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ABSTRACT 
 

Several methods for analysis of linear time periodic (LTP) systems have successfully been demonstrated 
using harmonic decompositions.  One method recently examined is to create a linear time invariant (LTI) 
model approximation by expansion of the state and control vectors into harmonic components, and 
formulating a corresponding system of time invariant equations. This LTI system is often significantly larger 
than the original LTP system due to a large number of harmonic components included for sufficient accuracy.  
This paper develops a method for evaluating the fidelity of an LTI approximation to the original LTP system, 
and follows with a method for reducing the size of the LTI system by selecting only the relevant harmonic 
components which should be retained in the analysis in order to maintain a high fidelity model. This reduced 
LTI approximation can then be used in control design and analysis with existing LTI methodology. The 
developed methods are applied to example LTP models. 
 
 
1. NOTATION 
 
A t  Periodic Eigenvectors 
 Blade Tip Loss Factor 
 Complex Fourier Coefficients 
 Number of Rotor Blades 
 Maximum Number of Harmonic Terms 
 Number of LTP Modes 
 Number of LTP States 

 State 
 Input 
 Output 
 Period 
 Flap Angle 
 Lock Number 
 System Eigenvalues 

Λ  Floquet Eigenvalues 
 Advance Ratio 
 Non-dimensional Flapping Frequency 
Φ t  Transition Matrix 

 Modal Participation 
 Azimuth Angle or Non-dimensional Time 

Ω Non-dimensional Rotor Speed 
 
  Vector 
  Matrix 

 Diagonal Matrix with Elements  
 
  Average or 0th Harmonic Term 
  nth Complex Harmonic Term 
  nth Cosine Harmonic Component 
  nth Sine Harmonic Component  

 

2. INTRODUCTION 
 

The analysis of linear time periodic (LTP) 
systems is well understood using several methods.  
One such method is Floquet Theory, developed by 
Gaston Floquet [1].  This theory has been shown to 
provide a thorough analysis of LTP systems through 
the use of modal participation factors [2].  These 
modal participation factors describe the relative 
magnitude of each harmonic component for each 
state.  

Other methods involve using a harmonic 
decomposition of the LTP system.  One method 
recently examined is to create a linear time invariant 
model approximation by expansion of the LTP 
system states into various harmonic state 
representations and formulating corresponding 
linear time invariant models.  Crimi and Piarulli 
explore the LTP system by harmonic decomposition 
of periodic states [3, 4].  Prasad and Olcer use the 
harmonic decomposition to formulate a 
corresponding linear time invariant (LTI) system [5, 
6, 7, 8].  This methodology provides a convenient 
framework, as methods for LTI systems are 
extremely well developed and understood.  
However, previous work has indicated that up to 2  
harmonic terms are necessary for high fidelity.  That 
is to say the average  term up to and including 
2  harmonic terms, where “2  harmonic terms” 
refers to the pair of harmonic components 

cos 2  and sin 2  from the 
harmonic decomposition of the periodic states, are 
necessary for high fidelity.  Thus the inclusion of 2  



harmonic terms makes the system size larger by 
4  (2 states  and  for every  harmonic 
term, and 2  harmonic terms).  For high fidelity 
models, this can easily increase the number of 
states to be in the hundreds or thousands, 
drastically increasing the computational cost.  
However, many of those states will have very small 
influence and excitation, and can be excluded to 
reduce the system size while still maintaining high 
fidelity.   

There are several methods previously 
examined for studying the fidelity of systems.  One 
such method is comparison of eigenvalues.  
Although matching eigenvalues are necessary for 
high fidelity, they are not sufficient for closely 
matching responses [7, 8, 9].  One method to 
address this is comparison of response to specific 
inputs such as steps or sine sweeps.  One problem 
associated with this method is that the response 
may not fully represent the richness in dynamics as 
inputs may not excite specific dynamics.  Another 
method which avoids this problem of looking at 
specific inputs is instead using the frequency 
response.  The problem with this method however is 
that frequency response is difficult to do for time 
varying systems, and therefore difficult to apply to 
LTP systems. 
 This paper will illustrate a method for: 1) 
determining the modal participation of an LTI 
system, 2) evaluating the fidelity of an LTI system to 
the LTP system, 3) and selecting specific harmonic 
states to be retained for a selected amount of 
fidelity.  
 
