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Abstract

The computer graphics algorithm of the marching cubes is adopted to compute the emission surface
corresponding to a permeable Ffowcs Williams-Hawkings surface moving at arbitrary speeds. The
algorithm is capable to successfully reconstruct the multiple disjoint surfaces generated by a transonic
or supersonic motion of the source. A preliminary validation of the method, carried out for a two-blade
rotor with simplified aerodynamic models, has given encouraging results.

1 Introduction

Nowadays, noise emissions from a helicopter rotor
need to be carefully determined starting from the
preliminary design phase. This is normally ac-
complished coupling the aerodynamic prediction
tools with an integral propagation method. Start-
ing from the Ffowcs Williams-Hawkings (FWH)
equation, here schematized with the non homoge-
neous wave equation:

�̄2Φ(x, t) = Q(x, t)δ(f)

the most popular time-domain methods to pre-
dict far-field noise propagation, like Farassat’s 1A
formulation1 or Di Francescantonio’s KFWH for-
mulation2, make use of a retarded time approach,
i.e.:

4πΦ(x, t) =

∫
f=0

[
Q(y, τ)

r|1−Mr|

]
ret

dS

.

Using a permeable surface f(x, t) = 0 that in-
clude most of the noise sources, this approach al-
lows to neglect the quadrupole source term still
assuring a good accuracy of the results together
with computational efficiency.

There are however contradictory requirements
when coupling such methods with a CFD predic-
tion of the aerodynamic field. On one hand, a sta-
tionary permeable surface which includes all the

rotating blades of the rotor is a optimal choice for
the retarded time formulation, but requires a huge
amount of computational resources to achieve high
accuracy of the CFD solution far from the blades.
On the other hand, a small and rotating perme-
able surface around each blade may be considered
the optimal choice for the CFD simulation, but
may prevent a reliable prediction of noise due to
the Doppler singularity of the retarded time for-
mulation.

A different formulation, which can be used for
any speed of the noise source, is that based on the
emission surface F (x, t) = 01 :

4πΦ(x, t) =

∫
F=0

1

r

[
Q(y, τ)

Λ

]
ret

dΣ

with Λ = |∇F |, which avoids the Doppler singu-
larity. The emission surface F = 0 represent the
locus of the points, belonging to the surface f = 0,
from which perturbations are generated that si-
multaneously reach the observer at a given time
instant t. This formulation has not been used very
often in the past, due to the the complexity and
the computational effort needed to numerically re-
construct the surface F = 0. At present, only two
algorithms were proposed in the literature: the K-
algorithm of Ianniello3,4 and the marching cubes
algorithm of Brentner5.

This paper describes an implementation of the
emission surface formulation using the marching
cube approach. The proposed method is veri-
fied against analytical solutions for simple noise
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sources, to show how the numerical error is influ-
enced by the frequency of the noise source and by
the dimension and the shape of the permeable sur-
face selected. Results are then shown for a pulsat-
ing sphere moving at subsonic, transonic and su-
personic speeds, to demonstrate the capability of
the approach at different source speeds. Finally,
the proposed method is employed to predict the
noise emitted from a two-blade rotor, using a sim-
plified calculation of the blade aerodynamic loads,
taken from6.

2 The permeable emission sur-
face formulation

Considering a moving, permeable surface f(x, t) =
0, with outward unit normal ∇f = n̂, and us-
ing generalized derivatives, it is possible to formu-
late1,2 a general form of the FWH equation as:

�̄2p′ =
∂̄

∂t
{[ρ0un + (ρ− ρ0)(un − υn)]δ(f)}

− ∂̄

∂xi
{[P ′ijn̂j + ρui(un − υn)]δ(f)}+

∂̄2

∂xi∂xj
[TijH(f)] (1)

with p′ acoustic pressure, ρ fluid density, un =
uin̂i fluid velocity normal to the surface, υn =
−∂f/∂t velocity of the surface, c speed of sound,
Tij = (ρuiuj + Pij − c2

0(ρ − ρ0)δij) the Lighthill
tensor, Pij the compressive stress tensor, P ′ij =

Pij − p0δij , H(f) the Heaviside function, �̄2 =
∂2/∂t2 − c2

0∂
2/∂x2

i the generalized wave operator.
The notation ∂̄ indicates generalized derivatives
while the subscripts 0 and n refers to undisturbed
quantities and to quantities projected in direction
n̂.

