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' ERRATA 

Eqn. (6) should read: 
. t iwf t 
lWfl + Z,e 2 

iwf(l-ia)t iwf 3(l+ia)t 
+Z3e 3 +Z,e ( 6) 

= 

p.5 4th line after eqn. (8): for "experimental" read "exponential" 

Fig.~ The legend should read "A 1 = 0.05, A2 = 0, A3 = 0.05" 

Fig.l3 The three sets of curves are for \f = 0, 0.05, 0.20 respectively. 
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A MODAL APPROACH TO GROUND RESONANCE 

K.H. Griffin, College of Aeronautics, Cranfield, U.K. 

1. Introduction 
Nearly forty years ago Coleman, in Ref. 1, derived the basic equations for 

the elementary treatment of ground resonance by considering the motion in its own 
plane of a rotor with rigid blades hinged at their roots as illustrated in Fig.l. 
Many other workers have built on this contribution. 

For the n-bladed rotor (n>3) there is one equation of motion corresponding 
to each ~lade and three overall equations for the helicopter as a whole (fore/aft, 
lateral and rotational). Coleman transformed the blade equations into two 
linear and one rotational one together with (n-3) equations involving 
combinations of blade motion which have neither iinear nor angular momentum. 
These (n-3) equations and the two angular equations all involve stable motions, 
although it is through non-linear terms in the angular momentum equations that 
the wor·k done to drive the ground resonance oscillations is transmitted. Only 
the four linear momentum equations control the ground resonance motion directly 
and it is with these equations that most work on the subject has been concerned. 
They contain two important parameters: la and Af depending respectively on 
blade root and undercarriage damping. Coleman derived his equations in complex 
variable form and the condition for entering and leaving the self-excited range 
was the vanishing of the determinant of the coefficients of these equations. 
The real part led to an equation in AfAS - t'he "damping product" - and the 
imaginary part to one in Af/A

13
: 

In a recent paper (Ref.2) Price makes a slight but significant modification 
to the determinant which has the effect of presenting two alternative equations, 
one of which involves Af(undercarriage damping) only. This enables Price to draw 
conclusions, particular y about Af• in a more convenient and accessible form than 
in the original work. The present paper returns to the original Coleman equations 
and considers their physical significance expressed in the relationships between 
hub and blade motion. 

2. Basic Equations of Motion 
Coleman uses the ~omplex variable Zf = Xf + iyf to describe the 

displacement of the hub in the rotorplane from its position of static equilibrium 
He·transforms the rotorblade displacement angles Sk into a series of complex 
variables ~i of which only ~ 1 appears in the linear momentum equations. Cole~an's 
~~ in fact represents the displacement from.the rotor hub centre of the centre 
of mass of the blade system. In this paper it will be called Zg = xg + iyg ; 
Zf and zg are illustrated in Fig.2. Coleman's equations for the relation Detween 
the blade and hub motion may be written as 

zg - 2iwzg - w2zg + Ai3(ig-iwzg)+(Atw2+A2}Zg + Zf/2(l+r2/b 2) = 0 (1) 

where w is the rotor angular velocity, A1 = ab/(b 2+r2) and is a non-dimensional 
parameter representing the blade hinge radius, whilst A2 "' Ksfffib(b 2+r2 ) and 
A "' 8 /mb(b 2+r2) respectively give the non-dimensional blade-root spring 
s~iffn~ss and damping constant. Equation (1) may be thought of as governing 
the blade response to any imposed hub motion. The overall equations of motion 
are 

2(l+r2/b 2)A32g + zf + AfZf + wr2 zf +(llmYf+AAYf+Aw/zf) : 0 (2) 
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The coefficients of ~ and its derivatives arise from the differences 
in fuselage inertia, damping and stiffness properties between the x and y 
directions and will be ignored for the moment, as in the greater part of the 
present discussion the fuselage will be assumed to give isotro ic su ort to 
the rotor. mf, Bf, Kf are the mean (between x andy proper 1es 1ner 1a, 
damping and stiffness constants for the fuselage. M = mf + nmb, where mb is the 
mass of a single blade, A,= nmb b2/2M(b 2+r 2 ), wr2 = Kf/M, Af = Bf/M 