3. METHODOLOGY 
 
 Prior to analysis of the LTI system, several 
preparation steps must be taken.  First, the LTP 
model must be obtained.  From a nonlinear model, 
the LTP can be obtained using a perturbation 
scheme [7] for numerical models, or using another 
linearization technique for analytical models.  For 
examples considered in this study, analytical models 
are presented in LTP form, and numerical LTP 
models are obtained by the numerical perturbation 
scheme.  Second, the modal participation from the 
LTP system is obtained using Floquet analysis [2].  
Third, the LTI model is approximated from the LTP 
model [7].   
 
3.1. Modal Participation 
 

Once the LTP system has been obtained, 
the modal participation can be evaluated by 
evaluation of the transition matrix Φ t  and the 
periodic eigenvectors A t  as shown in [2] by 
evaluating the following at t = T, and noting  A T
 A 0  
 

(1)     exp η t Φ t A 0  
 

(2)     Λ exp η T  
 

(3)     Λ  
 
The periodic eigenvectors can then be evaluated as 
follows 
 
(4)     A t Φ 0 exp  
 
The periodic eigenvectors are then expanded using 
a complex Fourier series  
 
(5)     ∑ exp Ω  
 
The modal participation  for each harmonic 
component in each element is then calculated as  
 
(6)     | | ∑ | |  
 
The modal participation for each element in the 
periodic eigenvectors is unique, and will be used as 
the parameter for evaluating the fidelity of the LTI 
approximations to the LTP system.  There are 
bookkeeping issues with the calculation of 

Λ , since the logarithm is a complex 
logarithm, with a multivalued arctangent component.  
The integer added is chosen based on the 
application, and these issues are discussed in depth 
later on in the LTI Fidelity section.  
 
3.2. LTI Approximation 
 
 The LTI approximation method utilized was 
developed in [5].  The method is based on a 
harmonic decomposition of the states where x(t) are 
the LTP states and ,…, , and  are the LTI 
states.  
 
(7)     ∑ cos sin   

 . .   . .  . .  . .   . .   
(8) 
 
A similar expansion is done for the inputs  and 
the outputs .  It should be noted that while the 
modal participation calculation is done using 
complex harmonic coefficients, the LTI states use 
the trigonometric harmonic coefficients.  Also, for a 
true representation of the LTP system, the LTI 
approximation would require an infinite number of 
harmonic terms and therefore an infinite dimensional 
system.  This infinite dimensional system however, 
can be approximated by a finite dimensional one, 
since most of the terms will be near zero.  It is 
suggested that for sufficiently high accuracy for 



vibration analysis, at least 2  harmonic terms are 
necessary (i.e. for a 4 bladed rotor 2 8) 
[7]. The LTI system can then be formed as follows 
 

(9)      

 

(10)     

 
The formulations for each element for each matrix 
are presented in closed form in [7].  
 
3.3. LTI Analysis 
 
  Once the previous steps have been 
completed, the LTI analysis can begin.  First, various 
LTI reductions are formed based on the LTP modal 
participation.  Reductions are formed by retaining 
LTI states corresponding to LTP harmonic 
components with significant modal participation.  
Next, the modal participations of the LTI systems are 
determined by calculating the eigenvectors which 
correspond to the trigonometric Fourier coefficients 
of the periodic eigenvectors.  Then converting the 
eigenvectors from trigonometric Fourier coefficients 
to complex Fourier coefficients, the modal 
participation can be calculated in the same manner 
as the periodic eigenvectors using the same 
formulation, and taking any harmonic coefficients 
that were not included to be zero. 
 
3.4. LTI Reduction 
 
 The LTI formed by the previous LTI 
approximation method utilizes the harmonic 
decomposition of the each LTP state, including each 
harmonic term from 0 to 2 .  For many cases 
however, the harmonic states with little excitation 
can be approximated as 0 and left out entirely from 
the LTI while still maintaining high fidelity.  The 
choice of which harmonic states to retain is given by 
the modal participation of the LTP system.  LTI 
states with the highest corresponding LTP modal 
participation are retained, and LTI reductions are 
formed by excluding LTI states with corresponding 
small LTP modal participation.  In general, 
reductions are formed by either of two ways: by 
starting with the fully expanded LTI system and then 
excluding the corresponding lowest modal 
participation harmonic states to reduce the size of 
the model; or starting with the highest modal 
participation harmonic states and including the next 
higher modal participation harmonic states, thus 
progressively increasing the size of the model. 