A more standard form of the FWH equation
may be obtained introducing Di Francescantonio’s
notation2, defining:

Ui = ui +

[(
ρ

ρ0

)
− 1

]
(ui − υi) ,

Lij = P ′ij + ρui(uj − υj) (2)

so that equation eq.1 may be rewritten as:

�̄2p′ =
∂̄

∂t
{[ρ0Un]δ(f)} − ∂̄

∂xi
{[Lijn̂j ]δ(f)}+

∂̄2

∂xi∂xj
[TijH(f)] (3)

The integral forms of eq. (3) are referred to as
the retarded time, collapsing sphere and emission
surface forms1. As already mentioned, the emis-
sion surface represents the locus of points of the
control surface F (x, t) = 0 from which perturba-
tions are emitted that reach the observer at the
same time instant t, or:

F (y; x, t) = f(y, t− r

c0
) = [f(y, τ)]ret = 0

with τ = t− r
c0

retarded time, r(x, t; y, τ) = |x−y|
and (x, t), (y, τ) the space-time coordinates of the
observer and the noise source. Such an emission
surface is not necessarily a single connected sur-
face: for supersonic sources, for instance, the mul-
tiple emission times cause the occurrence of un-
connected patches, and this introduces some diffi-
culties in the numerical computation of the surface
itself.

The permeable emission surface formulation
reads:

4πp′(x, t) =
1

c0

∂

∂t

∫
Σ

[
ρ0c0Un + Lnr

rΛ

]
ret

dΣ+∫
Σ

[
Lnr
r2Λ

]
ret

dΣ (4)

with Λ = |∇F | =

[√
1− 2Mnn̂ · r̂ +M2

n

]
ret

, r̂

unit vector in the radiation direction and the sub-
script r refers to quantities projected in direction
r̂. The quadrupole terms have been neglected as-
suming that he control surface f = 0 fully includes
the noise sources.

Equation (4) may still present a singularity
when Λ = 0, although less severe than the Doppler
singularity. The reader is referred to4 for a thor-
ough discussion on this matter.

3 The marching cube algorithm

The Marching Cube (MC) method is an algorithm
used in Computer Graphics to reconstruct accu-
rately three-dimensional surfaces from a scalar 3D
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field, proposed by Lorensen and Cline7 in 1987.
The method was adopted by Brentner5 to the
computation of the emission surface by adopting a
source-time-dominant approach: the source time
is chosen and the corresponding observer time
is computed at each point of the control surface
f = 0. By defining a structured grid on the con-
trol surface and successive slices for each selected
source time, a 3D structured grid made of “cubes”
is constructed, as in fig. 1 The emission surface
F = 0 is by definition an isosurface of this 3D
field of observer times. In this paragraph we will
give some details of the algorithm.

Every cube is defined by the i, j indexes of the
control surface grid and the index k of the slice, for
a total of Ni, Nj , Nk grid points. A global num-

bering Ind of the cube vertices is defined, see an
example in Fig. 2. An analogous numbering is
defined for the cube themselves and for the cube
edges. The global numbering Ind of the cube ver-
tices is connected to a local numbering V 1....V 8
of the eight vertices of the generic cube through:

Ind(V 2) = Ind(V 1) + 1

Ind(V 3) = Ind(V 2) +Nj

Ind(V 4) = Ind(V 3)− 1

Ind(V 5) = Ind(V 1) +Ni ×Nj

Ind(V 6) = Ind(V 2) +Ni ×Nj

Ind(V 7) = Ind(V 3) +Ni ×Nj

Ind(V 8) = Ind(V 4) +Ni ×Nj

2

Figure 1: Generation of a cube

(a) Grid for an example with Ni =
Nj = Nk = 4

(b) In red all points associated with
vertex V1 of each cube

Figure 2: Example of vertex numbering

The connectivity between vertex number-
ing and cube numbering is done by associating
the global vertex number corresponding to V 1,

Ind(V 1), to the global cube number ID, as in
table 1.

