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In the present study, the three-dimensional, non-linear, aeroelastic stability of a
helicopter rotor blade when subjected to harmonic parametric excitation is
investigated. The analysis is conducted using Floguet’s theory for the stability of
periodic systems. Using a square-wave (on-off) control law with frequencies of 3, 4
and S/rev, the stability margins of a “smart” hingeless blade incorporating a
harmonic parametric excitation device under development at the National Research
Council of Canada are obtained for the hover condition and compared with a
baseline case. The results indicate that the stability of the periodic system is greatly
enhanced when the actuation is performed. The analysis demonstrates that
significant shifts in the modal frequencies as well as the damping of the system
result from actuation, suggesting the feasibility of tailoring the forced frequency
response of the blade with such a device.
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PO Matrix of periodic coefficients,
transition matrix solution
R Rotor radius
3 Time
T Period of actuation
u, v, W Blade extensional, lead-lag and
flap bending displacements
(alongx, y, z)
U Matrix of non-rotating eigenvectors
v; Rotor induced velocity
X Wz Undeformed blade coordinate system
(x is the elastic axis)
X Vector of generalized perturbations
ﬁpc Pre-cone angle
7 Lock number, 3 pwaCR/ m
n < Principle coordinate system of
the blade cross section
g Blade pitch angle
K Dimensionless torsional rnigidity
due to “smart” spring
A Eigenvalues of the transition
matrix
AL A Dimensioniess bending stiffnesses
due to “smart” spring
Hoos Higsr Moy, Dimensionless radii of gyration
due to “smart” spring
2,0 Stmctral mass density, air density
o Rotor solidity, Bc/7R
6.6, Torsional displacement, tforsional
displacement at steady-state (irim)
condition
774 Azimuth angle
o,& Frequency, damping of the
acroelastic mode
w2 Matrix of non-rotating eigenvalues
AR squared
Q Rotor spin velocity
Yy Derivative with respect to x
(" Derivative with respect to f or I
(M) Non-dimensionalized quantity
Subsctipt 58 Refers to “smart” spring

1.0. Introduction and Background

Presently, two types of helicopter rotor

configurations are manufactured by the rotorcraft
industry. The hingeless blade, in which the flap
and lead-lag hinges are absent, and the more
mechanically complex configuration of the
articulated blade with the flap and lead-lag
hinges. The hingeless confignration is of
particular interest due to the fact that it affords an
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increased comtrollability. However, due fo the
nature of its configuration, a hingeless rotor can
be easily susceptible to instability problem. This
problem is caused by the non-linear coupling
that occurs between the flap, lead-lag and
torsional motions of the cantilever blade. The
strong coupling of these motions make the
analysis of the hingeless rotor a complicated and
important subject.

This paper presents the results of a study to
develop and simulate the behaviour of a “smart-
hingeless helicopter blade”. The spectrum of
loads associated with the non-homogeneous
forcing loads was tuned by superimposing a
harmonic system on the rotating frame. The
Individual Blade Control (IBC) concept
pioneered by Kretz (Ref. 1) and Ham (Ref. 2)
was used in this approach. The IBC allows the
control of a broad range of frequencies by using
actuators installed either on the helicopter
swashplate or individually attached on the
blades. In this way, using a number of control
subsystems, one may coniro] a number of modes
of vibration introduced during the operation of
the aircraft. The IBC method is very appropriate
for situations in which each blade has its own
characteristics. By synthesizing 2 suitable
comntrol system on an individual blade, the modes
of vibration occurring on that particular blade
can be minimized leading to reduced loads
transferred to the helicopter airframe.

Two strategies are available in connection
with the use of the IBC approach. The first one
involves the use of embedded adaptive materials
in the composite construction of the helicopter
blade. This is intended to induce strain
deformations, which are controlled externally.
The strategy allows the possibility of achieving
special features of the application of distributed
control theory, such as superior robustness. In
addition, it has the advantage of being smoother
from the aerodynamic point of view. However,
several studies have shown that this strategy
overestimates the capability of the adaptive
materials to induce the necessary strain
deformations under typical helicopter operational
loads. This leads to the utilization of the second
strategy, namely the lumped paramefer control
approach which was initiated by Spangler and
Hall (Ref. 3). This approach is based on the idea
of controlling some segment of a helicopter
blade using smart actiators. To date, the most
accepted solution using this approach has been
the use of a “smart flap” by installing adaptive
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actuators at the flaps on the trailing edge of the
helicopter blade. Amnother idea bas been to use
adaptive actuators to deform the airfoil shape to
actively control rotary wing characteristics such
as: dynamic stall, blade vortex interaction and
shock. However, an interesting alternative, on
which this paper is based on, was introduced by
Nitzsche, Lammering and Breitbach (Ref. 4).
According to this concept, by actuating the
“smart” spring, an Individoal Blade Control
device developed at the National Research
Council of Canada, implemented at the blade
root, one may alter the aeroelastic stability of the
Totor.