Frequently the harmonic decomposition is 
only necessary for the periodic states and the non-
periodic states will only require the average or 0th 
harmonic term.  For a helicopter this means that the 

rotor states are fully decomposed while the body 
and inflow states require only 0th harmonic terms.  
Further reductions to the LTI are formed excluding 
specific rotor harmonic states beginning with those 
corresponding to the lowest LTP modal participation. 

 
3.5. LTI Modal Participation 
 

The modal participation for each state is 
unique to each system.  Thus, if the modal 
participation for an LTI system can be calculated 
and shown to be the same as the modal 
participation for the original LTP system the LTI 
system can be considered a good approximation for 
the LTP system.  The steps to calculate LTI modal 
participation follow similarly to the LTP modal 
participation, with a few bookkeeping changes to 
keep in mind. 

The modal participation for each harmonic 
component for a given LTP state is given by the 
magnitude of the harmonic (Fourier) coefficient 
divided by the sum of the magnitudes for each 
harmonic coefficient for the given state.  The Fourier 
coefficients for the LTI system are found by solving 
for the eigenvalues and eigenvectors of the LTI 
system.  The Fourier coefficients for each state are 
then directly given by the corresponding harmonic 
states in the LTI eigenvectors.  It is important to note 
however, that the LTP modal participation relies on a 
complex Fourier series expansion, thus the LTP 
harmonic terms and harmonic coefficients are in 
complex form.  The LTI expansion uses 
trigonometric harmonic terms and harmonic 
coefficients, and will first need to be transformed into 
complex form.  The transformation between complex 
and trigonometric harmonic coefficients using the 
previous decomposition nomenclature is as follows 
 
From complex to trigonometric 

 
(11)      

(12)      

(13)       

From trigonometric to complex 

(14)      

(15)       

(16)       

 
Once the LTI eigenvalue problem has been solved 
and the eigenvectors have been transformed from 



trigonometric to complex, the modal participation for 
the LTI system can be computed in exactly the same 
manner as the LTP system.  It is worth noting that 
for any harmonic states that have been reduced, 
their harmonic coefficients are considered to be zero 
and thus have a corresponding zero modal 
participation.  It is also worth noting that similar to 
the LTP modal participation each LTI harmonic 
coefficient magnitude is divided by the sum of all 
magnitudes for each LTI harmonic state. Thus the 
LTI harmonic coefficients are normalized by the sum 
of LTI harmonic states, not the sum of LTP harmonic 
coefficients. Also, similar to the LTP modal 
participation, the sum of all harmonic LTI modal 
participations is 1.0 for each original (LTP) state.    
 
3.6. LTI Fidelity 
 
 The fidelity of each LTI reduction is 
assessed by comparing the LTI modal participation 
with the LTP modal participation.  However, there 
can be confusion as to which LTI mode should be 
compared to which LTP mode.  As the LTP has  
states, it also has  corresponding modes, however 
the eigenvalues associated with these modes are 
not unique.  Although Peters addresses this issue by 
showing that the choice of integer added to the 
Floquet exponent is arbitrary [2], the integers chosen 
for this analysis and the examples presented later 
on are first constrained by the LTI system, as the LTI 
system will only have a set number of corresponding 
eigenvalues, i.e., the LTI system does not include 
the infinitely many eigenvalues given in the LTP 
analysis, since there is no bookkeeping integer 
choice in the LTI eigen-analysis.  The choice of 
integers is made to follow conventional rotorcraft 
analysis, where body and inflow modes are kept at 
0/rev (the exponent added is 0), while rotor modes 
have eigenvalues at various frequencies.  
Specifically eigenvalue integers are chosen to 
correspond to the conventional coning, nutation, 
precession, and differential modes for a 4 bladed 
rotor in the examples given.  Once the LTP 
eigenvalues and modes have been decided, the only 
LTI modes to be compared are the ones with 
eigenvalues matching the LTP eigenvalues. 

The error for each LTI system is calculated 
by taking the weighted sum of the absolute value of 
the difference of modal participations for each 
harmonic for a given state, and taking the average of 
that value for each rotor displacement state and 
each mode.  The fidelity for each LTI system is then 
calculated as 1 minus the Error: 
 

1 1
, , ,  

(17) 
(18)     1  

 
There are several things worth noting at this point 
about the calculation.  First, the error only includes 
rotor displacement states.  Hence it does not include 
body, inflow, and rotor velocity states.  This is done 
because as noted previously, in many cases the 
body and inflow states are not decomposed under 
the assumption that they exhibit very negligible 
periodicity and thus would have negligible effects on 
the error.  Furthermore, the motivation for study of 
LTP and LTI approximations is often for vibration 
analysis and reduction of the rotor displacement 
states, thus the body, inflow, and rotor velocity 
states are excluded. 

