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Abstract 

This paper presents some improvements to a low-order 
panel method for computing unsteady, inviscid, in­
compressible potential flows. An explicit Kutta con­
dition for equalization of the trailing edge pressures 
is defined and implemented iteratively in a linearised 
form yielding improved prediction of pressures at the 
trailing edge. The wake shedding model, which pos­
sesses an arbitrary parameter for this type of low-order 
method, is also examined and a method for removing 
the indeterminacy of the wake-shedding parameter on 
a rational basis is put forward. These improvements 
are incorporated into a two-dimensional panel method 
and results obtained for a NACA0012 section in tran­
sient and oscillatory motions. Results are compared 
with those from a moving-mesh finite-volume Euler 
solver for incompressible flow, and the two methods 
are shown to agree closely for the lift and pitching mo­
ment predictions, while comparison of the computed 
wakes shows major differences. Additional results are 
also shown for the panel method for the case of the 
convection of a point vortex past a moving aerofoil 
and its wake. 

Nomenclature 

Symbols 

c aerofoil chord (solution characteristic 
length) 

section lift coefficient 

section pitching moment coefficient (about 
"jc = 0.25) 

N, Nw number of panels around the aerofoil sec­
tion and number of wake panels 

npc solution time-steps per cycle of motion 

p pressure 

q surface-tangent perturbation velocity 

r 0 intrinsic position vector (x', y') frorn center 
of rotation 

r vector from singularity to point of influence 

S, i1 surface-panel tangent and normal vectors 

1 graduate student 
2 Profcssor 

Sn, Sw body and wake surfaces 

u, v flow velocity components in (::v, y) 

V 0 inertial velocity of intrinsic frame origin 

x 1 y inertial frame coordinates 

t 1 r time and non-dimensional time r :::: tU j c 

a aerodynamic incidence 

r circulation 

1 vorticity 

!:'J.CPTE pressure coefficient difference between up-
per and lower surfaces at the 

Os panel chord-length trailing edge 

(w wake shedding parameter 

p surface doublicity strength (equivalent 
to ifJ - ¢;) 

¢ perturbation velocity potential 

cr surface source density 

( 
. 

1 
oq,, oq, l 

eqmva ent to 7);; - Bn 

no rate of rotation of intrinsic frame 

w angular frequency 

Superscri ptsjSu bscripts 

intrinsic (body-fixed) frame quantity 

previous time level quantity 

quantity norrnaliscd against steady-state 
value 

quantities internal to Sn or body panel index 

u,D upper and lower surface at the trailing edge 

n,w body and wake quantities respectively 

ss steady-state 

Introd11etion 

In many panel rnethods 1 the I<utt.a condition of 
classical <:1.crofoil theory has been applied in a man­
ner that. implicitly accounts for the physical effects of 
viscosity at points of high surface curva.t.ure, simulta­
neously fixing the level of bound circulation of lifting 
surfaces. In its analytic application for steady flow 

about hvo-dimcnsional acrofoils, the Kutta condition 
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specifies that the -flow separates from the aerofoil sur· 
face at the aerofoil trailing edge such that the flow 
speeds on both surfaces of the trailing edge remain 
finite[l]. From this follow restrictions on the flow ve­
locity at the edge different for finite-angle and cusped 
trailing edge geometries [6], both cases having in com­
mon equal pressures on upper and lower surfaces at 
the trailing edge. 

This equalization of pressure on either side of a 
trailing edge is also used to define the I<utta condition 
in unsteady aerofoil problems where the conditions on 
the velocity at the trailing edge are then modified by 
the sense of vorticity being shed from the edge[4, 6]. 
It has been suggested that there is an upper limit to 
the frequency range for which this interpretation of 
the I<utta condition can be applied [10, 11, 12, 13, 14], 
but such extreme conditions will not be considered in 
this work. 

A simple \implicit~ I\.utta condition 1 is used in some 
well known low-order panel methods for steady and 
unsteady flows [1 1 7 1 8 1 151. This paper will present 
an implementation of the \equal-pressure' I<utta con­
dition and treatment of the aerofoil trailing edge in 
the framework of a low-order panel method. This im­
proved form of the Kutta condition is needed fol' un­
steady flow to improve the prediction of surface pres­
sure especially in the vicinity of trailing edge. The 
goal of this work is an implementation of this condi­
tion that docs not require higher order singularities 
or geometry representation on any part of the solid 
or wake surfaces modelled and must not incur heavy 
computational cost.s. Furthermore, it is neccs:sary to 
tackle the problem of the free wakc>sheclding parame­
ter which is a feature of this type of low-order panel 
method [1, 5]. 

