Introducing an iteration index k for determining the nonlinear time depend­
dent equilibrium position and performing a first order Taylor series expansion 
about the kth iterate 

(24) 

enables one to write 

(25) 

Expressing {FNL} as 

(26) 

substituting Eq. (26) into (24) and carrying out the required algebraic oper­
ations, comparing the result with Eq. (25), it can be easily shown that 
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( [
aN]k)-1( [aN]k [aN]k) [IJ - 'd-i [L(Jil)J + ag1 + a; (27) 

and 

( [a~1] k [a~2] k) k [a~2] k * k) - - + - {q} - - {q} 
a~ a~ a~ 

(28) 

To }nit~ate the iteration, or solution sequence {N1 (q,$)} and 
{N2(q1 ,q,$)} are deleted.from {FNL} and the periodic solution of the linear 
system, Eq. (18) provides the initial guess thus {q}O = {qL} where {qL($)} 
represents the periodic response of Eq. (18) evaluated by the method described 
at the beginning of this section. The iteration sequence represented by Eq. 
(25) is applied. Thus, quasilinearization is simply a sequence of linear 
iterates based on Eqs. (25), (27) and (28). The iterations are terminated when 

l{q}k+l- {q}kl < £ (29) 

for all$ where £ is a prescribed small number. Thus k = 1 corresponds to 
the linearized periodic response and k = 2 would correspond to the first 
approximation of the nonlinear periodic response. 

Once the time dependent equilibrium position has been established, the system 
represented by Eq. (17) is perturbed about this equilibrium position 

{q($)} = {q($)} + {6q($)} (30) 

squares of perturbation quantities are neglected, and the stability of the 
linearized system is determined from Floquet theory, as done previously8,9, 
by evaluation the characteristic exponents 

(31) 

The linearized system is stable when ~k < 0 

4. Results and Discussion 

4.1 Assumptions and Numerical Values Used in the Computations 

The equations used in the present study were implemented in a relatively 
general computer program capable of simulating arbitrary blade configurations. 
In generating results for this paper, some simplifying assumptions were made 
in order to reduce the costs of the computations. Furthermore in view of the 
restricted nature of previous studies, dealing with the forward flight regime, 
it was felt that the present results are sufficiently general. 

The most important simplifying assumptions are listed below: 

(a) Mass and stiffness distributions were assumed to be constant along 
the span of the blade. 
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(b) Built-in twist eB was assumed to be zero, 

(c) Cyclic components of the inflow were assumed to be zero, i.e. 

= >- = 0 s 

(32) 

(d) Blade offsets between the blade cross sectional center of mass and 
elastic axis, and blade cross sectional aerodynamic center and elas­
tic axis were taken to be zero, i.e. ~ = XA =~I= 0 

(e) Two rotating mode shapes are used to represent the flap, lag and tor­
sional degrees of freedom respectively. These, first two rotating 
mode shapes in flap, lag and torsion respectively, are uncoupled 
mode shapes defined at zero pitch setting. These mode shapes are 
most convenient for use in an analysis involving forward flight and 
consequently cyclic pitch variations, Each of these mode shapes are 
obtained by solving the appropriate free vibration problem by using 
Galerkin's method based upon five non-rotating modes of a uniform 
beam in bending and torsion. 

The configuration parameters chosen for the cases for which results are 
presented, were chosen so that the soft in-plane hingeless rotor had properties 
similar to the Boelkow B0-105 hingeless rotor26, 

The basic parameters, for the case denoted soft-in-plane, were: 

wLl = 0. 732 

(J = 0.07 

e = 0 1 

Ulpl = 1.125 WTl = 3.176 ; b = 0,0275 

a= 211 cd0 = CUP= o.o1 ; ~ = 4 B=l 

R=l;S=O c p 
unless otherwise stated 

y = 5.5 

Finally, for all cases except when otherwise stated, on the plots illus­
trating the various results, the following numerical values were used in the 
calculations-

and the various offsets shown in Fig. 3 were also taken to be zero, 

4.2 Results 

The first set of results presented in Figures 6 through 11 are intended 
to illustrate typical steady state response plots for the blade tip obtained 
by applying the effective numerical schemes which were described in Section 
3.3. These figures illustrate the response of the soft-in-plane blade, for 
which the pertinent parameters were presented in the previous section. Th~ 