The error calculated has already been 
normalized since the modal participation is a 
normalized parameter, i.e. error of 0 corresponds to 
an exact match and 1 corresponds to 100% error.  
The LTP modal participation factor outside of the 
absolute value factor is a weighting term which puts 
the heaviest weight on highest participating 
harmonic components.   

It is also worth noting that the comparison 
between the two can be done since both have been 
calculated using harmonic coefficients in complex 
form.  The comparison can also be done in 
trigonometric form, however complex form was 
chosen because complex form is used in previously 
explored modal participation studies and is often the 
preferred form in Fourier analysis.   

 
3.7. LTI Reduction Selection 
 
 At this point the analysis of various LTI 
reductions has been completed, and the only 
remaining step is selection of a specific LTI 
reduction.  This choice is done by selecting the 
lowest fidelity LTI reduction which is higher than the 
chosen desired fidelity over the range of advance 
ratios considered.  If the LTI reductions were created 
properly, the lowest LTI meeting the desired fidelity 
criteria will be the smallest sized system with the 
least number of LTI states.  
 Graphically, the process is to create a plot of 
each LTI reduction fidelity for the range of advance 
ratios considered.  The LTI reduction selected is 
then chosen as the LTI reduction which lies above 
and closest to the desired fidelity.  Examples are 
given in the next section. 
 
4. ANALYTICAL MODELS 
 
4.1. Flapping Equation 

The first model examined is the flapping 
equation for a single rotor blade in rotating 
coordinates [10].  
 
(19)     ∑ cos Ω  sin Ωt  



(20)     0 

(21)     1  

(22)      sin 2  

Where  is the flapping angle, with periodic 
coefficients  and  and parameters Lock 
number, advance ratio, and non-dimensional 
flapping frequency as , ,   respectively. 
 The parameters are chosen with Lock 
number of 12, blade flap frequency of 1.0, and 
advance ratio varying from 0.2 to 2.0. The LTP 
modal participation and full LTI approximation 
includes up to the 8th harmonic term, corresponding 
to a total of 34 LTI states, i.e. 2 1  states. 
The modal participation for each system is 
calculated and compared and the LTI model is 
determined to have accuracy above 99.5% for the 
entire range of advance ratios considered. Reduced 

LTI approximations are then formed using up to 0 to 
8 harmonic terms: 0; 0 and 1; 0,1 and 2, et cetera. 
The fidelity of each LTI reduction is then calculated 
and is shown in Figure 1 which provides a clear 
method for selecting an LTI reduction for a given 
level of accuracy. For a minimum desired accuracy 
of 95%, the necessary harmonic terms to be 
included are 0, 1 and 2.  The result is 10 LTI states 
versus the original 34 state full LTI approximation. 
For a minimum desired accuracy of 97%, the 
necessary harmonic terms are 0, 1, 2, and 3, 
resulting in 14 LTI states compared to the original 
34. 
 
4.2. Isolated Rotor Flapping 
 
 The next model examined is for an isolated 
rotor considering the flapping motion only.  The 
model considers a four bladed rotor with identical 
blades in multi-blade coordinates [11]. 

 
(23)     0  
 

(23)     

       0

0             

0

2                sin 2

2

0 sin 2

       cos 2

cos 2
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2

1
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6
cos 2

1
16

sin 4               
6

 sin 2

6
sin 2

 

(25) 
 

Where  is the flapping angle states in multi-
blade coordinates, with periodic matrix coefficients 

 and [  and parameters Lock number, 
advance ratio, non-dimensional flapping frequency, 
and blade tip loss factor as , , ,   
respectively.  The parameters chosen are blade flap 
frequency of 1.0, blade tip loss factor of 1.0, and 
advance ratio varying from 0.3 to 2.0.  Two different 
Lock number cases are considered.  
 The first case is for a Lock number of 12.  
The LTP modal participation and full LTI 
approximation includes up to the 8th harmonic term, 
corresponding to a total of 136 LTI states.  After 
calculating modal participation, the fidelity of the LTI 
approximation is found to be above 96.5% for the 
range of advance ratios considered.  Reduced LTI 