Assuming that the observer times t(x,y, τ) =
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ID Ind(V1) Ind(V2) Ind(V3) Ind(V4) Ind(V5) Ind(V6) Ind(V7) Ind(V8)

1 1 2 6 5 17 18 22 21
7 9 10 14 13 25 26 30 29
17 26 27 31 30 42 43 47 46

Table 1: Example of cube-vertex connectivity

Figure 3: Topological cases considering rotation, reflexion and mirroring

τ + r(x,y,τ)
c0

were computed for each grid point, the
iso-surface at t = t̄ = const is built in successive
steps. Firstly, each vertex is assigned the label 0
if t < t̄ or 1 otherwise; the iso-surface will inter-
sect a cube edge only if the corresponding edges
have different values. The cubes are then labelled
as active if at least one edge contains an intersec-
tion. The possible combination of vertex labels for
one active cube are 256 (28) which reduces to 15,
shown in fig. (3), by considering all possible sim-
metries. These are stored in a lookup table using
a binary number conversion, which allow a direct
identification of the intersected edges. The loca-
tion of the intersection points Vin at the cube edge
is computed by linear interpolation. The last step
is the formation of the iso-surface with the trian-
gles formed by the intersection points Vin (see fig.
3).

The original Lorensen and Cline7 model is not
consistent, however. It may results in the creation
of holes in the iso-surface, due to interface ambi-
guity. Among different methods, proposed in the
literature to resolve this ambiguity8, we selected
that suggested by Montani et al 9 which directly
modifies the lookup table, thus retaining the effi-
ciency of the algorithm.

In applying the MC algorithm to the calcula-
tion of the emission surface, the control surface

f = 0 is parametrized as

x = X(ξ, η, τ)

y = Y (ξ, η, τ)

z = Z(ξ, η, τ)

so that the MC grid is discretized in ξ, η, τ . The
parametrization allows to directly compute the
triangle area ∆Σ, surface velocity υ and normal
vector n̂. In addition to the observer time t, at
the grid vertices are assigned the flow quantities
ρ, p,u, which are then linearly interpolated at the
intersections. All quantities are arithmetically av-
eraged over each triangle to perform the integra-
tion over the emitting surface.

Rewriting equation (4) as

4πp′(x, t) =
1

c0

∂

∂t
(I1) + I2 (5)

with

I1 =

∫
Σ

[
ρ0c0Un + Lnr

rΛ

]
ret

dΣ

=

∫
Σ

[
Q1(y, t− r/c0)

rΛ

]
ret

dΣ

I2 =

∫
Σ

[
Lnr
r2Λ

]
ret

dΣ

=

∫
Σ

[
Q2(y, t− r/c0)

r2Λ

]
ret

dΣ
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having assumed constant approximation in each
triangle, we my obtain the value of the integrals
by direct summation over all triangles that com-
pose the emission surface as

I1 =

Ntri∑
i=1

[
Q1(yi, t− ri/c0)

riΛi

]
ret

∆Σi

I2 =

Ntri∑
i=1

[
Q2(yi, t− ri/c0)

r2
i Λi

]
ret

∆Σi

while the time derivative of I1 is obtained with
a centered finite difference over the observer time
evaluations.