Low-order panel methods arc very versatik 1 and 
developrnents of the approach described here can ul­
timately he applied to the solution of unsteady in­
compressible potential flows about multiple thrce­
dirncnsional deforming geometries. For sirnulations 
of such complexity, simplicity and computational ef­
ficiency arc paramount and are the prirnary incentives 
for pursuing improvcrnent.s for tl!is panel method. 

Solution Method 

Doublet and source singularities are used to repre­
sent the surface of two-dimensional profiles in incorn­
pressihle potential flow where the governing cq11at.ion 
(for continuity) is Laplace's equation 

( 1) 

and the potential ¢ is related to the now velocity hy 

'V¢ = (u, v) (2) 

Since Eq. (1) is a linear differential equation the 
principle of superposition applies and the complete so­
lution can be assembled from a combination of elemen­
tary solutions. The elementary solutions used here in­
clude the two-dimensional vortex, doublet and source 
singularities which satisfy Laplace's equation in there­
gion of the flow around them[1]. Uniform distributions 
of sources and doublets on flat panels are used for the 
body, while the wake is represented by doublet panels 
only (equivalent to point vortices at the doublet panel 
junctions.) 

The total potential at a point in the flow is the 
summation the global ¢ influence of all the (J and p 
singularities distributed over Sn and Sw 

¢(x, y, z) = _!__ r J1: (~) ds 
47r}sa.w n r 

- _!__ r (J (~) ds (3) 
47r}so r 

The surfaces Sn and Sw arc modelled by N and 
Nw discrct.e panels respectively, so the discrete form 
of Eq. (3) is needed 

N N Nw 

¢;(x,y) = I>JA;,J + L(JJB;,J + LPkC;,k (4) 
j::::l j::::l k=l 

The influence coefficients Ai,j,Bi,J and Ck
1
J which re­

place the integrals in Eq. {3) for constant unit strength 
doublet and source panels are given by 

A·-- -- ds )1[}(1) 
1

'
1 - 4rr 5 ,8n ri,j 

( 5) 

B; · = _ _!__ 1-1
-ds 

,.J 47r 7'· . s, l,J 
( 6) 

C; k = _!__ { .!!._(-1-) ds 
' 1rr Js~<Dn l'i,k 

(7) 

where the integrals arc taken over the each of the body 
and wake panels denoted by si and sk. 

'The solution aims to find the distributions of u 
and fl that produce a flow-field which satisfies the 
physically correct boundary condition, i.e. zero flow 
through Sn. In the numerical solution, this is strictly 
true only at the discrete points where the boundary 
condition is enforced) in this cctsc points just inside 
Su at panel centres (the collocation points.) 

The boundary condition is tackled in two steps in 
this method. Firstly, to nullify the local onset flow 
clue to the kincrnat.ic velocity norrnal to Sn at each 
collocat.ion point., rr set so t.hat 

(To= -(V, + n X r,) ·ii (8) 

at each panel. This only satisfies the boundary con­
dition locally and the (J distribution induces a pertur­
bation potential to the global flow which does not yet 
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satisfy the tangency condition on Sn. Therefore, in 
the second step, the 11 distribution must be adjusted 
to nullify the global perturbation due to ff. Since the 
above also means that 

8¢, = 0 8n (9) 

and there are no singularities internal to Sn the Dirich­
let boundary condition can be enforced[!] 

r/!; = 0 (10) 

where r/!; is given by Eq. (4). This results in the fol­
lowing matrbc equation for finding the needed combi­
nation of surface doublet strengths (including a wake 
doublet panel) 

where 

JlN 

flW 

[ 

lUISI l RJIS, 
= 

RIISN 

N W-1 

(11) 

lUIS;= 'f:;u;B;,; + L JtkC'i,k (12) 
j=l k=l 

The above matrix equation has one more unknown 
than equations and requires an additional equation for 
a unique solution provided by applying a trailing edge 
condition. 

Unsteady solution 

The unsteady solution proceeds by time-stepping 
through a series of instantaneous solutions of Eq. {11) 
and a trailing edge condition. The solution is aware of 
the flow history through the strengths and positions 
of the wake singularities. 