approximations are then formed using up to 0 to 8 
harmonic terms for each degree of freedom.  The 
fidelity for each LTI reduction is then calculated and 
is shown in Figure 2, again providing a clear method 
for selecting an LTI model reduction for a given level 
of accuracy.  For a minimum desired accuracy of 
93%, necessary harmonic terms to include are 0, 1, 
2, 3, and 4 for each degree of freedom.  The result is 
72 LTI states versus the original 136 in the full 
approximation.  For a minimum desired accuracy of 
96%, necessary harmonic terms to include are 0, 1, 
2, 3, 4, and 5 for each degree of freedom, resulting 
in 88 LTI states compared to the original 136. 

The second case is for a Lock number of 
9.6. As the first and second cases are identical 
except for Lock number, the following analysis and 



results are similar.  As seen in Figure 3, for a 
minimum accuracy of 94.5%, necessary harmonic 
terms to include are 0, 1, 2, 3, and 4, again resulting 
in 72 LTI states.  For a minimum accuracy of 96%, 
necessary harmonic terms to include are 0, 1, 2, 3, 
4, and 5, again totaling 88 LTI states compared to 
136. 

Although the general method of analysis 
does not change from the single rotor blade flapping 
equation to a four bladed isolated rotor flapping, 
there are a few differences in the details of the 
calculations.  First is the effect on the LTI 
eigenvalues and vectors.  For the four bladed rotor 
considered, each blade is assumed to be identical.  
The result is that at low speeds (advance ratios less 
than 0.3) eigenvalues are repeated.  For the LTP 
system this is not a problem since the integer added 
to the Floquet exponent can be chosen to create 
distinct eigenvalues where the real parts are the 
same, but the imaginary parts differ by Ω.  For the 
LTI system, although the eigenvalues utilized are 
chosen to match the LTP eigenvalues, the repeated 
LTI eigenvalues are still present.  Although the 
corresponding eigenvectors are distinct, certain 
elements can be changed as long as the 
eigenvectors are linearly independent.  The result is 
that the LTI eigenvector elements corresponding to 
the LTP Fourier coefficients can be scrambled 
across multiple eigenvectors, with no way to recover 
the eigenvectors that match the LTP Fourier 
coefficients.  Thus, to avoid this issue of repeated 
eigenvalues, the advance ratio range is chosen such 
that there are no repeated eigenvalues.  It should be 
noted however, that the advance ratio range which 
gives distinct eigenvalues is outside of the range for 
which the model remains a valid approximation for 
an isolated rotor.  Thus, although the model comes 
from an isolated rotor, it should be considered as 
mathematical only and its analysis used for 
understanding other models. 

Next and perhaps most obvious is how 
multiple degrees of freedom affect the harmonics 
chosen for reductions.  The harmonic terms for each 
state are chosen in order to maintain similar fidelity 
compared to all other states for a given overall 
system fidelity.  In other words, each state has a 
similar contribution to overall system fidelity.  For the 
analytical models, it is straightforward in that the 
lowest harmonic terms have the highest modal 
participation and should be included first followed by 
higher harmonic terms, i.e., for the first reduction all 
degrees of freedom start with the 0th harmonic term, 
for the next all degrees of freedom have 0 and 1 
harmonic terms, for the next reduction all degrees of 
freedom have 0, 1, and 2 harmonic terms, et cetera.  
For the following numerical models, it will be shown 
that for a four bladed rotor only a few specific 
harmonic terms are really necessary providing most 

of the fidelity, with all other harmonic terms having 
very small contributions to fidelity.  
 
5. NUMERICAL MODELS 
 
5.1. Isolated Rotor Flapping 
 
 The first numerical model considered is an 
isolated rotor in flapping.  It is important to note that 
although this model is similar to the analytical 
isolated rotor flapping, the resulting LTI reductions 
are different due to behavior not captured by the 
analytical model.  The specific model used is a 
generic four bladed isolated rotor model in 
FLIGHTLAB [12], with wind speed 64.7 knots, rotor 
speed of 27 radians per second, and rotor radius of 
26.83 feet.  This corresponds to a single advance 
ratio of 0.15 which represents a normal operating 
speed for a generic model.   The LTP modal 
participation and full LTI approximation includes up 
to the 8th harmonic term, corresponding to 136 LTI 
states.   