helicopter is assumed to be in a state of propulsive trim, with C,q = 0.005 and 
blade response plots for two advance ratios ~ = 0.20 and ~ = 0.40 are presented. 
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Figure 6 illustrates the response in the fundamental flap mode g1 (1j!) at 
~ = 0.20. Two curves are shown, one for k = 0 and one for k = 2. Recall from 
the discussion of the quasilinearization technique, presented in Section 3.3, 
that k = 0 corresponds to the linear periodic response in which all nonlinear 
terms are neglected. Similarly,k = 1, corresponds to the linearized response 
and k = 2 corresponds to the first approximation of the fully nonlinear response. 
There is very little difference, for this case between k = 1 and k = 2, and 
therefore, only the results for k = 2 were presented. Also, the results for 
k = 2 represent a converged nonlinear period response, i.e, results from the 
next quasilinearization sequence k = 3, are identical to k = 2. From a physical 
point of view this implies, that for this particular case, the effect of the 
nonlinear terms, on the response, is small, and the response as obtained from 
linearized equations is accurate. 

Similar results for the fundamental lead-lag mode, hl(W), are presented in 
Fig. 7. Again, the lines fork= 1 and k = 2 coincide. The effect of the non­
linear terms on the response in this degree of freedom, is much more noticeable, 
which is consistent with the known sensitivity of lag degree of freedom to 
higher order nonlinear termsl, The results for the fundamental torsional 
response, f1(1j!), are presented in Fig. 8, for this case the effect of the non­
linear terms is quite weak. The response for the second flap g2 (lj!), second 
lag h2 (1j!) and second torsional mode f2(1j!) are not presented because they are 
very small. 

Figures 9 through 11 illustrate the behavior of the same configuration at 
a higher advance ratio ~ = 0.40. Figure 9 illustrates the flap response. Due 
to the higher advance ratio, the effect of the nonlinear terms is more notice­
able, also noticeable are the higher harmonics when compared to Fig, 6. Also 
shown in Fig. 9 is the response in the second flap mode g2 (1j!). Two interesting 
aspects emerge from this figure, since the plots for k = 0 and k = 2 coincide, 
it is clear that nonlinear terms have a negligible effect on the response for 
this case. Furthermore, the second flap response is dominated by the second 
harmonic. Figure 10 shows the response in the fundamental lag mode h1(1j!). The 
importance of the nonlinear terms for this case is quite evident. The funda­
mental torsional response f1(1j!) is shown in Fig. 11, and it is relatively in­
sensitive to the effect of the nonlinear terms. 

Figures 6 through 11 are representative of the nonlinear periodic equil­
ibrium position {q(lj!)} about which the linearized stability boundaries are 
determined. A c~nsiderable amount of numerical experimentation is normally 
required to determine the optimal stepsize for the periodic response calcula­
tions described in Section 3.3. For the cases considered the transition martix, 
required for the evaluation of Eq. (23) was obtained using 252 steps, and 126 
steps were used in the periodic response solution based on the Runge-Kutta 
scheme. Numerous additional results, on various numerical aspects of these 
methods can be found in References 14 and 27. 

It should be noted that the nonlinear equilibrium position shown in Figs. 
6 through 11 is intimately linked to the trim procedures. When performing a 
trim analysis, the first steady state flapping response, glT(lj!), is obtained. 
The trim parameters eo, elct els' A, aR and CT are subsequently used to deter­
mine the nonlinear periodic equilibrium of the blade. Normally the first flap 
response g1 (1j!) from the aeroelastic response analysis will not be equal to 
g1T(1j!), i.e. glT(lj!) f. i'i'I (lj!). Therefore, for "perfect" matching, iterations 
have to be performed between the trim program and the aeroelastic response 
analysis, until some physically meaningful quantities, such as blade hub 
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flapping moments, obtained by th.ese two analyses agree within a desired 
accuracy. Such iterations can introduce minor changes, in the nonlinear 
equilibrium potision, however, they were not considered to be cost effective by 
the authors. For this reason, in generating the results of this paper, this 
particular iterative feature of the computer program was not exercised. 