2.0, Governing Differential of the Main
Rotor

The main objective of this study is to
investigate the aeroelastic stability of the rotating
blade system undergoing parametric harmonic
excitation using the “smart” spring that modifies
the impedance of the blade structure (Ref, 5). As
an initial attempt only hover flight conditions are
congidered. Moreover, the main rotor is modeled
as a uniform, long, straight, slender,
homogeneous isotropic beam with a constant
axial twist for which the offsets between the
tension, elastic, mass and aerodynamic axes are
negligible,

Using two complimentary methods: (1) the
variational method based on Hamilton’s
principle, and (2) the Newtonian methed,
Hodges and Dowell derived the non-linear flap-
lag-torsion equations of motion of a twisted non-
uniform rotor (Ref. 6). Later, Hodges and
Ormiston simplified these equations for a
uniform rotor blade and investigated the
associated stability problem (Ref. 7). These
simplifications reflect the fact that no chord-wise
offsets are assumed to be present between the
elastic, mass, tension, and acrodynamic centers
on the blade cross section. Moreover, the
unloaded blade has no pre-twist along the axial
direction. The main parameters influencing the
stability were found to be the structural coupling
between the flap and lag bending as well as the
torsion stiffness.

The blade elastic displacements considered
are the axial #, the lead-lag bending v, and the
flap bending w, and the twist ¢ (Figure 1). In
the derivation of the equations of motion, an
ordering scheme based on the restriction that the
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squares of the bending slopes, torsion
deformation, chord/radius and thickness/radius
ratios were small compared to unity was adopted
according to Hodges and Dowell (Ref 6).
Finally, the model can be simplified by solving
for # in terms of the local tension, and assuming
that the radial displacement of the rotor blade isa
purely geometric consequence of the transverse
bending deflections of the blade.
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Figure 1: Blade definitions (Ref. 17).

It should be noted that such an assumption is
valid only for sufficiently large values of
dimensionless radial stiffness,

The following three equations for v, w, and
¢ can be derived (Ref. 7):

- "’?2 (& - xZ)]r —2mQv [k )

A‘-[EL - (EL —EI_,.)Sinz(ER g)]vtm

o

i

+(EL, - EI,}

+(Er, - EIy.)[—siu(ZER agv)' + cos(zmﬁ)(gf'w”)"]

—2mQp = 2mQ (v + wi )ale + (- Qv) = L,

_.”%z[w’(ﬁz - xz)]' - ZmQ(w'j:ﬁdx )'

+{ 2, +(B1 - E1, Jsin*(®6) "

+{EI, ~ EI,.)MSin(zma) o @)

+(8, —Ef,~}[°°s(m9)(¢v")” +sin(zme)(¢w~)"]

2mQB o+ mi =L, —mQ g x

—"’ngkj [#(R - x”)]’ — G+ mke 7
QK * ~k, Wcos(26) @)

+(EI:. - E[y.)l:{w”z - v"z)f-i-wn--%--gj[--El + v cos(2§R 8):'

= M, - mO¥(k, "~ km’)i'f%f)«



where R is a flap-lag structural coupling
parameter that can be assigned any arbitrary
value between 0 to 1. This is an approximate
representation of the fact that such a stractural
coupling is dependant on the relative stiffness of
the blade segments in-board and out-board of the
pitch bearing.