The analysis proceeds similarly to previous 
examples. After calculating modal participation for 
the LTP system which can be seen in Figure 4, it is 
clear that for the coning angle, only harmonic terms 
0 and 4 have significant modal participation. 
Similarly, for lateral and longitudinal tip path plane 
angles, only harmonic terms 0 and 4 have significant 
modal participation.  Also, only the 2nd harmonic 
term has significant modal participation for the 
differential flapping.  Thus, it is clear that harmonic 
terms 0 and 4 are necessary for coning and tip path 
plane tilt angles, and only harmonic term 2 is 
necessary for the differential flapping angle. 
Including only these harmonic terms produces 
fidelity of 95.31% compared to 95.51% for the full 
LTI fidelity.  The resulting LTI size is 22 states for 
the reduced LTI, which is significantly smaller than 
the 136 states for the full LTI approximation.  It is 
clear that including other harmonic terms will 
increase the fidelity only by 0.20%, however the 
tradeoff is a small increase in fidelity for a much 
larger number of LTI states, which may be 
necessary for some applications, however the 
95.31% will usually be sufficient.  Thus, in most 
cases it is recommended to use only the 
aforementioned 0 and 4 harmonic terms for coning 
and tip path plane tilt angles, and 2nd harmonic term 
for differential flapping.  This behavior of a few 
isolated harmonic terms (usually 1 or 2) for each 
degree of freedom containing nearly all of the fidelity 
will occur even in more inclusive models, as shown 
in the following examples.  
 
5.2 Generic Helicopter Model 
 
 This example utilizes the FLIGHTLAB 
generic helicopter model.  This model includes 27 



LTP states comprised of: 8 body states; Peters-He 3 
state inflow with 1 harmonic and maximum radial 
variation power of 1; and 16 rotor states including 8 
flapping, and 8 lead-lag.  The rotor radius is 26.833 
feet, the rotor speed is 27 radians per second, and 
the model is linearized about a wind speed of 64.7 
knots corresponding to an advance ratio of 0.15.   
 The addition of states including both rotor 
and non-rotor states (body and inflow) warrants 
consideration of how these states are handled.  The 
lead-lag states are treated exactly as the flapping 
states and are expanded and included in the LTI 
states.  The lead lag modes and states are included 
in the eigen and Floquet analysis for LTI and LTP 
systems respectively, and the lead lag displacement 
states are included in the modal participation, error, 
and fidelity.  The body and inflow states are treated 
differently.  As described in the LTI Fidelity section, 
body and inflow states are included in all of the 
analysis except for the model error and fidelity 
calculations.  This means that the body and inflow 
modes are included in the eigen analysis and 
subsequent modal participation, error, and fidelity 
calculations; However, the body and inflow modal 
participations themselves are not included in error 
and fidelity calculations.  The body and inflow modes 
are retained to keep the richness in rotor dynamics 
associated with those modes, but the body and 
inflow states themselves are not expanded (only the 
averages are considered) in the LTI and are 
subsequently not included in the error and fidelity.  
The states that are decomposed include up to 8 
harmonic terms for the full LTI approximation, 
resulting in a size of 283 LTI states (272 rotor, 8 
body, and 3 inflow states). 
 The Floquet analysis (including up to the 8th 
harmonic term for modal participation) of the LTP 
system clearly indicates that isolated harmonic 
terms for each degree of freedom contain nearly all 
of the dynamics for the system.  Similar to the 
isolated rotor, the flapping differential states and 
lead lag differential states have modal participations 
which primarily include only the 2nd harmonic term.  
The remaining rotor states include primarily only the 
0th and 4th harmonic terms.  Thus, the primary LTI 
reduction considered has only the 2nd harmonic term 
for differential rotor states, and 0th and 4th harmonic 
terms for each of the other rotor states for a total of 
55 reduced LTI states.  The resulting fidelity of this 
reduced LTI model is 98.39%.  This compares to the 
full LTI model fidelity of 98.95%, with the difference 
of the two models being only 0.56%.  The reduced 
LTI size is also significantly smaller at 55 states 
compared to the 283 full LTI approximation states.  
From this reduction, further increases in fidelity can 
be achieved by including the harmonic terms with 
the highest subsequent modal participations; 
however the 98.39% fidelity should be sufficient for 
most applications. Thus, the reduction of including 

only harmonic term 2 for differential states, and only 
0 and 4 for the remaining rotor states is 
recommended for most applications. 
 The numerical examples presented so far 
have only required 1 or 2 harmonic terms for each 
rotor state and only the average for body and inflow 
states for retaining high fidelity in the LTI reductions.  
The following example however will illustrate the 
need for significant changes and considerations for 
models which are more inclusive and contain richer 
dynamics. 
 