The effect of forward flight and nonlinearities on the typical soft-in­
plane hingeless rotor, for which the parameters were given in Section 4.1, is 
depicted in Figure§ 12-14. Figure 12 shows the real part of the characteristic 
e~ponent Sk for the first lag modes versus advance ratio for propulsive trim. 
The lines with light circles correspond to results without structural damping 
while the lines with the dark circles represent, half of a percent of viscous 
type of structural damping in the fundamental lag mode, Thus nsLl = 0.005 
and nsL2 = 0.0008, the structural damping in the second lag mode is adjusted 
for the higher frequency of the second lag mode. Since the MBB rotor is a real 
physical system having structural damping in the vicinity of 1%, at least, it 
wdS felt that inclusion of a conservatively small amount of structural damping 
would yield a more realistic simulation. The real part of the characteristic 
e~ponent is an indication of the stability margin of the system, negative values 
indicate a stable system. The lines with k = 0 correspond to neglect of all 
nonlinear terms. The lines denoted by k = 1 correspond to equations linearized 
about the linear response or equilibrium position, while k = 2 corresponds to 
equations linearized about the converged nonlinear, periodic response obtained 
from the first qua§ilinearization step. Thus k = 3 would correspond to a 
second quasilinearization step, which however, is not required because k = 2 
has converged. It is interesting to note that for this case, the differences 
between k = 1 and k = 2 are noticeable only at )l = 0.40. The interesting aspect 
of these results is the slight degradation in stability, of the first lag mode, 
between 0.0 < )l < 0.20, and the rapid increase in stability with advance ratio 
thereafter )l > 0.20. 

Figure 13 shows the stability of the second lag mode as a function of 
advance ratio. Again, the dark triangles represent a small amount of structural 
damping in this mode, nsL2 = 0.0008, while the light triangles cerrespond to 
zero structural damping. The interesting aspect here is the low· stability 
margin of this mode in hover and the rapid increase in stability with forward 
flight. 

The characteristic exponents associated with the first two flap modes and 
the first two.torsional modes are presented in Fig. 14. As indicated in the 
figure, the stability margins in these modes are quite insensitive to forward­
flight. Also, it is very interesting to note that only the first flap mode 
exhibits any sensitivity to the nonlinear terms. The second flap and both the 
first and second torsional modes are identical fork= 0, 1, 2, indicating in­
sensitivity to nonlinear terms. 

The conclusion from Figs. 12-14 is that a soft-in-plane hingeless rotor, 
with properties somewhat similar to the MBB-105 blade, is very stable through 
the whole flight envelope. These analytical results are also substantiated by 
the extensive flight test and wind tunnel test results available for this ex­
tremely well designed hingeless rotor system28,29. It should be noted however, 
that these trends can be affected by coupling between the rotor and the shaft 
degrees of freedom which was neglected in the present study29. 
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It is interesting to see how this conclusion is modified by changing the 
fundamental lead-lag frequency from soft-in-plane to stiff-in-plane. Selecting 
the fundamental in-plane frequency as WLL = 1.417 which can be representative 
of some stiff-in-plane designs and leaving all other rotor parameters unchanged, 
as given in Section 4.1, yields the results which are shown in Figs. 15-18. 
Figure 15 illustrates the real part of the characteristic exponent for the first 
lag degree of freedom. The plots marked k = 0, k = 1 and k = 2 correspond to 
linear, linearized about a linear response, and linearized about a nonlinear 
periodic equilibrium position as obtained by quasilinearization, respectively. 
Clearly, introduction of the nonlinear terms completely changes the results for 
this case. There is a strong degradation in stability with advance ratio for this 
case, and the blade becomes unstable around ~ = 0.38. Thus, above ~ = 0.30 
introduction of moderate deflections, or geometric nonlinearities, is strongly 
destabilizing. The physical reason· for this loss of stability is the change 
in the various structural coupling terms obtained by going from a soft-in-
plane design to a stiff-in-plane design. 