3. Modes of Motion 
Equations (1) and (2) are linear differential equations in Zf and zg 

with constant coefficients. The only possible solution is of the form 
z ~ exp(kt) where k may be complex. It is convenient to modify the notation 
and work' in terms of exp(iwft) where Wf may be complex, but for much of the 
motion is real. In this case the solution is a circular whirl, while Wf 
complex gives an equiangular spiral. Equations (I) and (2) can then each be 
regarded as ~iving an express1on for the ratio of Zq to zf. One may write 
s = 2(b2+r )zg/b 2Zf when (1) and (2) become respective y 

s = F(wf,w) = -Wf 2/ [(wf-w) 2 - iA 13 (wf-w)-(Alw 2+A 2 ~ (3) 

s = G(wf) = ~wr/wf) 2 - 1 + iAf(w/wfiT /A 3 (4) 

The parameter s describes the mode of the motion, namely the relationship 
between zg and Zf as shown in ~2. Equation (3) is quite general and displays 
the relat1on between blade and hub motion for any circular or spiral whirl. 
Equation (4) shows whether or not such a motion can be supported by the 
undercarriage forces. 

It is easiest to see the inter-relation between the two conditions in 
the undamped case \ 8 =\f = 0. Here for wf real (circular whirling) F and G 
are both real and so the hub and the blade system mass centre move round 
concentric circles sharing a common radius. In Fig.3, plotted for a 
particular value of w, the solid curve is that for F and the dotted curve that 
for G. The points A, A' where G = 0 are for Wf = ±wr, the natural frequencies 
where the blade and hub oscillate in unison on the undercarriage. At high 
positive and negative whirl velocities s + -l/A 3 and the mode is controlled 
entirely by balance of inertia forces; the large values of G whenwf is small 
indicate that the blade'inertia forces are low and are balanced by very small 
fuselage motions and resulting spring forces. The solid curve for F with value 
-1 at high whirl velocities shows that in that state the blade system mass centre 
stays still because any movement would generate inertia forces too large for the 
blade restoring forces to balance. The zero for F at Wf = 0 shows that at low 
whirl velocities the rotor system behaves "solidly"; while the two vertical 
asymptotes correspond to the natural frequencies of the blades on their hinges, 
modified by centrifugal action and compounded with the overall rotor rotation. 

4. Solutions for Whirling Motion 
Fig.4 shows how F changes with rotor speed for a case where A2 f 0. 

Whenw= 0 (Fig.4(a)) there are four points where F and G intersect, that is 
where a mode of feasible motion exists satisfying both equations of motion. 
These occur at two pairs of equal and opposite values of Wf• corresponding to 
whirls in opposite directions: one pair (of lower velocity) gives positive s 
(i.e. blade system mass centre rotating with larger radius than hub) while the 
higher velocity pair give s < 0, lsl>l and so the blade CM rotates with small 
radius on the opposite side of the centre of whirl from the hub. Figures 4(b) to 
4(h) follow the effect of increasing rotor velocity wand show that there are 
always two motions for which s is negative. One of these corresponds to negative 
Wf (whirling in the opposite direction to rotor rotation) and this is the only 
such motion: as w increases lslfor this mode reduces to values less than unity. 
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The other motion, always that for the highest value of wf,has s < -1. 