5.3. Generic Helicopter with Finite State Inflow 
 
 The model used in this example is the 
FLIGHTLAB generic helicopter model, except with a 
6 state inflow model for a total of 30 LTP states (16 
rotor, 8 body, 6 inflow).  This 6 state inflow model is 
a Peters-He Finite State inflow model with 2 inflow 
harmonics and a maximum radial variation power of 
2.  The use of a higher fidelity inflow model follows 
from the well-known excitation of high frequency 
responses from more inclusive inflow models.  
 Previous examples assumed that body and 
inflow harmonic dynamics were minimal, and thus 
only utilized the average of these states.  
Proceeding with analysis identical to the last 
example with no added considerations, the 
maximum fidelity for the full LTI model is 92.92%, 
with 286 LTI states.  Following the previous 2 
harmonic term for differential rotor states 0 and 4 
harmonic terms for all others for the LTI reduction, 
the resulting model fidelity is a much lower 81.46% 
with 50 reduced LTI states. Although these fidelities 
may be sufficient, they are far from the 98% range of 
previous approximations.  The reason for this 
distinct change is clearly the change in inflow 
models.  The inflow model has a strong influence on 
the resulting LTI eigenvalues, and the result is a 
significant shift away from the LTP eigenvalues as 
seen in figure 5 for the indicated eigenvalues.  This 
result is explored by Olcer [7], and is the result of 

/2 vibrations for even bladed rotors.  The solution 
proposed by Olcer is the use of an extended LTI 
(eLTI), which includes the harmonic decomposition 
for body and inflow states in addition to the rotor 
states.   
 An extended LTI is formed by expansion of 
the body and inflow states in addition to the rotor 
states.  The analysis for the extended LTI* has no 
additional considerations, thus the error and fidelity 
still only includes the rotor displacements.  The 
resulting fidelity for a full extended LTI* (each LTP 
state is expanded up to the 8th harmonic term) is 
98.98%. The resulting system however, is 
significantly larger at 510 LTI states than the un-
extended full LTI at 286 states.  Thus, it is desirable 
to reduce not only the eLTI rotor harmonic states, 
but also the body and inflow as well.  After 



calculation of the LTP modal participation, it is clear 
that 0, 2, and 4 harmonics have the highest 
influence for each state, including body and inflow 
states.  Thus eLTI reduction should contain 
harmonic terms 0, 2, and 4 for each state totaling 
150 LTI states.  This eLTI reduction has a resulting 
fidelity of 98.47%, only 0.51% from the maximum 
fidelity while being significantly smaller at 150 states 
compared to 510 states.  Thus, for most cases, this 
eLTI reduction should have adequate fidelity, and 
should be used.  
 
6. SUMMARY AND CONCLUSIONS 
  
 It has been shown how one can compute 
the fidelity of an LTI approximation for an LTP 
system.  Using this fidelity, one can then select a 
reduced LTI system which will contain far fewer LTI 
states than the full LTI expansion while still 
maintaining a similar level of fidelity.  For analytical 4 
bladed rotor flapping models, the LTI states retained 
should begin with the 0th harmonic term and add 
subsequently higher harmonic terms until the 
desired level of fidelity has been reached.  For 
numerical four bladed generic helicopter models, the 
LTI states to be retained are isolated harmonic 
terms which are indicated by the modal 
participations.  Although only four bladed generic 
helicopter numerical models are presented as 
examples, three bladed numerical isolated rotor 
models were also studied, and similar results were 
found.  For systems with less complex inflow models 
these isolated harmonic terms are generally the 0th 
and  terms (with /2 for differential modes).  For 
systems with more complex inflow models, an eLTI 
is necessary which includes more harmonics for 
both rotor and non-rotor states.   
 The methodology discussed presents 
methods for reduction of the system matrices for an 
LTI model and is recommended for applications 
where the system matrices are of particular interest.  
However, for applications in which input output 
behavior is of interest, it is recommended that a new 
reduction method be developed by using 
comparisons of time and frequency responses 
between LTI and LTP systems.   
 
