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Abstract

‘This paper presents some improvements to a low-order
panel method for computing unsteady, inviscid, in-
compressible potential flows. An explicit Kutta con-
dition for equalization of the trajling edge pressures
is defined and implemented iteratively in a linearised
form yielding improved prediction of pressures at the
trailing edge. The wake shedding model, which pos-
sesses an arbitrary parameter for this type of low-order
method, is also examined and a method for removing
the indeterminacy of the wake-shedding parameter on
a rational basis is put forward. These improvements
are incorporated into a two-dimensional panel method
and results obtained for a NACA0012 section in tran-
sient and oscillatory motions. Results are compared
with those from a moving-mesh finite-volume Euler
solver for incompressible flow, and the two methods
are shown to agree closely for the lift and pitching mo-
ment predictions, while comparison of the computed
wakes shows major differences. Additional results are
also shown for the panel method for the case of the
convection of a point vortex past a moving aerofoil
and its wake.

Nomenclature

Symbols

€ aerofoil chord (solution characteristic
length)

Cy, section lift coeflicient

Cu section pitching moment coefficient {about
afc=0.25)

N, Ny number of panels around the aerofoil sec-
tion and number of wake pancls

Tpg solution time-steps per cycle of motion

P pressure

q surface-tangent perturbation velocity

X, intrinsic position vector {a’, y') from center
of rotation

r vector from singularity to point of influence

8,0 surface-panel tangent and normal vectors

Lgraduate student
2Professor
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Sp,Sw body and wake surfaces

u, v flow velocity components in (2, y)
Vo inertial velocity of intrinsic frame origin
2,y inertial frame coordinates
& time and non-dimensional time » = iU/¢
o' acrodynamic incidence
r circulation
v vorticity
AOCh.,. . pressure coeflicient difference between up-
per and lower surfaces at the
38 panel chord-length trailing edge
Cw wake shedding parameter
1 surface doublicity strength (equivalent
to ¢ — ¢i)
perturbation velocity potential
surface source density
(equivalent to %% - g—%
Q. rate of rotation of intrinsic frame
w angular frequency

Superscripts/Subscripts

! intrinsic (hody-fixed} frame quantity

previous tivne level quantity

quantity normalised against steady-state

value
i quantities internal to Sp or body panel index
v upper and lower surface at the trailing edge
s body and wake quantities respectively
58 steady-state

Introduction

In many panel methods, the Kutta condition of
clagsical acrofoil theory has been applied in a man-
ner that implicitly accounts for the physical effects of
viscosity at points of high surface curvature, simulta-
neously fixing the level of bound circulation of lifting
surfaces. In its analytic application for steady flow
about two-dimensional aerofoils, the Kutta condition



specifies that the flow separates from the aerofoil sur-
face at the aerofoil trailing edge such that the flow
speeds on both surfaces of the trailing edge remain
finite{l]. From this follow restrictions on the flow ve-
locity at the edge different for finite-angle and cusped
trailing edge geometries [6], both cases having in com-
mon equal pressures on upper and lower surfaces at
the trailing edge.

This equalization of pressure on either side of a
trailing edge 1s also used to define the Kutta condition
in unsteady aerofoil problems where the conditions on
the velocity at the trailing edge are then modified by
the sense of vorticity being shed from the edge[4, 6].
it has been suggested that there is an upper limit to
the frequency range for which this interpretation of
the Kutta condition can be applied [10, 11, 12, 13, 14],
but such extreme conditions will not be considered in
this work.

A simple ‘implicit’ Kutta condition, is used in some
well known low-order panel methods for steady and
unsteady flows {1, 7, 8§, 15]. This paper will present
an implementation of the ‘equal-pressure’ Kutta con-
dition and treatment of the aerofoil trailing edge in
the framework of a low-order panel method. This im-
proved formt of the Kutta condition is needed for un-
steady flow to improve the prediction of surface pres-
sure especially in the vicinity of trailing edge. The
goal of this work is an implementation of this condi-
tion that does not require higher order singularities
or geometry representation on any part of the solid
or wake surfaces modelled and must nol incur heavy
computational costs. Furthermore, it is necessary to
tackle the problem of the free wake-shedding parame-
ter which is a feature of this type of low-order panel
method [1, b}

Low-order panel methods are very versatile, and
developments of the approach described here can ul-
timately be applied to the solution of unsteady in-
compressibic potential flows about multiple three-
dimensional deforming geometries. Tor sirmulations
of such complexity, simplicity and computational ef-
ficiency are paramount and are the primary incentives
for pursuing improvements for this panel method.