It is the other two intersections which provide the interest in the 
motion and they ~recontrolled largely by the vertical asymptotes ofF, the 
natural frequencies of the blades in their rotating system. As w increases 
from zero, the whirl in the same direction as w increases its velocity and 
decreases s(" zg/Zf) while the "opposite sense" whirl slows down and s increases 
to large values (i.e. small hub motion). Fig.4(c) shows the case where the 
whirl is just changing direction. The value of s at Wf = 0 appears to be 'lost' 
but is in fact infinite (Zf = 0). This corresponds to the rotor velocity w 
at which Coleman notes that a constant lateral force can excite blade motions. 
Fig.4(d) shows the situation where both these velocities are getting closer 
together'and in 4(e) they coalesce. This is the beginning of the self-excited 
range, for as 4(f) shows for higher values of w these two motions have 'disappeared". 
The disappearance, of course, is only apparent and the solutions exist with 
conjugate complex values of wf, one being an in-going (stable) spiral and the 
other the out-going spiral wh1ch causes ground ·resonance. Figs. 4(g) and 4(h) 
show the reappearance of the "lost" motions above the self-excited range of 
rotor velocity. It will be noted that in this high velocity range all motions 
have negatives. A considerable simplification of the equations occurs when 
~, = 0. F then becomes purely a function of (wf/w) and the effect of increasing 
w is to spread out the horizontal scale.of the curve for Fin Figs. 3 and 4. 

5. Self-excited Motion 
Up till now we have considered only the circular whirling motion (wfreal). 

In order to complete the solution over the whole range of w we must look at 
complex values of Wf· It is convenient to replace Wf by Wf(l-ia). This implies 
components of veloc1ty as in Fig.5 giving a spiral angle (tan· 1 a) and still an 
angular velocity Wf about the· spiral centre. For a given value of a the real 
and imaginary parts of s can be plotted against Wf as shown in the perspective 
sketch Fig.6. Fig.6 is plainly of little value compared with Fig.4 so far as 
understanding the phenomena are concerned, but if the space curves of F(wf) and 
G(wf) are projected on to the (sR• si) plane diagrams like Fig.? result. It 
must be remembered that though Fig. 7 shows two apparent intersections between 
F and G they will in general occur for different values of Wf and therefore are not 
intersections in the full three-dimensional relationship (Fig.6). However if 
~, = 0 (no blade root stiffness) ·F is a function of (wf/w) and therefore 
merely by choosing w (a ~ifferent value for each of points A and B of Fig.?) 
e?ch of A and B can be made into true intersections of F and G and provide true 
solutions for the motion. Similarly when~, F 0 variation of w will produce 
different but similarly shaped curves F, and intersections can still be found. 

Thus Fig.? shows that for a given value of a (approximately the spiral 
angle) there are two values of w for which such a spiral motion is possible. 
When a is small (nearly circular whirling) the two lobes ofF are of very large 
radius and G is inclined at a small angle to the sR axis. As a increases the 
lobes ofF reduce in size and the slope of G increases, as illustrated in 
Fig.8. If a is reversed in sign both F and G are reflected in the s axis and so 
the values of wf and w at which intersections occur are the same. Thus to every 
out-going whirling motion there corresponds an ingoing whirl, both motions having 
conjugate values of s as in Fig.9. Fig.8 shows that there is only a limited 
range of values of a for which solutions are possible and the sequence of 
crosses illustrates the variation of the mode shape parameter s through the 
self excited range, starting from A and proceeding through B (at the value of 
rotor velocity for which exponential spiral growth is most rapid) to the end of 
the self-excited range at C. 

With Figs. 4 and 8 ~e ~re abl~ to ~race the development through all 
values of w of the four wh1rl1ng mot1ons 1n terms of their mode parameters (sl 
a~gular velocities (Wf) and their spiral angles(tan-la). In Fig.lO the 
h1~tory of s against w is plotted. It will be seen that the pair of modes 
wh1ch couple together may be described as taking the opportunity of moving out 
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of the real plane in order to change the sign of their real part. If ~ 
remained wholly real it would have had to pass. through the value zero, implying 
zero blade mass centre motion while the hub moved - an unlikely situation . 