Figure 16 shows similar results for the real part of the characteristic 
exponent associated with the second lag mode. Comparing Figs. 13 and 16 shows 
that the stability characteristics of the second lag mode for a stiff-in-plane 
design are markedly different from those of a soft-in-plane blade, The second 
lag mode in Fig. 16, exhibits deterioration in stability with advance ratio 
up to ~ = 0.20, and only thereafter does it exhibit a mild increase in stability, 

The real parts of the characteristic exponents for the first two flap modes 
are presented in Fig. 17. The interesting property exhibited in these curves 
is the relatively strong effect of the nonlinearities on the second flap mode 
as indicated by the differences in the curves denoted by k = 0, 1, 2, Comparing 
Figs. 17 and 14, it is clear that these differences were not evident for the 
soft-in-plane design. 

Figure 18 illustrates the behavior of the real part of the characteristic 
exponents, for the first two torsional modes as a function of advance ratio~· 
The strong effect of the nonlinear terms on the first torsional mode is again 
evident from the difference between the curves for k = 0, 1 and 2, respectively. 
This is due to the numerous nonlinear bending-torsion structural coupling terms 
present in the torsional equations. Comparing Figs. 14 and 18, it is again 
apparent that this behavior was not present in the soft-in-plane design. 

In comparing-Figs. 15-18, it is evident that the nonlinear terms arede­
stabilizing for the fundamental lag mode and first two flap modes (.except at 
~ = 0.40, for the first flap) while they are stabilizing for the first torsional 
mode and have little effect on the second torsional mode, Since these nonlinear 
terms can be both stabilizing and destabilizing, it is clear that nonlinear 
analyses, based on moderate deflections, are essential in order to predict 
blade stability in a reliable manner. 

As indicated before, blade aeroelastic behavior is strongly dependent on 
the trim state. Therefore, the blade configurations described by Figs. 12-18 
were also investigated by using the moment trim procedure which would be nor­
mally used during wind tunnel testing. For the moment trim case aR = 0 and 
e0 = 8.20 (0.1432 rad.) 

The results for the soft-in-plane blade are shown in Figs, 19 and 20. The 
real part of the characteristic exponents associated with the first two lead-lag 
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modes are shown in Fig. 19. Comparing Figs, 12 and 19, it is evident that 
changes of the stability margin as a function of advance ratio are much milder 
than for the case of propulsive trim. This is mainly due to the different 
nature of the trim curves for these two procedures which have been illustrated 
by Figs. 4 and 5. It is also interesting to note that nonlinear terms are 
stabilizing for the first lag mode and destabilizing for the second lag mode. 
The mild instability in the second lag mode around ~ = 0 will be obviously eli­
minated by the small amount of structural damping present in all real rotor 
systems. Figure 20 depicts the real parts of the characteristic exponents for 
the first two flap and first two torsional modes. As pointed out before, in 
the discussion of Fig. 14, these modes are completely insensitive to the non­
linear terms, it is only to be expected that by changing the trim procedure, 
no significant changes are introduced. The reason being, that the trim pro­
cedure affects system stability by changing the nonlinear periodic equilibrium 
position about which the system is linearized. 

The behavior of the stiff-in-plane configuration under moment trim condit­
ions is depicted in Figs. 21-23. The real parts of the characteristic exponents 
for the first two lag modes are shown in Fig. 21. Again the first lag mode 
is destabilized by forward flight. The second mode, while having lower damping 
is still relatively insensitive to forward flight. Comparing Figs. 15, 16 and 
21, it is evident that similar trends are apparent, However, for the moment 
trim case, the blade does not experience instability for 0 ~ ~ < 0.40, as it 
did for the propulsive trim case. This means that considerable care has to be 
exercised in applying stability data from wind tunnel tests to actual flight 
conditions. 

The real parts of the characteristic exponents for the first two flap 
degrees of freedom are shown in Fig. 22 again the sensitivity of the results 
to nonlinearities is apparent from the differences between the curves for 
k = 0, 1, 2, respectively. Similar trends are apparent also from the real 
parts of the characteristic exponents for the first two torsional modes. Com­
parison of Figs. 17 and 18 with Figs. 22 and 23, show somewhat similar trends. 