The aerodynamic loads applied to the rotor
blade wused in this stdy arc based on
Greenberg’s extension of the Theodorsen’s
theory (Ref. 8). This model is valid for a two-
dimensional airfoil undergoing sinusoidal motion
in pulsating incompressible flow. The basis of
this formulation is strip theory in which only
velocity components in the directions
perpendicular to the spanwise axis of the blade
influence the aerodynamic loads. A quasi-steady
approximation of the unsteady theory for low
redoced frequencies is employed, in which the
Theodorsen lift-deficiency function is taken to be
unity. The classical blade element momentum
theory is used to calculate the steady inflow for
the rotor. The aerodynamic loads are, thus,
expressed as:

L= Pt -0 Qe (04 4)

@
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where v; is the induced inflow velocity that is
taken to be steady and uniform along the blade
radins and equal to the value of the non-uniform
inflow given by blade momentum theory at 0.75
radius. The value of the blade angle at that
particular position is equal to the pitch angie plus
the equilibrium elastic twist at 0.75 radius.
Thus:

Vl ==
[ 12 (7
sg,n[9+ ¢,(o.75R)]QR%"[ 1+;6-|9+ #,(0.75R) - 1}

The non-linear, equations of motion with
variable coefficients (Eqs. 1-3) are solved by
Galerkin’s method. To this end, once these
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equations are appropriately non-dimensionalized,
in order to apply Galerkin’s method, the {flap,
lead-lag and twist displacements are prescribed
as a series in generalized coordinates and mode
shape functions:

V=SV, ©
W = S ), (),

e

4= iww@@

where the non-dimensional quantiies defined in
Eq. 8 are:

v=2, W= ®

V:Q’ fz

kS

= i
R R’

The assumed comparison functions,

¥, (%) = cosh(f X)—cos(f x)
—a [sinh(f 7)—sin(B %)] (10)
@ (%) = 2sin(z %)

are the non-rotating, uncoupled natural modes of
a uniform cantilevered beam for which the
constants &, £, and y, are tabulated (Ref. 9).
Substituting Eq. 8 into Eqs. 1-6, and considering
the expressions shown in Eq. 10, yiclds 3NV
equations of motion in terms of the generalized
coordinates ¥, W, and ¢ 7> where N is the

number of natural modes of the uniform beam
retained. The resulting non-linear ordinary
differential equations of motion are linearized for
smail perturbations about an equilibrinm or trim
condition. To achieve this, the generalized
coordinates were decomposed into steady-state
equilibrium quantities and small perturbations as
follows:

viv)=V,+arv(y), (11)
W)=y, + AW (w),
QJ(W) =, + Ad)f(‘z”)

This procedure led to two sets of equations
of motion. By substituting the steady-state
equilibrium quantities of the generalized
displacements into the non-linear equations of
motion, a first set of non-linear algebraic
equilibrium equations was obtained. The second
set of equations was available by substituting
both the steady state and perturbation quantities
of the generalized displacements into the original
equations, subtracting the eguilibrium equations
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obtained above, and neglecting all the non-linear
products of the perturbation quantities. A set of
3N linear differential equations on the
perturbation quantities for which the coefficients
were functions of the equilibnum solution was
obtained, The latter equations define the blade
perturbations about the equilibrinm or trim
displacements:

(M) &}+[c) 2} +[x}x = {0} (12)

where the matrices are defined by Hodges and
Ormiston (Ref. 17).

It is desirable to reduce the order of the
system by transformation to modal coordinates.
The real-valued, free-vibration -eigenvalue
problem associated with the non-rotating blade
was solved:

[M.Ju]ele)=[x.JU] (13)

where the subscript s is applied to the
corresponding matrices without the acrodynamic
contribution. Hence the stability of the perturbed
motion about the equilibrium condition is
determined by the cigenvalues of the square
matrix of dimension 2m:

55 _[ 0 I ]f
¥ |-Muky -MruTeu || ¥ (14)

where m is the number of modes retained and A7
1s the diagonal matrix:

[T [m]w) =[] (15)

Another consequerice of coordinate
transformation X =UX is that only the
eigenvectors of the modal matrix U that
correspond to the desired frequencies can be
selected. For the present study, N=6 and m=4
(including the first lead-lag, first and second flap,
and first torsion eigenvectors) were used. The
aerodynamic terms in the mass matrix known as
the apparent mass were of a smaller order of
magnitude and thus neglected in the present
analysis, i.e. M = M.
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3.0. Hingeless Helicopter Rotors as “Smart”
Structures

As it was noted carlier, due to the nature of
its configuration, the hingeless blade can be
susceptible to instability problem. This problem
is caused by the non-linear coupling that occurs
between the flap, lead-lag and torsional motions
of the cantilever blade. To improve on the
aeroelastic stability of the blade it is suggested
that “smart” materials are introduced at desired
locations along the blade. When actuated such a
“smart” material will act as a “smart” spring
affecting the cross sectional characteristics of the
blade. The infreduction and harmonic actuation
of the “smart” materials mecessitates a proper
modification of the equations of motion
developed by Hodges and Dowell (Ref. 6) in
order to model a “smart” blade. This is
accomplished by defining the flap, lag, and
torsion stiffnesses as well as the radii of
gyrations of the blade cross section as functions
of the distance from the hub along the blade.
Next, these functions are incorporated in the
application of the Galerkin method to obtain the
root loci of the perturbation equations, which are
used to investigate the stability of the system.