Changes in the level of aerofoil bound circulation 
result in the shedding of vorticity at the trailing edge, 
the strength of which is determined with the applica­
tion of the Kutta condition. The is wake shed at points 
where the Kutta condition is enforced, one new free 
vortex being created for each solution time-step rep­
resenting the vorticity shed during that tirnc interval. 
The wake points arc, in the time-steps subsequent t.o 
their creation, convected with the local flow velocity, 
the new positions being calculated by a simple Eu\e:r 
integration scheme which assumes a constant veloc­
ity history of each point during each tirne step. This 
scheme is known to exhibit cumulative error (worsened 

with large time-step size) and instability with small 
time-step size[16]. However, this scheme is considered 
adequate for the current computations. To limit the 
instabilities arising from close vortex spacing, a solid­
body rotation vortex core of radius typically 10- 5 of 
the aerofoil chord is applied in the calculation of ve­
locity influence between free vortices. 

The condition of zero net circulation production 
in the solution (the Kelvin condition) is automatically 
satisfied by this method since each wake doublet panel 
created is equivalent to two equal and opposite point 
vortices at the panel ends which together contribute 
zero net circulation. 

Unsteady pressure 

The form of the Bernoulli equation which relates 
the flow velocity and acceleration (in the inertial 
frame) to the pressure, in the absence of any force 
fields (e.g. ncglect.ing gravity), is (from Ref. [1]) 

1' (V¢)' 8,P 1'= -+--+-=-
p 2 8t p 

(13) 

This defines the pressure 111 terms of the local flow 
conditions and the conditions at infinity where the flow 
perturbation is zero. 

Since pressure on the surface of the body is of in­
terest, the analysis is restricted to the external velocity 
potential and its derivatives on Sn. The r/!(x,y) field 
used in Eq. {13) is an instantaneous sampling of the 
perturbation field induced by the singularities bound 
to and moving with S'n and Sw. In addition to the 
8¢/8l due to the fluctuation in singularity strengths, 
<;\ point fixed in (a:, y) w\H, in general, also perceive 
a change in ¢ with time clue to the movement of the 
sing11laritics. To obtain t.he total 8¢/8l for a point 
fixed in inertial space the following transformation is 
needed 

8¢1 
8t J:,y 

iJr/!1 D¢1 Osl 
Dt s,n + EJs n,t Dl .t·,y 

+- -Oq\1 8nl 
8n s ,t Dt x ,!J 

( 14) 

The potential carried by the body on the outside 
of Su with cloublicity ft is sirnply 

q\ = r/!; + Jl = Jl 

frorn Eq. (10), which means lhat 

f)£ I 
()l 3,1! 

8p 
8t 

( 15) 

As S'n moves through inertia! space the c:ornpo­
nent of flow velocity in the surface normal direction is 



y' 

x' 

Sw 

Figure 1: Inertial and aerofoi1 intrinsic coordinates 

x' 

Figure 2: Detail of surface quantities 

known directly from the local velocity of the surface 
since the surface will carry the fluid in the ii direction 

8
¢ = (V, + D, x r,) · t1 = -<r 

iJn 
( 16) 

In the § direction the fluid moves relative to the 
(x, y) \vith the local tangential perturbation velocity 
(irrespective of (V, + 0, X r,) · s) so in the s direction 
we have 

. 8¢ 8jl. 
\l¢·s=-=-=q as as ( 17) 

Combining the expressions of Eq. (16-17) and 
Eq. (15) yields the total inertial 8¢/81 

8¢ I 8n I as I 8''1 - = -<r - + q - + -, 
Dt x,y Dl ;1:,y 8l :c,y 8l s,n 

( 18) 

where (s, n) arc surface coordinates local to and fixed 
to each point on Sn and known in terms of (x', y'). 
Given the motion state of the body (Vo,Oo) through 
(x,yL it can be shown that 