A number of previous analyses have considered the coupled flap-lag pro­
blem in forward flightl,7,8,12,30. Therefore, it is interesting to compare 
the results from the present coupled flap-lag-torsional analysis with a 
coupled flap-lag analysis in forward flight which is based on identical assump­
tions27. Such a comparison is presented in Figs. 24-26, for the soft-in-plane 
configuration.under propulsive trim conditions with CW = 0.005. The label 
CFLT on the curves, denotes the results from the coupled flap-lag-torsion analy­
sis. The comparison of real parts of the characteristic exponents for the first 
lag mode is shown in Fig. 24. It is clear from the figure that the stability 
margin predicted, for this mode, from the flap-lag analysis is between 250-
300% lower than the one predicted by the more accurate coupled flap-lag-torsional 
analysis. Since the stability margins predicted by the flap-lag analyses are 
low, these stability margins can easily show exagerated sensitivity to a variety 
of effects. It should be recognized that this sensitivity can be artificial, 
because it may be caused by the low damping levels predicted by the flap-lag 
analysis. Therefore, conclusions drawn from such analyses might be inaccurate 
when applied to a real rotor. 

The real parts of the characteristic exponents associated with the second 
lag modes, obtained from the coupled flap-lag-torsion analysis (CFLT) and the 
flap-lag analysis are shown in Fig. 25. In this case, the stability of the 
second lag mode predicted from the coupled flap-lag analysis is considerably 
higher than the one predicted from coupled flap-lag-torsion analysis. However, 
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the comment previously made on the reliabilitl of flap-lag analyses continues 
to apply, because many of these analyses7,ll, 2,30 are based on a simple spring 
restrained model of the blade, in which the second lag mode is nonexistent, 
or have used only one elastic mode in representing the blade degrees of free­
doms. 

The real parts of the characteristic exponents for the first two flap 
modes, from a coupled flap-lag-torsion analysis (CFLT), are compared to the 
first two flap modes obtained, from a flap-lag analysis, in Fig. 26. The 
results show that the damping levels in these modes are predicted quite well 
by the simplified flap-lag analysis. The damping levels in the flap modes 
are usually quite high, their insensitivity to modeling errors, implies again 
that only lowly damped modes, such as the lead-lag mdde, can be sensitive to 
modeling errors. 

A considerable amount of additional results were also obtai.ned in the course 
of this study, however they are not presented here due to lack of space, These 
results will be available in Ref. 14. Finally, it should be noted that in all 
response calculations in this study, ten harmonics were retained. 

5. Concluding Remarks 

In this paper, a relatively comprehensive analysis of the coupled flap-lag­
torsional dynamics of a hingeless rotor blade in forward flight was presented. 
Two elastic modes are used to represent the flap, lag and torsional degrees of 
freedom, respectively. Furthermore, a convenient numerical method for deter­
mining the nonlinear periodic blade response is presented. The aeroelastic 
analysis has been implemented in a general computer program which could be a very 
useful analytical tool for both preliminary design work and in correlation 
studies with wind tunnel or flight test results. 

A considerable number of numerical results were presented, from these results 
the following conclusions can be drawn: 

(1) The numerical methods presented provide a very effective means for 
determining both aeroelastic stability and response. Quasilineari2ation 
provides a clear indication of the cases when nonlinear terms due to 
moderate deflections are important. The results indicate clearly that 
these terms can be both stabilizing and destabilizing. 

(2) Forward flight seems to be stabilizing the blade for a considerable 
number of cases considered, particularly when the blade is soft-in­
plane. Severe degradation in stability with forward flight was ob­
served only for the stiff-in-plane hingeless blade. 

(3) The nonlinear time dependent, periodic equilibrium can affect signi­
ficantly blade stability. Thus, for forward flight, system stability 
is strongly coupled with the trim state. 

(4) Comparisons of coupled flap-lag-torsional analyses with coupled flap­
lag analyses indicate that flap-lag analyses can underpredict damping 
levels in the in plane mode quite severely. Thus conclusions pertaining 
to blade behavior, based on flap-lag analyses, might be inaccurate and 
unreliable. 

(5) The results indicate that the nonlinearities affect system stability 
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much more than sys.tem response. This implies that for blade vibration 
and loads calculations approximate analytical models based on linear­
ized or even linear models could be used, provided that blade stability 
is determined from a more accurate nonlinear analysis such as perfor­
med in this study. 