Solution Method

Doublet and source singularities are used to repre-
sent the surface of two-dimensional profiles in incomn-
pressible potential flow where the governing equation
(for continuity) is Laplace’s equation

Vi =0 (1)
and the potential ¢ is related to the flow velocity by

Ve = {u,v) (2)

Since Bq. (1) is a linear differential equation the
principle of superposition applies and the complete so-
lution can be assembled from a combination of elemen-
tary solutions. The elementary solutions used here in-
clude the two-dimensional vortex, doublet and source
singularities which satisfy Laplace’s equation in the re-
gion of the flow around them[1]. Uniform distributions
of sources and doublets on flat panels are used for the
body, while the wake is represented by doublet panels
only {equivalent to point vortices at the doublet panel
junctions.)

The total potential at a point in the flow is the
summation the global ¢ influence of all the ¢ and g
singularities distributed over Sp and Sw
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The surfaces 5p and Sw are modelled by N and

Ny discrete panels respectively, so the discrete form
of Eq. {3) is needed
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The infiuence coeffictents A; ;,B;; and Ci ; which re-
place the integrals in Eq. {3) for constant unit strength
doublet and source pancls are given by
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where the integrals are taken over the cach of the body
and wake pancls denoted by S; and 5.

The sohition atms to find the distributions of o
and p that produce a flow-field which satisfies the
physically correct boundary condition, i.e. zero flow
througlh Sp. In the numerical solution, this is strictly
true only at the discrete points where the boundary
condition s enforced, in this case points just inside
Sp at panel centres (the collocation points.)

The boundary condition is tackled in two steps in
this method. Firstly, to nullify the local onset flow
due to the kinematic velocity normal to Sg at each
collocation point, o set so that

c=—(V,+0xr,) -1 {8)

at cach panel. This only satisfies the boundary con-
dition locally and the o distribution induces a pertur-
bation potential to the global flow which does not yet
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satisfy the tangency condition on Sgy. Therefore, in
the second step, the p distribution must be adjusted
to nullify the global perturbation due to ¢. Since the
above also means that

ds

o =0 (9)
and there are no singularities internal to Sp the Dirich-
let boundary condition can be enforced{1]

i =0 (10)

where ¢; is given by Eq. {4). This results in the fol-
lowing matrix equation for finding the needed combi-
nation of surface doublet strengths (including a wake
doublet panel)
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RHS; = > 0 Bij+ 3 mCin (12)
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The above matrix equation has one more unknown
than equations and recquires an additional equation for
a unique solution provided by applying a trailing edge
condition.

Unsteady solution

The unsteady solution proceeds by time-stepping
through a series of instantaneous solutions of Eq. {11}
and a trailing edge condition. The solution 1s aware of
the flow history through the strengths and positions
of the wake singularities.

Changes in the level of aerofoil bound circulation
result in the shedding of vorticity at the trailing edge,
the strength of which is determined with the applica-
tion of the Kutta condition. The is wake shed at points
where the Kutta condition is enforced, one new free
vartex being created for each solution time-step rep-
resenting the vorticity shed during that time interval.
The wake points are, in the time-steps subsequent to
their creation, convected with the local flow velocity,
the new positions being calculated by a simple Buler
integration scheme which assumes a constant veloc-
ity history of each point during each time step. This
scheme is known to exhibit cumulative error (worsened

with large time-step size) and instability with small
time-step size[16]. However, this scheme is considered
adequate for the current computations. To limit the
instabilities arising from close vortex spacing, a solid-
body rotation vortex core of radius typically 10~° of
the aerofoil chord is applied in the calculation of ve-
locity influence between free vortices,

The condition of zero net circulation production
in the solution (the Kelvin condition) is automatically
satisfied by this method since each wake doublet panel
created is equivalent to two equal and opposite point
vortices at the panel ends which together contribute
zero net circulation.

Unsteady pressure

The form of the Bernoulli equation which relates
the flow velocity and acceleration {in the inertial
frame) to the pressure, in the absence of any force
fields (e.g. neglecting gravity), is (from Ref, {1})

P (V8?36 peo

e e

P 2 - p (13)

This defines the pressuve in terms of the local flow
conditions and the conditions at infinity where the flow
perturbation is zero.