4 Algorithm validation

4.1 Surface reconstruction

The implemented MC algorithm was first verified
in terms of its capability of reconstructing com-
plex 3D surfaces using different grid discretiza-
tions. We report here as an example the recon-
struction of three types of surfaces:

• Surface 1
Evalution domain: x ∈ [−1, 1], y ∈ [−1, 1],
z ∈ [−1, 1].

f1(x, y, z) =
√
x2 + y2 + z2 − 1 (6)

Being this surface a sphere of unit radius,
the value of the area is S1 = 4π.

• Surface 2
Evalution domain: x ∈ [−6, 6], y ∈ [−2, 2],
z ∈ [−4, 10].

f2(x, y, z) =

(
3− 3x

)2

e−x
2−(y+1)2

− 10

(
x

5
− x3 − y5

)
e−x

2−y2

− 1

3
e−(x+1)2−y2 − z (7)

The integral to compute the area S2 hase to
be numerically approximated, with a con-
verged value of S2 = 118.05.

• Surface 3
Evalution domain: x ∈ [−3, 3], y ∈ [−4, 4],
z ∈ [−40, 40].

f3(x, y, z) =

(
1−

(
x

6

)2

−
(
y

3.5

)2)
((

x− 3.9

)2

+ y2 − 1.44

)
(
x2 + y2 − 1.44

)((
x+ 3.9

)2

+ y2 − 1.44

)
− z2 (8)

S3 may be computed analytically in this
case, with S3 = 3150.03.

The quality of the MC reconstruction is evaluated
from the ratio of the computed area to the exact
area, η = SMC/SE over grids with Ni = Nj =
Nk = n. The efficiency of the algorithm is as-
sessed by computing the ratio between the num-
ber of formed triangles to the number of cubes
of the grid. The obtained surfaces are shown in
fig. 4, for coarse and fine grids. Observing fig. 5
we can notice that for all three cases convergence
(η ∈ [0.9, 1]) is achieved for n = 30, corresponding
to a grid of 27000 points.

4.2 Stationary control surface

The next step is to validate the method with some
non realistic test cases with different analytical
noise sources. This exercise will also allow to as-
sess the MC discretization effects and the size and
shape of the control surface.

We begin considering a steady spherical per-
meable surface, centered on a point noise source.
The analytical solutions for monopole, dipole and
quadrupole may be used to associate the values of
acoustic pressure and velocity on the permeable
surface. The sphere is uniformly discretized using
cylindrical coordinates θ and z, with Ni = Nj =
Nθ = Nz = n points, and may have different ra-
dius, from rs = 0.5 m to rs = 5.5 m. The number
of slices selected to generate the MC is varied ac-
cording to the source frequency, to avoid aliasing
errors.

2
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Figure 4: Reconstruction of test surfaces
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Figure 5: Convergence of MC method

2

The emitting surface obviously coincides with
the control surface when the latter is still. The
difference between the analytical and numerical
solutions is measured in terms of a global param-
eter ε defined as

ε =

Nt∑
l=1

Nx∑
m=1

|p′(xm, tl)− p′ex(xm, tl)|

Nt∑
l=1

Nx∑
m=1

|p′ex(xm, tl)|

with p′ex the exact solution, and Nt = 1 , Nx =
240, respectively, the number of temporal and spa-
tial observations carried out, the latter obtained
for observer positions located on a sphere with ra-
dius robs = 30 m.

Results for different values of n, rs and emis-
sion frequency for a monopole source are shown in
fig. 6. Convergence of the numerical solution de-
creases with increasing frequency of the monopole.
At a given frequency, convergence is improved by
reducing the radius of the control sphere. Simi-
lar observations may also be drawn using dipole
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Figure 6: Global error for the still control sphere, monopole source

and quadrupole sources. As an example of the
simulation of a complex source, fig. 7 shows the
analytical and numerical signals for an observer
located at r = 30 m in the x− y horizontal plane.

Similar results are obtained using a cylindrical
control surface. It is worth noting that the algo-
rithm allows to describe the control surface as a
collection of independent surfaces: for the cylin-
der case, the permeable surface is composed by
the two bases and the surface of revolution.