(6) Future studies in this field should be aimed at improving the aero­
dynamics in forward flight, and include compressibility and dynamic stall. 
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Appendix A: List of Symbols 

= periodic matrix, Eq. (27) 

= two-dimensional lift-curve slope 

= cross sectional area of the blade 

= inertia load used in trim calculation 

= semi-chord cb - nondimensionalized w,r.t ~) 

= tip loss coefficient 

= weight coefficient 

= thrust coefficient 

= horizontal force coefficient 

= profile drag coefficient 

= parasite drag of helicopter 

= parasite drag coefficient 

= offsets of the blade root from the axis of rotation, 
shown in Fig. 1 

= unit vectors in the directions of the coordinates 
xo,yo,zo, respectively before the deformation 

= the triad €lx,€ly'~z after the deformation 

=Young's Modulus 

= generalized coordinates for ~ degree of freedom 

= offsets shown in Fig. 3 

= complete nonlinear state vector loading, Eq, (17) 

= periodic vector used in quasilinearization, Eq. (28) 

= fundamental flapping obtained from trim solution of 
steady state flapping equation, Eq. (12) 

= generalized coordinates for w degree of freedom 

= torsional stiffness of the blade 

= viscous structural damping coefficients in flap, lag 
and torsion respectively 

= average in plane aerodynamic force, Eq. (6) 
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HR,h R s 

hj(l/J) 

I2,I3 

~·2·~ 

i 

[I] 

k1 (x0J,k2 (x0J,k3 (x0> 

k 

[L (1/J)] 

L 

[N(q,l/J)] 

= offsets shown in Fig, 3 

= generalized coordinates for v degree of freedom 

= principal moments of inertia of the cross section 

=unit vectors in the directions x,y and z, respectively 

= flapping mass moment of inertia of blade about its 
root 

by~ ~ 2 ~ p~2clA = given = Pll clA; 1
m3 = 

= V-1 
= unit matrix 

= arbitrary functions governing the spatial distribution 
of the inflow components 

= radii of gyration of cross sectional mass; bars indicate 
nondimensionalization w.r.t. t 

= iteration index used in quasilinearization 

= linear coefficient matrix, Eq. (17) 

= unsteady lift, per unit length 

= length of elastic part of the blade 

= average pitching moment per blade, Eq. (10) 

= average rolling moment per blade, Eq. (11) 

= nonlinear vector, Eq. (17) 

* =portions of {N(g,q,l/J)}, Eq. (26) 

= number of blades 

= inplane aerodynamic load used in the trim calculation 

= load used in trim calculation, Eq. (13} 

= components of the distributed external force in dir­
ections ex,@vand ez, respectively, subscripts I and A 
denote inertia and aerodynamic contributions respectively 

= components of the distributed external torque in dir­
ections i9x,~and ez, subscripts I and A represent in­
ertia and aerodynamic contributions respectively 

= unknown state vector, Eq. (17) 

= state vector associated with linear, inhomogeneous 
system, Eq. (18) 
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~· (xA=x~/bRl 

~I 

{ z (1/J)} 

Greek Symbols 

~R 

y 

= state vector associated with linear, homogeneous 
system, Eq. (J.9l 

= nonlinear periodic equilibrium state about which equa­
tions are linearized 

= perturbation of system state, about nonlinear equil­
ibrium position 

= blade radius 

= elastic coupling constant 

= dummy variable, Eq, (20) 

= component of the resultant force which acts in the 
~ direction (axial tension) 

= average thrust used in trim calculations, Eq. (5) 

= components of the displacement of a point on the 
elastic axis of the blade in the direction 
~.eyand ez, respectively 

= velocity of forward flight of helicopter 

= velocity vector components in the €!' e' system y' z 

= rotating coordinate system (Figure 1) 

= (x/'L) 

= initial coordinate system of the blade CFigure 1) 

= blade cross-sectional aerodynamic center offset from 
elastic axis, shown in Figure 2; positive for A.C. 
before E.A. 