- =- o + Ho X ro · S as I (V " . ) . 
8t x,y 

( 1 9) 

~~~ = -(V,+D, x r,) ·n =" 
x,y 

(20) 

The full expression relating the local surface con­
ditions with far-fteld conditions now becomes (from 
Eq. 13) 

Poo-p_!(' ')+&p --q -(; -
p 2 8t 

- q(V, + D, x r,) · s (21) 

To obtain an expression for Cp from the above, it 
is necessary to choose a velocity which defines a ref­
erence stagnation pressure. For the calculation of the 
force/moment coefftcients to be possible via integra­
tion of the Cp around the section the reference velocity 
must be constant over Sn. The most usual choice is 
the translational velocity of the whole body through 
(x, y) 

although other reference speeds must be chosen for 
cases of pure rotation. 

Eq. (21) in terms of the reference flow speed now 
yields the expression for the pressure coefficient on the 
body surface 

C'r = +("' -q2 + 2q(V, + 12, xr,)-8- 2:) 
V:·cj 

where 

C' P- Poo 
p- 1 v2 

2P ref 

Unsteady Kutta Condition 

(22) 

(23) 

The commonly used implicit. form of the Kutta con­
clition, implemented here for comparison, specifies for 
steady flow [1] 

lu - ''/,. = () 

In the case of this low order panel method, this condi­
tion is replaced with 

(see Fig. 3) and is implerncntcd by 

(24) 

In conjunction with the Kutt.a-Joukowski theorem 
this equation irnplies that the loading at the trailing 
edge is zero. Hence, the pressures at the trailing edge 
should he equal and the implicit condition of Eq. (24) 

should affect the nearby fl solution such that this re­
sults. The solution has a direct effect on the trailing 
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Figure 3: Detail of trailing edge panels 

edge pressures through OJ.l/&s. This is approximated 
by first order finite differencing of the step-wise contin­
uous J.l· However, it has been found that Eq. (24) does 
not provide sufficient control over the distribution of 
the discrete values of fJ. to result in equal trailing edge 
pressures as calculated in the post-processing. 

In unsteady flow, the inadequacy of Eq. (24) is 
worsened by the omission of the 8¢ j &t component of 
the unsteady pressure. The condition which mnst now 
be applied, derived from Eq. (22) for /!,.Cp"' = 0 at 
the trailing edge, is 

q' - 0'' + 2 OJ.ll - q' + "'' - 2 OJ.ll 
U U OtU L LOt£ 

- 2qu (V, + 0 X r,) · su + 2qL (V, + 0 X r,) · ii,, = 0 
(25) 

This can not be implemented directly in the solu­
tion of the linear boundary condition equations since 
there are unknown quadratic terms of Jli in the veloc­
ity q2 • In order to avoid the computational overhead of 
solving with a non-linear equation an approxirnation 
is needed which willlinearise Eq. {25). The technique 
employed by this panel method, introduced by Bose[2], 
is to replace the quadratic perturbation velocity terms 
with products of the current (unknown) velocity q and 
the perturbation velocity at the previous tirne level ij, 
Le. to assume that 

(()'')'"" &s (&'') &1,1 _ - - -qq 
&s 8s t-t>t -

(26) 

The linearised trailing edge condition implemented 
ls now 

qu (iju -2(V, +0 x ro) ·su) 

- qL (ij,,- 2(V, + 0 x r,). iii-) 

- 0'2 + 0'2 + 2 OJI I - 2 OJI I = 0 
U L ()t U Q/ [_ 

(27) 

The unknown q terms arc replaced by their nurncr-

ical analogues (second order) 

_ ( 2 2Js, ) 
qu-- Ss, +Ss, + Ss,(Ss, +Ss,) J.l, 

-t ( 2 + 2Ss, + 2Js, ) · 
- Ss, + Ss, Ss,(os, + Ss,) os,(os, + os,) J.l, 

( 
2<ls, ) 

- Jl (28) 
Ss,(Ss, +Ss,) ' 

(29) 

The application of the explicit trailing edge con­
dition involves only unknO\vn quantities (in this case, 
pi) on the aerofoil surface in an equation of the form 

AN-2PN-2 + AN-tflN-1 + AN-2PN 

- A,p,- A,p,- A,/1, = 1U!S'N+! (30) 

Note that the strength of the shed wake panel Jlw is 
not directly coupled to the solution through Eq. (27) in 
this formulat.ion. Tnstead is determined indirectly by 
its influence on the aerofoil bounda1·y condition, i.e. 
through t.he coeflicient.s C;,w in Eq. (11). This makes 
it possible to usc any type of singularity to model the 
wake without aiTccting the implementation of the trail­
ing edge condit.ion, although it might then be neces­
sary to explicitly enforce the I<elvin condition. 

The approxirnation in Eq. (2G} relics on the as­
sumption that the perturbation velocities at the trail­
ing edge do not change rapidly with time, and so 
Eq. (27) is less accurate with increasing rates of change 
and tirne-st.ep size. In such cases, sub-iterations arc 
performed within the same titnc level, the new values 
of q bci11g used to update the approximation (j, un­
til the pressure difference is below some set tolerance, 
typically 0.005 of the reference dynamic head. The 