Since pressure on the surface of the body is of in-
terest, the analysis is restricted to the external velocity
potential and its derivatives on Sp. The ¢(z,y) field
used in Eg. (13} is an instantaneous sampling of the
perturbation fietd induced by the singularities bound
to and moving with S and Sy, In addition to the
¢/t duc to the fluctnation in singularity strengths,
a point fixed in {2,y) will, in general, also perceive
a change in ¢ with time due to the movement of the
singularities. To obtain the total d¢/8¢ for a point
fixed in inertial space the following transformation is
needed
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The potential carried by the body on the outside
of Sp with doublicity s is simply

=G+ p=pt
from Eq. (10}, which means that

O O

gt s 15
atl,, ~ o (15)

As S moves through inertial space the compo-
nent of flow velocity in the surface normal direction is
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Figure 1: Inertial and aerofoil intrinsic coordinates
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Figure 2: Detail of surface quantities

known directly from the local velocity of the surface
since the surface will carry the fluid in the i direction
de
sle = (W, ) X 1) A= 0 16
n ( o o 0) ( )
In the & direction the fluid moves relative to the
(z,y) with the local tangential perturbation velocity
(irrespective of {V, 4+, % 1,) - §) so in the § direction
we have

d¢  Ou

VO S= 5= %

=q (17)

Combining the expressions of Lg. {16-17) and
Eq. (18} yields the total incrtial d¢/dt
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where (s,n) are surface coordinates local to and fixed
to each point on Sp and known in terms of (2, y).
Given the motion state of the body (V,,{2;) through
{z,y), 1t can be shown that

ds

S = (Vo Qi) §

R

(19)
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The full expression relating the local surface con-
ditions with far-field conditions now becomes {from
Eq. 13)

o

at
—q(Vo+Q, xr,) 8

- 1
Poop P:_Q_(gz__JZ)_{_
(21)

To obtain an expression for Cy from the above, it
1s necessary to choose a velocity which defines a ref-
erence stagnation pressure. For the calculation of the
force/moment coeffictents to be possible via integra-
tion of the €, around the section the reference velocity
must be constant over Sg. The most usual choice is
the translational velocity of the whole bedy through

(, )
V;'n_.f = !Vo’

although other reference speeds roust be chosen for
cases of pure rotation.

Fq. (21) in terms of the reference flow speed now
yields the expression for the pressure coefficient on the
body surface

Lo o ;.
Cp = Vrlcj (JH — ¢+ 2¢(V, + 0 xr,) -5 5‘;)
(22)
where
; P Peo
Cr =" (23)
r %F’V:-ij

Unsteady Kutta Condition

The commonly used imphcit form of the Kutta con-
dition, implemented here for comparison, specifies for
steady flow [1]

Yo =7, =0

In the case of this low order panel method, this condi-
tion 1s replaced with

Z Frp=0

(see Fig. 3) and is implemented by

R Ty 0 (24)

In conjunction with the Kutta-Joukowski theorem
this equation implies that the loading at the trailing
edge 15 zero. Hence, the pressures at the trailing edge
shiould be equal and the implicit condition of Eq. (24)
should affect the nearby p solution such that this re-
sults. The solution has a direct effect on the trailing
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Figure 3: Detail of trailing edge panels

edge pressures through du/8s. This is approximated
by first order finite differencing of the step-wise contin-
uous p. However, it has been found that Eq. (24) does
not provide sufficient control over the distribution of
the discrete values of p to result in equal trailing edge
pressures as calculated in the post-processing.