4.3 Moving control surface

The last non realistic validation case considers a
rotating monopole source surrounded by a spher-
ical control surface moving with it. The source
rotates in the x − y plane at a distance d = 3
m from the origin of the coordinate system, with
different angular velocities, see table 2. The ra-
dius of the control surface is rs = 0.5 m. The
observer is located at x = [4, 0, 0] m for all cases.
The surface discretization of the control surface is
again uniform, with Ni = Nj = Nθ = Nz = 80, a
value which assure convergence of the results for
the monopole frequency of 100 Hz and the small
value of rs considered. The only discretization pa-
rameter that is varied is the number of temporal
slices Nk = nτ , ranging from 20 to 220.

4.3.1 Subsonic motion

When the control surface motion is fully subsonic,
there exists a single emission surface, although not
coincident with the sphere, see fig. 8. In the figure,
the emission surface is colored with the value of
the emission time. The local Mach number range
for this case is 0.46 ≤ M ≤ 0.65, but the relevant
value to compute the noise propagated from the
emission surface is the local Mach number normal
to the surface, Mn, the maximum value of which
Mn,max = 0.55 is reported in table 2. The effect of
increasing the number of temporal slices is shown
in fig. 9(a), where the acoustic pressure, non di-
mensionalized with its maximum value, is plot-
ted for one revolution of the source. The figure
demonstrates a converged result for nτ = 60. Fig-
ure 9(b) reports, during one revolution, the value
of the emission surface area, normalized with its
maximum value: since the period shown starts
when the source is located at the closest position
to the observer, the area decreases when the source
is moving away from the observer and increases
when moving closer to the observer. Finally, to
assess the possibility that the local value of Λ be-
comes close to zero, figure 9(c) displays the value
of (1/Λ)max: for subsonic motion the kernels of
the acoustic integrals remain regular for all the
rotation period.
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Figure 7: Noise source made of a monopole at 20 Hz, a dipole at 200 Hz and a quadrupole at 300 Hz
(black: analytical; red: numerical)

case subsonic transonic supersonic

ω (rad/s) 62.83 157 377
Mn,max (m/s) 0.55 1.385 3.33

Table 2: Rotating source operating parameters

2

4.3.2 Transonic motion

In this operating condition the angular velocity of
the control surface is increased such as to locally
reach a value Mn,max > 1.The emission surface
at some instant of time during one revolution is
composed of two separate surfaces, as seen in fig.
10, where the yellow one, which indicates less re-
tarded emission times, is located closer to the ob-
server. The evolution of the non dimensional pres-
sure (fig. 11(a)) evidences that a value of nτ = 80
is needed for convergence, although the emission
surface area value converges with a coarser MC
grid (fig. 11(b)). The singularity term (1/Λ)max
increases of one order of magnitude with respect
to the previous case (fig. 11(c)).

4.3.3 Supersonic motion

The last case reaches a maximum value of the nor-
mal Mach number as high as 3.33. It has clearly a
limited practical meaning, but it is meant as a se-
vere test case for the capability of the algorithm to
reconstruct the emission surface when this is com-
posed of several disjoint parts. As seen in fig. 12,
the emission surface at some instant is composed

of three separate surfaces. The computational re-
quirements in terms of number of slices required
for the MC grid become high: fig. 13 shows that
convergence is not fully reached for nτ = 220. The
first part of the period, when the emitting surface
splits from two to three parts, is where the differ-
ences among discretizations are more evident. It
is worth noting that the singular behavior of this
supersonic case is no worse that of the transonic
case (fig. 13(c)).