iterative process involves solving the matrix equation 
Eq. (11) changed only by the current set of coefficients 
from Eq. (~W), and can be stopped once !::l.CP'n-: is be­
low some preset magnitude. 

It has been fonnd that this schcrne works for most 
unsteady motions where t.he arnplitudes and frequen­
cies of the motions arc not too great. The scheme is 
not convergent for all situations. At points in the solu­
tion where there arc rapid accelerations at the trailing 
edge point, more iterations arc required to attain the 
required difference in pressure, and in some cases the 
solution locks before the required pressure difference 
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is reached. It is sometimes useful to reset the coef­
ficients of the iterative process with a sub-iteration 
using Eq. (24)), although after this the solution of­
ten locks in the same way. Doubling the precision 
of the computations gives only a slight improvement. 
Other more successful techniques for enhancing the 
sub-iteration process are being sought. One candidate 
which has not been sufficiently explored is adaptive 
time-stepping. Reducing the time step size will always 
make the approximation of Eq. (26) more accurate and 
convergence may be improved if the time-step size is 
reduced in proportion to rates of change of flow quan­
tities at the trailing edge. 

Wake Shedding Parameter 

The current method does not provide the velocity 
exactly at the trailing edge or just off the trailing edge 
which would be needed to determine the position of 
each new shed wake vortex. Velocity calculation on or 
infinitesimally close to the trailing edge is as accurate 
as the interpolation/extrapolation scheme used to in­
terpret the singularities in the vicinity. To bypass the 
lack of solution detail the average of the upper and 
]ower surface trailing edge velocities is taken as the 
most representative of the time-average of the velocity 
with which the newest wake point is convected during 
the time-step it is generated. The wake doublet panel 
created docs not constitute part of a streamline. It is 
assumed that the new vortex has followed a streak line 
to its current position (as computed by above approx­
imation) but that the direction of the panel does not 
dictate the exact direction of flow off the trailing edge. 
Trying to prescribe or solve for such detail is inconsis­
tent with the order of the current method 

+v ot 

new wake point 
previous wake po1nt -~ 

Figure 4: Detail of wake shedding at aerofoil trailing 

edge 

The lack of detail in the wake shedding process 
introduci'S the pararncter (w to the method which is 
defined as the fraction of the local velocity-convected 
distance from the trailing edge at which the new wake 
point is placed. The same type of indeterminacy was 

encountered for the the PM ARC code by Martin et 
al.[5]. In the latter case, the optimum value of (w 

was sought by comparison with analytic results (Wag­
ner and Theodorscn functions) for a thin flat plate in 
transient and oscillatory motions. Given that the lat­
ter are themselves approximations) this type of com­
parison is not entirely satisfactory as a calibration of 
(w and another route is taken here. 

More continuous representation of the shed vor­
ticity may remove the (w indeterminacy and it was 
attempted to replace the doublet panel at the trail­
ing edge by a flat linear -y panel in order to verify the 
optimum (w. This introduced an additional unknown 
d-yjds which it was hoped would allow the solution to 
detcrm:ne automatically the center of vorticity within 
the new wake panel. The result was an oscillatory feed­
back instability and further work in this direction was 
abandoned. Another candidate approach was based 
on the work of Graham[17] using the complex-plane 
solution for the flow off an infinite wedge corner as 
a local solution at the trailing edge to determine the 
strength and positioning of the shed vorticity. This too 
was not taken to completion due to difficulty in inter­
facing the local solution with the global panel method 
solution and due to the prospect of poor extensibility 
to three dimensions. In general) it is not desirable to 
use higher order singularity distribution or geometry 
in the trailing edge region in order to preserve the sim­
plicity of the method and to allow direct. extension to 
a three-dimensional vortex lattice/panel method. 

Fortunately) it. becomes apparent that the method 
is) to a good extent) self-calibrating from the following 
observation: as !:ir is decreased the range of position 
tha.t the new vortex point. can take and the strength of 