In unsteady flow, the inadequacy of Eq. {24) is
worsened by the omission of the 8¢/t component of
the unsteady pressure. The condition which must now
be applied, derived from Eq. (22) for ACp,, = 0 at
the trailing edge, is

u lij

2 _ gty 2 4 g2 H

Tv ”26tU “ Lg(%L

=2, (Vo 4+ Qxry) 8, +2¢, (Vo +Qxr,}-8, =0

(23)

This can not be implemented directly in the solu-
tion of the linear boundary condition equations since
there are unknown quadratic terms of y; in the veloc-
ity ¢%. In order to avoid the computational overhead of
solving with a non-linear equation an approximation
is needed which will linearise Eq. (28). The technique
employed by this panel method, introduced by Bose[2],
is to replace the quadratic perturbation velocily terms
with products of the current (unknown} velocity ¢ and
the perturbation velocity at the previous time level §,
i.e. to assume that

a\® (o
ds )~ \Os
The linearised trailing edge condition implemented
1s now

e

5 (26)
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The unknown g terms are replaced by their numer-

o

ical analogues (second order)
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The application of the explicit trailing edge con-
dition involves only unknown quantities (in this case,
fi) on the aerofoil surface in an equation of the form

AN-—?J“N-: + AN-—I:"tN-»Z + AN-—zn“N
— Ay, — Agpty, — A, = RHSng (30)

Note that the strength of the shed wake panel ¢, is
not directly coupled to the solution through Eq. (27) in
this formulation. Instead is determined indirectly by
its influence on the aerofoil boundary condition, i.e.
through the coefficients C; w in Eq. {11). This makes
it possible to use any type of singularity to model the
wake without affecting the implementation of the trail-
ing edge condition, although it might then be neces-
sary to explicitly enforce the Kelvin condition.

The approximation in Eq. (26) relies on the as-
sumption that the perturbation velocities at the trail-
ing edge do not change rapidly with time, and so
Fe. (27) is less accurate with increasing rates of change
and time-step size. In such cases, sub-iterations are
performed within the same time level, the new values
of 7 being used to update the approximation ¢, un-
til the pressure difference is below some set tolerance,
typically 0.005 of the reference dynamic head. The
iterative process involves solving the matrix equation
Eq. (11) changed only by the current set of coefficients
fromn Bq. (30}, and can be stopped once AC),.,.,. 1s be-
low some preset magnitude,

It has been found that this scheme works for most
unsteady motions where the amplitudes and frequen-
cies of the motions are not too great. The scheme is
not convergent for all situations. At points in the solu-
tion where there are rapid accelerations at the tratling
edge point, more iterations are recuired to attain the
required difference in pressure, and in some cases the
solution locks before the required pressure difference
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is reached. It is sometimes useful to reset the coef-
ficients of the iterative process with a sub-iteration
using Eq. (24)), although after this the solution of-
ten locks in the same way. Doubling the precision
of the computations gives only a slight improvement.
Other more successful techniques for enhancing the
sub-iteration process are being sought. One candidate
which has not been sufficiently explored is adaptive
time-stepping. Reducing the time step size will always
make the approximation of Eq. {26) more accurate and
convergence may be improved if the time-step size is
reduced in proportion to rates of change of flow quan-
titles at the trailing edge.

Wake Shedding Parameter

The current method does not provide the velocity
exactly at the trailing edge or just off the trailing edge
which would be needed to determine the position of
each new shed wake vortex. Velocity calculation on or
infinitesimally close to the trailing edge is as accurate
as the interpolation/extrapolation scheme used to in-
terpret the singularities in the vicinity, To bypass the
lack of solution detail the average of the upper and
lower surface trailing edge velacities is taken as the
most representative of the time-average of the velocity
with which the newest wake point is convected during
the time-step it is generated. The wake doublet panel
created does not constitute part of a streamline. 1t is
assumed that the new vortex has followed a streakiine
to its current position (as computed by above approx-
imation) but that the direction of the panel does not
dictate the exact direction of flow off the trailing edge.
Trying to prescribe or solve for such detatl is inconsis-
tent with the order of the current method

aerofoil trailing edge

V4V, -~
(_.M_;_'___th) Cas l
previous wake point—/

new wake point

TFigure 4: Detail of wake shedding at aerofoil trailing
edge

The lack of detail in the wake shedding process
introduces the parameter ¢y to the method which is
defined as the fraction of the local velocity-convected
distance from the trailing edge at which the new wake
point is placed. The same type of indeterminacy was
encountered for the the PMARC code by Martin et
al.[5]. In the latter case, the optimum value of ¢

was sought by comparison with analytic results (Wag-
ner and Theodorsen functions) for a thin flat plate in
transient and oscillatory motions. Given that the lat-
ter are themselves approximations, this type of com-
parison is not entirely satisfactory as a calibration of
(w and another route is taken here.