= blade cross-sectional mass center of gravity from the 
elastic axis, shown in Figure 2; positive when in the 
positive direction of n 

= offset between the elastic axis and tension center 
of the cross section of the blade; positive when in 
the positive direction of n 

= known periodic forcing Eq. (17) 

= angle of attack of the whole rotor 

= preconing, inclination of the feathering axis with 
respect to the hub plane measured in a vertical plane 
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a 

= flight path angle measured from horizontal 

= shape functions for v degree of freedom 

= real part of the k-th characteristic exponent 

viscous structural damping coefficients in percent 
of critical damping, for the flap, lag and torsional 
modes respectively 

= cross-sectional coordinates, see Figure 2 

= shape functions for w degree of freedom 

= total pitch angle, nonelastic, at pitch bearing about 
feathering axis 

= blade pretwist, built-in about elastic axis 

= collective pitch angle 

= cyclic pitch components 

= higher harmonic pitch 

= constant part of the inflow ratio 

= cyclic components of the inflow ratio 

= characteristic exponent associated with the kth 
degree of freedom 

= advance ratio 

= density of blade material 

= density of air 

= blade solidity ratio; blade area/disk area 

= the rotation of a cross section of the blade around 
the elastic axis 

= shape functions for ~ degree of freedom 

= azimuth angle of blade (o/=Qt) measured from straight 
aft position 

= imaginary part of the kth characteristic exponent 

= first rotating natural frequencies in flap, lag and 
torsional respectively, nondimensionalized w.r.t. Q 

= speed of rotation 
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Special Symbols 

( ) ,x 

() 

(), ( ) 

{ } I ( ) 

[ J 

Additional Symbols 

F 

~ 
[q, (s) l, [<I> (21T) l 

= differentiation with respect to 1jJ 

= differentiation with respect to xo 

= unit vector 

= vector 

= column matrix 

= square matrix 

= reverse flow factor, = -1 for negative lift curve 
slope in reversed flow region, = 0 for zero lift, 
=1 for exclusion of all reverse flow effects 

= boundary of reversed flow region 

= transition matrix for time 1)!, and 1jJ = 21T respectively 
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Appendix B: Equations of Motion 

The coupled flap-lag-torsional, partial differential, equations of motion 
for a hingeless blade in forward flight are presented below. 

Axial equilibrium 

T +pi=O 
,X X 

Lead-lag equation 

[E(I2cos2eG +, r 3sin
2
eG)v,xx + E(I2-r3)sin8Gcos8G(w,xx-2~v,xx) + 

+ E (I2- r 3) ¢-w cos28G] + (GJ~ W } - (v XT) x 
1 }0{ 1 XX ,X 1 XX 1 X I 1 

2 .. • • 
- [~ xi(x0 + e1)cos8G] ,x + mv + 2nW- ~Spw 

2 2 • -
- rnll v-rnll xioos G + gSL V - PyA = 0 

Flap equation 

[E(I2-r3)sin8Goos8G(v,xx + 2~w,xx) + E(I2-r3)~v,xxoos28G 

+ E(I2sin
2

eG + r3cos28Glw,xxl,xx-(GJ~,xv,xx) ,x 

2 ~ 2 
- (w,xT) ,x-[roxi~ (x0 + e1)sin8Gl,x + [2~ 8G(Im2sin 8G + 

2 2** .. • 
Im3cos eG)] ,x + roxi~ e GcoseG + rrw + ~i3Pv + 

+ ~2BP(x0 + et) + gSFw- pzA = 0 

Torsional equation 

. 2 2 
[GJ(~ + v w ) ] + E(I2-r3) [sin6Goos6G(v xx ""~~ ) 

,X ,XX ,X ,X 1 ,XX 

* 2{ ** ** ** - v ,xxw ,xxcos26G] - gST ~~ - ~ (~ + Im3) ( e_G + ~ + w ,xv ,) 

** ** + roxicoseG[w,x(x0 + e1) - (x0 + e1lv,x~ - ~v + v~ + w 

** - v + v] + Im2[1 + 2v,x)sinOGooseG + 

(- B v + 2~ ~ + ~)oos2eG - (- B v + ~ ~ + ~)sin2eG p ,x ,x p ,x ,x 
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* * * 2 + 2w + 2v w ) s:in 8G] ,x ,x ,x 

+ I_, [- (1 + 2~ ) s:in8Gros8G + (- i3 v + 2v <jl + <jl) s:in
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