the vortex both diminish. Therefore) as the time-step 
is decreased (w becomes less significant. This seems 
consistent within the fnm1ework of the time discrcti­
sation since as !:ir -> 0 a continuous vorticity sheet 
would result in making (w practically ineffective in 
the limit (the shed vortex point. would always coin­
cide with the trailing edge). Obviously) due to nu­
merical considerations (rnachi11e precision) vortex wake 
stability) rnemory) CPU tirne) thi::; limit can not be ap­
proached to the extent that would fully calibrate the 
method, i.e. to the extent \vhcrc (w variation would 
have no effect at all on the results. However) calibra­
tion results can be obtained with small enough !:ir to 
give the clcsirccl rnaximum cleviat.ion in the results for 
a given change in (w so that larger tirne-step runs can 
be used for longer ~irnulations. 

To show that. (w bccornes less significant with de­
creasing D.r a series of runs were performed with 
the NACA0012 aerofoilundcrgoing one cycle of a= 
5° sin{2kr) pitch oscillation in steady forward flight. 
This was done for Cv values of 0.30 to 0.60 in equal 
increments of 0.1 ()) repeating tl1is series of calculations 
four times, initially with C,r"' 0.097 and halving C,r 
each time (sec Fig. G). The difference between the 
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solutions between successive values of (w at the differ­
ent /!,.r clearly diminishes with decreasing !!,.r show­
ing that the effect of (w becomes less significant. The 
solution eM is used for the sensitivity analysis since 
it is most strongly affected by changes in (w as seen 
in Fig. 5. In this case, which exhibits a maximum 
eM "'! 0.030, reducing /!,.r from 0.097 to approxi­
mately 0.012 reduces the maximum change in solution 
for /!,.(w = 0.1 from 10% to approximately 1% of max­
imum eM. Assuming that the method converges to 
the correct solution with decreasing /!,.r and that the 
discrete vortex shed must lie somewhere in the rniddlc 
of the curve of continuous vorticity it is intended to 
represent, using any (w in the range between O.a and 
0.7 will yield a solution within a few percent of the 
datum solution, even for eM which is sensitive to (w 

variation. 
The decreasing effect of (w can only be exploited if 

for decreasing ~r the method converges to one solu­
tion. The same set of runs used for the above analysis 
are used to show the convergence characteristics of the 
method. The eM results of the smallest /!,.r solution 
is used as a datum and the deviation of the other solu­
tions frorn this is calculated within each (w series. Dif­
ferent convergence characteristics are seen at different 
values of (w· In all cases, as expected, the smaller .6.r 
runs show smaller deviation from the dat.nm, although 
not with uniformity within the cycle (see Fig. 7). The 
inability of the iterative Kutta condition to converge 
at the ends of the cycle is believed to be the reason 
for this non-uniformity and, on the whole, the method 
tends to a single solution as /!,.r -> 0. 

To find the optimum (w for use with larger 6-r 
for each type of motion modelled a reference ;:;olut.ion 
should be computed with /!,.r ;;) 0.01 and (, "' 0.5. 
Then, results at the desired 6-r can be computed for a 
range of (w values so that the optimum can be selected 
by comparison with the reference run which is known, 
from the above previous discussion, to produce results 
sufHciently independent of (w. This calibration proce­
dure would also be applicable to the three-dimensional 
extension of the current method. Alternatively, the 
calibration may be bypassed by obtaining the solu­
tions with very fmc time-step size and (w ~ 0.5. 

Discussion of Results 

Performance of the unsteady I<:utta condition 

Figure 9 compares the Cp error at. the {.railing edge 
with that of the linearised explicit I<utta condition of 
Eq. (27). The eP error is plotted against the strength 
of the wake vortex shed during the time-step that the 
6-CPTr:: was exhibited. This essentially plots the er­
ror in terms of a measure of the degree to which the 
flow is unsteady since the strength of the wake vor­
tex being shed is inversely proportional to the rate of 

change of bound circulation (by the Kelvin theorem). 
Therefore, it is apparent that Eq. (24) produces error 
increasing in proportion to the degree to which the 
flow is unsteady and that the explicit Kutta condition 
of Eq. (27) performs significantly better. 

Impulsive start at incidence 

The transient response of the NACAOOI2 section 
started impulsively from rest into constant. speed for­
ward flight at a = 5° was computed. The results for 