7. ACKNOWLEDGEMENTS  
 

This study is funded by the U. S. Army 
under the Vertical Lift Research Center of 
Excellence (VLRCOE) program managed by the 
National Rotorcraft Technology Center, Aviation and 
Missile Research, Development and Engineering 
Center under Cooperative Agreement W911 W6‐11‐
2‐0010  between the Georgia Institute of Technology 
and the U. S. Army Aviation Applied Technology 
Directorate. Dr. Michael Rutkowski is the Program 
Manager and Dr. John Berry is the Technical Agent. 

The authors would like to acknowledge that this 
research and development was accomplished with 
the support and guidance of the NRTC. The views 
and conclusions contained in this document are 
those of the authors and should not be interpreted 
as representing the official policies, either expressed 
or implied, of the Aviation and Missile Research, 
Development and Engineering Center or the U.S. 
Government. 
 
8. REFERENCES 
 
1. Floquet, G., “Sur les équations différentielles 
linéaires à coefficients périodiques”, Ann. École 
Norm. Sup. 12: 47-88, 1883. 
2. Peters, D.A., Leib, S.M., “Significance of Floquet 
Eigenvalues and Eigenvectors for the Dynamics of 
Time-Varying Systems”, 65th Annual National Forum 
of the American Helicopter Society, Grapevine, 
Texas, May 27-29, 2009. 
3. Crimi, P., “A Method for Analyzing the Aeroelastic 
Stability of a Helicopter Rotor in Forward Flight”, 
NASA-CR-1332, August 1969. 
4. Piarulli, V. J. and White, R. P., Jr., “A Method for 
Determining the Characteristic Functions Associated 
with the Aeroelastic Instabilities of Helicopter Rotor 
Blades in Forward Flight,” NASA CR-1577, June 
1970. 
5. Prasad, J.V.R., Olcer, F.E., Sankar, L,N. and He, 
C., “Linear Models for Integrated Flight and Rotor 
Control,” Proceedings of the European Rotorcraft 
Forum, Birmingham, UK, September 16-18, 2008. 
6. Prasad, J.V.R., Olcer, F.E., Sankar, L.N., He, C., 
“Linear Time Invariant Models for Integrated Flight 
and Rotor Control,” 35th European Rotorcraft Forum, 
Hamburg, Germany, September 22-25, 2009. 
7. Olcer, F.E., “Linear Time Invariant Models for 
Integrated Flight and Rotor Control,” Doctor of 
Philosophy Thesis, Georgia Institute of Technology, 
July 2011 
8. Olcer, F.E and Prasad, J.V.R., “A Methodology for 
Evaluation of Coupled Rotor-Body Stability using 
Reduced Order Linear Time Invariant (LTI) Models,”, 
67th Annual National Forum of the American 
Helicopter Society, Virginia Beach, Virginia, May 3-
5, 2011. 
9. Tischler, M.B. and Remple, R.K. “Aircraft and 
Rotorcraft system Identification,” Engineering 
Methods with Flight Test Examples, AIAA 
Publications, Virginia, USA, 2006. 
10. Johnson, W., “Helicopter Theory”, Dover, New 
York, 1980. 
11. Biggers, J.C., “Some Approximations to the 
Flapping Stability of Helicopter Rotors”, Rotorcraft 
Dynamics Conference, NASA-SP-352 pp. 45-54, 
February 13-15, Moffet Field, CA, 1974. 
12. Advanced Rotorcraft Technology, Inc., 
“FLIGHTLAB Theory Manual (Vol. I),” March 2004.



9. FIGURES 

 

Figure 1. Fidelity, Single Rotor Blade Flapping, Lock Number = 12.0, Blade Frequency = 1.0 

 

 

Figure 2. Fidelity, Isolated Four-Bladed-Rotor Flapping, Lock Number = 12.0, Blade Frequency = 
1.0 

 



 

Figure 3. Fidelity, Isolated Four-Bladed-Rotor Flapping, Lock Number = 9.6, Blade Frequency = 1.0 

 

 
Figure 4. Modal Participation, Isolated Four-Bladed-Rotor Flapping,  



 
Figure 5. Eigenvalues, Generic Helicopter Model with 6 State Inflow, LTP and full LTI with 0th body 

and inflow harmonic term 

 
Figure 6. Eigenvalues, Generic Helicopter Model with 6 State Inflow, LTP and full extended LTI 

with 0th, 2nd, and 4th body and inflow harmonic terms 

 