3.1. Governing Differential of the “Smart”
Rotor

The harmonic actuation of the “smart”
spring that can be interpreted as a harmonic
parametric excitation introduces a periodic
change in the matrices defined in Eq. 12. A
variation in the amplitade of these matrices,
according to a square-wave form, will be added,
representing actuation and de-actuation of the
IBC system in an on-off configuration. Gver one
normalized period of the blade rotation, 27, it
will be assumed that the comtrol system is
activated at a frequency of n/rev. Hence, for a
controlled blade the equations that define the
blade perturbations about the trim displacements
are:

([ [} + )+ [ac]{A] (16)
+([K] +{AK]){X} = {0}

where the new additional matrices due to the
harmonic parametric actuation of the “smart”
spring are defined by Solaiman and Afagh (Ref.
10) as:



ms, 0
[a]=] 0 w8, 0 ’
0 0 u’s,, (17
’-A(ju AC’IZ ACIS
[aC]=|aC, AC, ac,| .
|AC, AC, AC, (13)
—AKH AK\! AKH
[AK]= AKZ! AK& AKz; >
|AK, AR, AK, (19)
for 2;Z <w<2j+DZ, j=0,12..,n—1
n n
and
[an]=fac]=[ax]=[0] (20

for 2j+DE<w<2j+DT j=012. n=1
n n

The elements of [AC] and [aK] are given,
respectively, by:
_ ¥
AC, = zng(an —F:;:H)I’:u
— X
AC, ==2m (B0 + 2 F, )
AC, = AC, = AC, = AC, = AC, = AC,, =0
- N
AC, =2m, (ﬂchn]l + EF.::&;DVM)

21
and
AR = [Age = (A, — AL )sin* (RO))A . + (D, —5.,.)
- {Azu - Aiu)é Kw;ﬁ"sin(z‘}i 9)
AR, = (Azz - Alx) Sin(zzsﬁg) A.-_n
+{A, —»A,.)éK‘h«ﬁ” cos{2M4)
AR 5 ={A 1= AL)S K W cos(256) —,,5in{2916)]
ARy = (Ao Ah)sin(?_:’w) A,
+ (Ah - AI_)ﬁ:ngéu 005{2919)
ARy =D, +HAL+ (AL~ A s (RE) A,
(A=A, )éK#gﬁush(Z!R@)
8Ky = (A — AT KV, cos(2RE) + T, 5in(206)]
A=l (22)

N

AR =(A,— A, )‘__sjlxﬂ[w;t cos(2RE)— ¥, sin(2R E)]
N

AR =(A,, — Au)gK“[Vﬂ cos(2RE}+ W, sin{2R4)]

AR =pu KN, +x, A+ (,uz_z —J.uuf)::os(518)5w2
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where the non-dimensional beam properties and
the integrals of the products of the basis
functions found in [4if], [AC] and [AK] are :

2
£ 3 o
p— k-|2n — k-u:
o™= Ham =
— m _{ED,.
M= PR
A B, LG
2= szR' “ szR‘ (23)
S=[7 Ry, & 5,.=00,d&
LW A b.=[l0'0 &
D,=I° 1"2’—‘2 vy & N[l &

L]

Ko =J: G,‘PJ-" LA F =_ﬁ " J: whe e g

k

The perturbation of this harmonic excitation is
defined by a set of linear periodic differential
equations:

{§}=[P<w)]{§:}

with the solution

x| _ X(0)
{ﬁT)}_[Q(O’T)]{Ew)}

Floquet’s method for periodic systems was used
in the present study to perform the stability
analysis (Ref. 11). The eigenvalues of the
transition matrix O(0,7) over ome complete

(24.2)

(24.b)

period of actuation, from =0 to
w =1 =2x{n were examined:
E=(2r)b[Re (1) + Im(2,)]

23)

w, ={]/T)f3nq [Im(‘a’k )/ Rc(z‘t)]