some values of (w arc shown in Fig. 8. It is appar­
ent that (w has a stronger effect on the transient (;M 
response. The C~., response approaches Wagner's an­
alytic indicia! response for a flat plate [1] which pre­
dicts a starting (:L of 0.50. Perfect agreement is not 
expected since the panel method includes the effects 
of the time discrctisat.ion and of aerofoil thickness. 

Oscillatory pitch motion 

The NACA0012 section was used for a set of com­
putations spanning a range of k from 0.02 to 0.30 
shown in Fig. 5. The upper limit is considered low 
enough t.o avoid the regions of k where the validity 
of the unst.eady Kutta condition is questionable. The 
NAC:A0012 section exhibits the collapse and reversal 
of the e/, loop at. approximately k = 0.2 as predicted 
by Geisslcr[9] among others. The time~step is kept low 
in order to minimise (w effects with npc = 400 used in 
the cornput.ations. Since .6.r is related to the number 
of time-steps used by 6-r = 1rjknpc, it not constant 
for t.he runs at. different. frequencies. This is most no­
ticeable fork = 0.02 from the magnified effect of (w in 
the C M response. 

Wake convection sensitivity 

In addition t.o recalculating the location of the wake 
as the acrofoil moves (solid-body translation and rota­
tion), keeping the wake completely force-free requires 
the calculat.ion of velocity influence ( u and v compo­
nents) at each of the current wake points from all 
other wake vortices and acrofoil singularities. This 
results in distortion of the wake and amounts to ap­
proximately 2Nw (Nii + Nw) velocity influence calcu­
lations per t.irne-st.ep. Each solution tirne-st.ep a new 
wake-point is created so Nw is increrncntecl and the 
computation is slowed nearly in proportion to Na,. 
Therefore it. is desirable to reduce the portion of the 
wake for wl!ich t.hc distorting components of flow ve­
locity are applied, say for t.hc Kma:.r,· vortices nearest 
the trailing edge. Using the case of the NACA0012 
section in ±5° sinusoid pitching motion it. is evident 
frorn Fig. 15 that. the solution is relatively insensitive 
to the calculation of t.he dist.ort.ion of t.he far wake. 

H.cdncing !Cnrcr results in significantly different wake 



shapes (Fig. 16) but the effect on the solution is not 
noticed until I<max/npc 1'0 1%. Multiple body prob­
lems and simulations where the nature of the motion 
keeps the wake in proximity of the body may not be 
eligible for this computational saving. 

Euler method comparison 

The steady-flow aspects of the method can be veri­
fied by comparison with analytic results. However 1 

for the unsteady a..<5pects 1 such as the wake treatment, 
it is useful to compare with another method which 
solves for similar flow but which does not deal ex­
plicitly with the creation and convection of the shed 
vorticity. The method of Gaitonde[3] is used for com­
parison, as it solves the Euler equations (inviscid, in­
compressible but rotational flow) so fluid rotation is 
implicitly included. Unsteady solutions are obtained 
using artificial compressibility and a moving mesh on 
which a cell-centered finite volume scheme is imple­
mented. 

Initially, the resulting vortex wake frorn the two 
methods is compared to assess their ability to capture 
the ·flow history. The vorticity is extracted from the so­
lutions ofGaitonde[3] for the k = 0.30 pitching motion 
case. This is done only at the solution instants corre­
sponding to the quarter-phase positions of the pitching 
motion cycle for the NACA0012 section at the high­
est frequency compared (k = 0.3). The panel method 
wake points arc superimposed on the resulting iso-1 
contours in Fig. 14 with a graphical indication of the 
sign and strength of the panel method wake circula­
tion. 

The comparison indicates that the Euler solver is 
less capable of capturing and retaining the vorticity 
generated by the aerofoil 1 especially beyond five aero­
foil chord lengths downstream, Decreasing grid den­
sity and increasing cell aspect ratio further from the 
acrofoil make it impossible for the Euler solver to re­
solve the wake as well as the panel method and it ex­
hibits appreciable diffusion of the vorticity. Further­
more) since this is a deforming mesh method) the fluid 
behind the aerofoil is sarnp1ed by a grid which rnoves 
cyclicly through it as the trailing edge moves normal 
to the direction of the onset flow. This means that the 
wake is sampled successively hy grid regions of varying 
density. toss of How dct<-Li\ because of thls grid varia­
tion and the numerical dissipation incorporated in the 
method may be the main contributing factors to the 
clifrusion and loss of vorticity. 