More continnous representation of the shed vor-
ticity may remove the §, indeterminacy and it was
attempted to replace the doublet panel at the trail-
ing edge by a flat linear v panel in order to verify the
optimum {,,. This introduced an additional unknown
dv/ds which it was hoped would allow the solution to
determine automatically the center of vorticity within
the new wake panel. The result was an oscillatory feed-
back instability and further work in this direction was
abandoned. Another candidate approach was based
on the work of Grahamil7] using the complex-plane
solution for the flow off an infinite wedge corner as
a local solution at the trailing edge to determine the
strength and positioning of the shed vorticity. This too
was not taken to completion duc to difficulty in inter-
facing the local solution with the global panel method
solution and due to the prospect of poor extensibility
to three dimenstons. In general, it is not desirable to
use higher order singularity distribution or geometry
in the trailing edge region in order to preserve the sim-
plicity of the method and to allow direct extension to
a three-dimensional vortex lattice/panel method.

Fortunately, it hecomes apparent that the method
is, to a good extent, self-calibrating from the following
observation: as Ar is decreased the range of position
that the new vortex point can take and the strength of
the vortex both diminish. Therefore, as the time-step
is decreased (, becomes less significant. This seems
consistent within the framework of the time discreti-
sation since as Ar - 0 a continuous vorticity sheet
would result in making ¢, practically ineffective in
the limit (the shed vortex point would always coin-
cide with the trailing edge). Obviously, due to nu-
merical considerations (machine precision, vortex wake
stability, merory, CPU time) this limit can not be ap-
proached to the extent that would fully calibrate the
method, i.e. to the extent where ¢, variation would
have no effect at all on the results. Heowever, calibra-
tion results can be obtained with small enough A7 to
give the desired maximum deviation in the results for
a given change in £, so that larger time-step runs can
be used for longer simulations.

To show that (,, becomes less significant with de-
creasing Ar a series of runs were performed with
the NACAQ012 aerofoil undergoing one cycle of o =
5 sin{2k7) pitch oscillation in steady forward flight.
This was done for ¢, values of 0.30 to 0.60 in equal
increments of 0,10, repeating this series of calculations
four times, initially with Ar & 0.097 and halving AT
cach time {see Fig. 6). The difference between the
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solutions between successive values of {,, at the differ-
ent Ar clearly diminishes with decreasing Ar show-
ing that the effect of {, becomes less significant. The
sclution Chpy is used for the sensitivity analysis since
it is most strongly affected by changes in {, as seen
in Fig. 5. In this case, which exhibits a maximum
Cy =~ 0.030, reducing Ar from 0.097 to approxi-
mately 0.012 reduces the maximum change in solution
for A¢,, = 0.1 from 10% to approximately 1% of max-
imum Cpr. Assuming that the method converges to
the correct solution with decreasing A7 and that the
discrete vortex shed must lie somewhere in the middle
of the curve of continuous vorticity it is intended to
represent, using any ¢, in the range between 0.3 and
0.7 will yield a solution within a few percent of the
datum solution, even for Cyy which is sensitive to
variation.

The decreasing effect of {;, can only be exploited if
for decreasing At the method converges to one solu-
tion. The same set of runs used for the above analysis
are used to show the convergence characteristics of the
method. The Cpr results of the smallest Ar solution
is used as a datum and the deviation of the other solu-
tions from this is calculated within each {,, series. Dif-
ferent convergence characteristics are seen at different
values of (. In all cases, as expected, the smaller Ar
runs show smaller deviation from the datum, although
not with uniformity within the cycle (see Fig. 7). The
inability of the iterative Kutta condition to converge
at the ends of the cycle is believed to be the reason
for this non-uniformity and, on the whole, the method
tends to a single solution as Ar — 0.

To find the optimum {, for use with larger Ar
for each type of motion modelled a reference sohition
should be computed with Ar 5 0.01 and (o = 0.5.
Then, results at the desired Ar can be computed for a
range of ¢, values so that the optimum can be selected
by comparison with the reference run which is known,
from the above previcus discussion, to produce results
sufficiently independent of {,,. This calibration proce-
dure would also be applicable to the three-dimensional
extension of the current method. Alternatively, the
calibration may be bypassed by obtaining the solu-

tions with very fine time-step size and ¢, = 0.5.