6. Considerations of Stability • 

Now it must be stated at this point that apart from introducing the 
mode parameter ~ none of the argument so far has produced any further information 
than is contained in Ref. 1. However it is possible to follow the complete 
motion by combining together at any value of w the four solutions (r:; 1 , wf ), 
;~, ,wf,), (r:;,,Wf,)& (~ •• Wf 4 ). Thus outside the self excited range 1 

iwf 1 t iwf2 t iwf 3 t iwpt 

} zf = Z1e + z,e + z,e + Z4e 
( 5) 

iwf1 t iwf, t iw t iwf• t 
zg = r:; 1Z1e + r:;,Z,.e + r:;,Z,e f, + ~4z,e 

and in 

If one considered the motion resulting from the initial state of the hub 
at rest but displaced slightly, i.e. 

(7) 

then that motion may be calculated and examined. It is clear from Fig.4 that 
away from the self-excited range the values of r:; 1 •·· ~. and wf ••• wf• are 
well separated, and so the equations for Z1 ••• z. found by substituting from 
(5) in (7) will be well conditioned, and the values of Z1 ••• Z4 will be of 
similar magnitude to Z ~The motion of the system after release will be a 
not necessarily simple0combination of four circular whirls of different angular 
velocities, and a typical such result is shown in Fig.ll(a). In the self-excited 
range, one of the basic components of the motion will be an outgoing spiral whirl 
and will obviously lead to motion of the type shown in Fig.ll(b). A point to be 
noted though, is that when the self-excited range is being approached but the 
response is still nominally stable (Fig.4(d)) there are two component motions 
with similar value of ~i and very similar values of wfi' This means that the 
columns of coefficients of the corresponding Zi in the equations for Z1 ••• z, 
will also be similar. Thus the equations will be ill-corlditioned and the two 
values of Zi will be large and of opposite sign. These two motions win "beat" 
together and give rise to response of the form shown in Fig.ll(c). If the 
magnification of an initial disturbance is sufficient then this is likely to be 
as destructive as the motion in the formal self-excited range. 

7. Motion with Damping 
The full expression for F and G (with Wf where necessary replaced by 

wf(l+ia)) may be evaluated for given values of the parameters A1, A2 , A9 for 
different values of the damping parameters AS and Af and of the spiral angle 
parameter a. It may be noted that this approach completely separates the 
effect of the two damping constants. Fig.l2 shows the effect of AB and a on F 
whiie correspondingly Fig.l3 shows the effect of Af and a on G. It will be 
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seen that the general effect of damping on F and G is similar to that of a 
in the undamped case. Thus increasing As tends to shrink the lobes of the 
curves for F and Af tends to spread the curves for G. It follows that both 
the damping parameters contribute towards making impossible the existence of 
an outgoing spiral solution. It is clearly possible, if tedious, to use 
such a pair of plots to predict the complete response of the system in terms 
of the four sets of values of Wf• s and a at every value of w. However as is 
usual in such self-excited systems it is simpler to find the boundaries of the 
self-excited range by extracting the solutions with a = 0 which form the 
boundary between damped and unstable motion. The proviso at the end of the previous 
section about the region just outside the self-excited range should be noted 
here, t,hough. 

Fig.l4 shows the results of such a plot for the case At= 0.04, 
A2 = 0, A' = 0.02, AS = Asw· The reason for working with As rather than 
AB is that when A2 = 0 the function F remains in terms only of (Wf/w} rather 
than of Wf and w as independent variables. Thus for a given value of Af the 
values of w at the boundaries of the self-excited range may be plotted against 
As· It is then simple to transfer pairs of values of As and w to the · 
equivalent values of AS and w. Both plots are shown 1n Fig.l5. It is then 
possible, as many others have done, to plot Af and AS for stability as in Fig.l6. 
However such a plot gives no new information and does not justify a new approach. 
It is much more convenient matter to look at Fig.l4 to see whether or not a 
particular combination of Af and As will prevent ground resonance. It is easy 
to produce sets of cu~&s ofF aga1nst Ae for different values of At, and 
transparent overlays of G against Af for different values of A,. These may 
then be rapidly compared to see whether or not self-excited oscillation is 
possible. The effect of A2 may be allowed for by using At' = A1 + A2/w2 

iterating on values of At' once the value of w at the centre of the self-
excited range has been initially located. 