5 A rotor application

As a preliminary rotor validation case we con-
sider the two-blade, fully articulated, twisted,
NACA0012 rotor with radius R = 1.829 m, used
by Brentner6 for the validation of the WOPWOP
code. Being the aerodynamic pressure assigned
on the blade themselves, the general porous for-
mulation (4) needs to be specialized to the case
in which the control surface f(x, t) = 0 is a solid
surface. Being (un − υn) = 0 it results:
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4πp′(x, t) =
1

c0

∂

∂t

∫
Σ

[
ρ0c0υn + p̃n̂ · r̂

rΛ

]
ret

dΣ+∫
Σ

[
p̃n̂ · r̂
r2Λ

]
ret

dΣ + p′Q(x, t) (9)

with p̃ = p−p0 the gauge pressure on the blade
surface. In principle, the quadrupole term p′Q(x, t)
cannot be neglected, but it will not be considered
in the following.

The pressure distribution on the blade sur-
face is computed using a combination of Blade
Element-Momentum theory (BEM) and analytic
airfoil theory, and the blade kinematics is pre-
scribed up to the second harmonics6. The con-
trol surface is described as the sum of four sur-
faces, i.e. upper and lower surfaces for the two
blades, thanks to the generality of the method.
The surface discretization is uniform in spanwise
direction, while non uniform in chordwise direc-
tion. Since the calculation of the blade position,
normal vector and velocity from the assigned kine-
matics implies several matrix products, to make
the algorithm more computationally efficient these
quantities are computed at the MC vertices for one
blade revolution and stored. Their values at the
vertices of the triangles of the emission surface is
then interpolated from the stored table, together
with the gauge pressure p̃.

Results are compared with experimental data
and WOPWOP calculations for a test case with
advance ratio µ = 0.207 and Mtip = 0.73. Two
different observers are considered, both moving
with the same translational velocity of the rotor:
the first observer is located ahead of the rotor,
at a fixed distance from the rotor hub, non di-
mensionalized with the rotor radius, of ∆xO1 =
[1.381,−1.181,−0.016], laying approximately in
the rotor plane; the second observer is located at
∆xO2 = [0.661,−1.181,−1.804], i.e. below the ro-
tor disk. At observer O1, one can expect a signal
dominated by a negative acoustic pressure peak
periodic in time, due to the prevalent thickness
noise contribution; at the second observer O2, on
the contrary, one can expect a prevailing loading
noise contribution.

The computed results, shown in fig. 14, con-
firm these expectations, as can be evidenced by
separating the thickness and loading noise contri-
butions.

In fig. 15 are reported the emission surfaces
at three different observer times for observer O1,
corresponding approximately to the positive peak,
the negative peak and the end of recompression in
the pressure-time history of fig. 14(a). It is pos-
sible to notice that to the advancing blade, which
has a larger velocity, corresponds an emission sur-
face Σ more deformed with respect to that gener-
ated by the retreating blade.

The comparison of the results obtained with
the present method for observer O1 with the avail-
able experimental data and the WOPWOP re-
sults, fig. 16, shows a reasonable agreement.

6 Conclusions

Following Brentner5, the computer graphics al-
gorithm of the marching cubes has been adopted
to compute the emission surface corresponding to
a permeable FW-H surface moving at arbitrary
speeds. The reconstruction of analytical surfaces
has been used to verify the basic MC algorithm.
Numerical simulations of non realistic stationary
and moving source test cases have allowed to vali-
date the proposed emission surface method and to
assess the influence of the discretization parame-
ters on the achieved results. The method proved
capable to successfully reconstruct the multiple
disjoint surfaces generated by a transonic or su-
personic motion of the source. The proposed ap-
proach is then applied to the noise prediction from
a two-blade rotor, using simplified aerodynamic
models. A limited comparison with experimental
data and numerical results from the WOPWOP
code gives encouraging results.
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Figure 8: Subsonic motion
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Figure 9: Convergence analysis for the subsonic motion
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Figure 10: Transonic motion
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Figure 11: Convergence analysis for the transonic motion
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Figure 12: Supersonic motion
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Figure 13: Convergence analysis for the supersonic motion
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Figure 14: Acoustic pressure at the two observers
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Figure 15: Emission surface for observer 1
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Figure 16: Comparison of results