Discussion of Results

Performance of the unsteady Kutta condition

Figure 9 compares the C, error at the trailing edge
with that of the linearised explicit Kutta condition of
Eq. (27). The Cp error is plotted against the strength
of the wake vortex shed during the time-step that the
AC),_ was exhibited. This essentially plots the er-
ror in terms of a measure of the degree to which the
flow is unsteady since the strength of the wake vor-
tex being shed is inversely proportional to the rate of

change of bound circulation (by the Kelvin theorem).
Therefore, it is apparent that Eq. {24) produces error
increasing in proportion to the degree to which the
flow is unsteady and that the explicit Kutta condition
of Eq. (27} performs significantly better.

Impulsive start at incidence

The transient response of the NACA0012 section
started impulsively from rest into constant speed for-
ward flight at o = 5° was computed. The results for
some values of {, are shown in Fig. §. It is appar-
ent that ¢, has a stronger effect on the transient Car
response. The €7 response approaches Wagner’s an-
alytic indictal response for a flat plate [1] which pre-
dicts a starting £, of 0.50. Perfect agreement is not
expected since the panel method includes the effects
of the time discretisation and of aerofoil thickness.

Oscillatory pitch motion

The NACAO012 section was used for a set of com-
putations spanning a range of & from 0.02 to 0.30
shown in Fig. 5. The upper limit is considered low
enough to avoid the regions of & where the validity
of the unsteady Kutta condition is questionable. The
NACAD012 section exhibits the collapse and reversal
of the C, loop at approximately k = 0.2 as predicted
by Geissler{d] among others. The time-step is kept low
in order to minimise ¢, effects with n,. = 400 used in
the computations. Since A7 is related to the number
of time-steps used by A7 == w/kn,., it nol constant
for the runs at different frequencies. This is most no-
ticeable for £ == 0.02 from the magnified effect of ¢, in
the C'yr response.

Wake convection sensitivity

In addition to recalculating the location of the wake
as the aerofoil moves (solid-body transtation and rota-
tion}, keeping the wake completely force-free requires
the calculation of velocity influence {u and v compo-
nents) at each of the current wake points from all
other wake vortices and aerofoil singularities. This
results in distortion of the wake and amounts to ap-
proximately 2Ny (N + Ny ) velocity influence calcu-
lations per time-step. Fach solution time-step a new
wake-point is created so Ny is incremented and the
computation is slowed nearly in proportion to NJ, .
Therefore it is desirable to reduce the portion of the
wake for which the distorting components of flow ve-
locity are applied, say for the Ky,q, vortices nearest
the trailing edge. Using the case of the NACA0012
section in 45 stnusold pitching motion it is evident
from Fig. 15 that the solution is relatively insensitive
to the calculation of the distortion of the [ar wake.
Reducing Ky results in significantly different wake

4.7



shapes (Fig. 16) but the effect on the solution is not
noticed until Kmae/npe &~ 1%. Multiple body prob-
lems and simulations where the nature of the motion
keeps the wake in proximity of the body may not be
eligible for this computational saving.

Euler method comparison

The steady-flow aspects of the method can be veri-
fied by comparison with analytic results, However,
for the unsteady aspects, such as the wake treatment,
it is useful to compare with another method which
solves for similar flow but which does not deal ex-
plicitly with the creation and convection of the shed
vorticity. The method of Gaitonde[3] is used for com-
parison, as it solves the Buler equations (inviscid, in-
compressible but rotational flow) so fluid rotation is
implicitly included. Unsteady solutions are obtained
using artificial compressibility and a moving mesh on
which a cell-centered finite volume scheme is imple-
mented.

Initially, the resulting vortex wake from the two
methods is compared to assess their ahility to capture
the How history. The vorticity is extracted from the so-
lutions of Gaitonde[3] for the & = 0.30 pitching motion
case. This is done only at the solution instants corre-
sponding Lo the quarter-phase positions of the pitching
motion cycle for the NACACGO12 section at the high-
est frequency compared (b = 0.3). The panel method
wake points are superimposed on the resuliing iso-y
contours in Fig. 14 with a graphical indication of the
sign and strength of the panel method wake cireula-
tion.