The difference in wake-capturing capability docs 
not seem to significantly affect the agreement. for C'L 
and CAJ seen in Fig. 12 where results are presented for 
the oscillatory pitch motion cases. The C'L agreement 
is excellent with both methods predicting the drop in 
hysteresis and the reversal of the c/, loop direction 
at k = 0.20. The agreement. in eM is good but. de-

teriorates with decreasing frequency. This appears to 
be because the two methods predict slightly different 
steady-state solutions for dCM / dcx of the NACA0012 
profile used. In order to gauge the agreement in a 
way which eliminates some of the effects of the post­
processing (in this case, pressure integration around 
the profile), Cp distributions were also compared at the 
quarter-phase positions of the motion cycle. Fig. 13 
shows the almost identical pressure distributions, t.he 
Euler solver capturing more detail of the Cp variation 
near the leading edge since over 90 points are used to 
sample the profile as opposed to the 60 panels used by 
the panel method. 

Vortex interaction studies 

The panel method was used to simulate the case of the 
NACA0012 profile at a= 0' flying past a free vortex. 
The interaction is simulated for the two cases (shown 
in Fig. I 0 and Fig. 11) of a vortex of positive and neg­
ative circulation of thf, same magnitude starting five 
chord lengths in front and 0. JOe below relative to the 
aerofoil centre. The oscillatory characteristics exhib­
ited by the CL and eM results during the interactions 
indicate that the presence of the aerofoil wake damps 
the influence of the vortex and that modeling the wake 
is important in the correct prediction of the pressures 
during the interaction. 

Condnsion 

The lincarisecl unsteady Kutta condition described 
here irnprovcs significantly the pressure prediction at 
the trailing edge for the simple transient and pitch­
oscillation motions without excessive computational 
cost. However, in1provement of the numerical imple­
rncntation is needed in cases where the sub-iteration 
process fails to converge. 

Comparison of panel method results using the new 
l<utta condition with the results of the cell-centered 
moving-mesh Euler solver of Gaitoncle(3] shows good 
agreement between the two very different methods. 
This establishes the ability of the panel method to 
compute the unsteady incompressible flow about an 
acrofoil section with accuracy comparable to a finite 
volume method solving the Euler equations but. in a 
fraction (typically 5%) of the computing time. Fur­
thermore, the panel method, by 'fitting, the wake 
rather than capturing it (as the finite-volume method 
docs}, is capable of producing superior solutions for 
the wake shape. This superiority is more apparent 
at a distance from the trailing edge and is therefore 
rnore significant in multiple-body problems. It does 
not appear to he a factor in the current comparison 
which involves the computation of flow about a single 
aerofoil. 
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The wake convection process, which is one of the 
more computationally demanding aspects of the cur­
rent rnethod, is more significant for the wake points 
in the vicinity of the trailing edge and can be disabled 
for the wake beyond a certain distance (typically 5% of 
the motion cycle length) to reduce the computatiomtl 
effort, without noticeably affecting the solution on the 
aerofoil. 

The effect of variations in the essentially 'free' 
wake-shedding parameter ((w) which afflicts low-order 
methods ofthis type, can be controlled simply through 
reduction of the solution time-step size. It has been 
shown that decreasing D..r nearly eliminates the ef­
fect of (w (allowed to vary within a reasonable range) 
on the solution. This is true even for the aerofoil 
CM which was shown to be especially sensitive to (w. 
Therefore, selection of the optimum (w for larger time­
step calculations (for computational efficiency) can be 
selected by comparison (of a sample of the motion 
modelled) with a very fine time-step calibration so­
lution. 

With these improvements in the most critical ar­
eas of the Kutta condition and wake shedding treat­
ment, the type of low-order singularity method de­
scribed here promises to provide useful solutions for 
the unsteady potential flow about arbitrary three­
dimensional geomet.ries with relatively small compu­
tational cost. For unsteady flows in particular, tl1c 
fact that the method only requires quantities on the 
body and wake surfaces makes it very attractive for 
more complex motions where surface deformations arc 
involved. 
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