8. Support Conditions Other than Isotropic 
The convenience of the isotropic support condition so far considered is 

that it gives equation (2) polar symmetry, a property always possessed by (1). 
Naturally when this symmetry is lost from (2) the resulting analysis must lose 
some of its simplicity. If the asymmetric terms in (2) deriving from &n etc. 
are included then the motion may no longer be defined in terms simply of 
circular and spiral whirls. It is possible to write 

iwf(l-ia)t -iwf(l+ia)t 
Zf = e + ye (8) 

where y is a constant. Such a motion may be most clearly described when 
a= 0, when it is an elliptical whirl. If y is real then the axes of the ellipse 
are parallel to Ox and dy, while complex values of y give an ellipse inclined to 
those axes. The effect of a is to impose an exp~~al growth or decay on the 
elliptical motion. It follows from (3} that corresponding to expression (8) for 
Zf will be blade motion defined by 

· iwf(l-ia)t -iwf(l+ia)t 
2(l+r 2/b 2 }zg = F(wf'a)e + yF(-wf' -a)e (9) 

It is now possible to define functions Gx(Wf}, Gy(Wf) as in (4) but using the 
appropriate x- andy- properties. Furthermore if tne following definitions are 
made: rl - J r. - il F+ = t:(wf,a,w) + F(-wf,-a,w1 /2, F- = t:(wf,a,w}- F(~f,-a,w~/2 

( 1 0) 
the condition corresponding to F = G in the isotropic case becomes 

( 11 ) 
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For the case of unidirectional support (Yf = 0) this becomes F+ = Gx and 
shows great similarity with the isotropic case. As it stands equat1on (11) 
does not show the separation between rotor and fuselage properties achieved 
until now. However it may be noted that the values of F in the range wf < 0 
are always much smaller than those for positive Wf· If then F(-wf,-a,w)is 
neglected compared with F(wf,a,w) equation (11) reduces to 

F = 2GxG/(Gx+Gy) (12) 

If the undercarriage has similar damping ratios in the two directions then 
the right hand side of (12) does not differ greatly from G, and damping combinations 
to close the self-excited range are little different from those of the isotropic 
case. Figures 17 and 18 show F+ plotted for the cases corresponding to 
Figures 3· and 7 respectively. 

9. Conclusions 

The phenomenon of helicopter ground resonance has been examined by 
looking separately at the equations linking the rotor motion to that of the 
hub and at those governing the overall vehicle motion. The conditions imposed 
by the first set of equations, the consequences of which are expressed here 
by function F, show two frequency bands with rotor motion large compared 
with that of the hub, at angular frequency ranges one below and one above 
the rotor angular velocity. These two frequency bands correspond effectively 
to the natural frequencies of the blades as modified by the centrifugal and 
Coriolis forces. It is the motion in the lower of these frequency bands only 
which is able to give combinations of rotor and fuselage inertia force which 
can be balanced by the undercarriage reactions. 

The procedure of keeping separate the internal and overall equations 
of motion has the advantage of showing separately the effects of rotor and 
undercarriage damping and their relative effectiveness in any condition. The 
procedure may be directly extended to the case of the rigid-rooted flexible­
bladed rotor by deriving the equivalent of equation (1) replacing the blade 
angles Sk by normal coordinates of the blades taken with their corresponding 
natural modes. A different function F results but with similar characteristics. 
For more realistic representation of the fuselage motion general equations 
corresponding to (2), but involving all the other fuselage displacements, may 
be written and solved i~ terms of Zf and Zg to give response conditions 
corresponding to G. These may again be compared with F, which needs no 
attention. 

Finally, one may return to Figure 4 which shows the development of 
response in the simple undamped isotropic case. Ground resonance may be 
seen as the inability of the helicopter, in a limited frequency band, to 
match its rotor and overall characteristics without recourse, as it were, 
to spiral motion. 
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