The comparison indicates that the Luler solver is
less capable of capturing and retaining the vorticity
generated by the aerofoil, especially beyoud five aero-
foil chord lengths downstream. Decreasing grid den-
sity and increasing cell aspect ratio further from the
acrofoil make it impossible for the Euler solver to re-
solve the wake as well as the panel method and it ex-
hibits appreciable diffusion of the vorticity, Further-
more, since this is a deforming mesh method, the fluid
hehind the aerofoil 1s sampled by a grid which moves
cyclicly through it as the trailing edge moves normal
to the direction of the onset flow. This means that the
walke is sampled successively by grid regions of varying
density. Loss of flow detail because of this grid varia-
tion and the numerical dissipation incorporated in the
method may be the main contributing factors to the
diffusion and loss of vorticity.

The difference in wake-capturing capabtlity does
not seern to significantly affect the agreement for ¢,
and Car seen in Fig. 12 where results are presented for
the oscillatory pitch motion cases. The €, agreement
is excellent with both methods predicting the drop in
hysteresis and the reversal of the €', loop direction
at & = 0.20. The agreement in gy Is good but de-

teriorates with decreasing frequency. This appears to
be because the two methods predict slightly different
steady-state solutions for dCys/da of the NACAQ0012
profile used. In order to gauge the agreement in a
way which eliminates some of the effects of the post-
processing (in this case, pressure integration around
the profile), C; distributions were also compared at the
quarter-phase positions of the motion cycle. Fig. 13
shows the almost identical pressure distributions, the
Euler solver capturing more detail of the C, variation
near the leading edge since over 90 points are used to
sample the profile as opposed to the 60 panels used by
the panel method.

Vortex interaction studies

The panel method was used to simulate the case of the
NACAG012 profile at o = 0° flying past a free vortex.
The interaction is simulated for the two cases {shown
in Fig. 10 and Fig. 11) of a vortex of positive and neg-
ative circulation of the same magnitude starting five
chord fengths in front and 0.10¢ below relative to the
aerofoil centre. The oscillatory characteristics exhib-
ited by the Cy, and Cy results during the interactions
indicate that the presence of the aerofoil wake damps
the influence of the vortex and that modeling the wake
15 important in the correct prediction of the pressures
during the interaction.

The linearised unsteady Kutta condition described
here tmproves significantly the pressure prediction at
the trailing edge for the simple transient and pitch-
oscillation motions without excessive computational
cost. However, improvement of the numerical imple-
mentation is needed in cases where the sub-iteration
process fails to converge.

Comparison of panel method results using the new
Kutta condition with the results of the cell-centered
moving-mesh Euler solver of Gaitonde[3} shows good
agreement between the two very different methods.
This establishes the ability of the panel method to
compute the unsteady incompressible flow about an
aerofoil section with accuracy comparable to a finite
volume method solving the Euler equations but in a
fraction (typically b%) of the computing time. Fur-
thermore, the panel method, by ‘fitting’ the wake
rather than capturing it (as the finite-volume method
does), is eapable of producing superior solutions for
the wake shape. This superiority is more apparent
at a distance from the trailing edge and is therefore
more significant in multiple-body problems. It does
not appear to be a factor in the current comparison
which involves the computation of flow about a single
aerofotl,
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The wake convection process, which is one of the
more computationally demanding aspects of the cur-
rent method, is more significant for the wake points
in the vicinity of the trailing edge and can be disabled
for the wake beyond a certain distance (typically 5% of
the motion cycle length) to reduce the computational
effort, without noticeably affecting the solution on the
aerofoil.

The effect of variations in the essentially ‘free’
wake-shedding parameter () which afllicts low-order
methods of this type, can be controlled simply through
reduction of the solution time-step size. It has been
shown that decreasing A7 nearly eliminates the of-
fect of ¢y, (allowed to vary within a reasonable range)
on the solution. This is true even for the aerofoil
Cyr which was shown to be especially sensitive to (.
Therefore, selection of the optimum ¢, for larger time-
step calculations (for computational efficiency) can be
selected by comparison (of a sample of the motion
modelled) with a very fine time-step calibration so-
lution.

With these improvements in the most critical ar-
eas of the Kutta condition and wake shedding treat-
ment, the type of low-order singularity method de-
scribed here promises to provide useful solutions for
the unsteady potential flow about arbitrary three-
dimensional geometries with relatively small compu-
tational cost. For unsteady flows in particutar, the
fact that the method only requires quantities on the
body and wake surfaces makes it very attractive for
more complex motions where surface deformations are
involved.
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