The real part of the %™ eigenvalue of the
transition matrix represents the non-dimensional
growth/decay rate of the aeroelastic response to
the system. A positive value indicates
instability. The imaginary part of the same
eigenvalue is associated with the non-
dimensional frequency. Since the function tan™
is multi-valued, the latter can be obtained only as
a principal frequency plus or minus an integer
multiple of 272/ 7.
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3.2.  “Smart” Blade Configuration

In order to present a realistic study case, a
reduced scale model of a helicopter blade is
developed. The model, resembling the
EUROCOFTER BO105 helicopter blade,
consists of a uniform main structure, made of
Graphite-Epoxy composite, covered with a skin
to form an airfoil cross section. The “smart”
spring device is built into the blade by inserting
“smart” materials i.e. piezoelectric materials, at
any desired locations along the blade span.

The actuation: of the “smart” spring increases
the lead-lag, flap, torsional stiffness, and radii of
gyration of the blade over a certain section of its
length, ie., along the location of the “smart”
spring. In other words, the activation of the
“smart” spring increases the impedance of the
blade against the loads. The use of the “smart”
spring as an IBC device is achieved by
harmonically actuating the spring using a square
wave (on-off) control law at various frequencies.
Depending on its location and the length of the
“smart” spring, the stability characteristics of the
systerm will vary. Two design cases were
considered in the present study. For the first
case the “smart” spring is ingtalled between 0.05
to 0.2, and for the second case between 0.05 to
0.40 in the nommalized direction of the blade.
The values of various corfiguration parameters
related to the “smart” blade are tabulated in
Tabie 1.

4.0, Numerical Results

The stability analysis of the hingeless
“smart” blade was carried out by determining
and comparing the eigenvalues of the controlled
blade vs. the uncontrolled rotor. Certain
parameters were chosen as the basis for an
aeroelastic parameiric study of instability in this
investigation. These parameters are:

1. The span-wise location and the length of the
“smart” spring, ie. the starting and ending
position of the “smart” spring, x; and x».

2. The flap-lag structural coupling, .

3. The coliective pitch angle, 8.

By varying the values of the parameters above,

different system responses are obtained for the

1* lead-lag, 1* and 2™ flap, and 1* torsion modes

and the aeroelastic stability of the system is thus

analyzed. The parameters of the rotor model

analyzed are also listed in Table 1.
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Table 1: Rotor Model Analyzed

Parameter Value
a 27 rad?
B 4
¢ 0.121m
Cs, 0.01
EIl, /mQﬂR“ 0.0017®
EIL.[mQR? 0.0222 @
GJ[mQ*R 0.001®
R 20m
R 1
ﬁpc 0°
¥y 5.0
o 0.077
02 110 rad/sec

® Corresponding to a normalized lead-lag
frequency 0.7/rev at 110 rad/sec.

@ Corresponding to a normalized first flap
bending frequency 1.14/rev at 110 rad/sec.

@ Corresponding to 2 normalized torsion
frequency 3.9/rev at 110 rad/sec.

Another important aspect, that must be noted
in the stability analysis of the hingeless “smarf”
blade is the activation regime of the “smart”
spring that results in various systems as outlined
below:

1. Baseline Regime:

The system consisting of only the main

structare without any “smart” spring.
2. Static Regime:

The system consisting of the main stucture

and the “smart” springs that is activated alf

the time.
3. IBC3 Regime:

The system consisting of the main strocture

and the “smart” spring that is activated and

deactivated 3 times per rotor revolution.
4, IBC 4 Regime:

The system consisting of the main structure

and the “smart” spring that is activated and

deactivated 4 times per rotor revolution.
5. IBCS Regime:

The system consisting of the main structure

and the “smart” spring that is activated and

deactivated 5 times per rotor revolution.
For the Baseline and Static regimes the equations
of motion have constant cocfficients. Hence, for
the Baselineg, i.e., in the absence of any “smart’
springs, the system’s perturbation is defined by
equations (i4). For the Static Regime, ie,
continuously activated spring, the perturbations



of the system are defined by equations (16)
where [M]+HAM], [C]+{AC), and [K]+[AK] are
constanis for all time 7 In both cases, the
corresponding eigenvalues can be determined
using the conventional eigenvalue-eigenvector
technique. On the contrary, since IBC 3, 4, and
5 are periodic systems then the eigenvalues are
determined using Floguet method as outlined
carlier.

4.1. Design Case 1: x; = 0.05,x,= 0,20, R =
1.0.8 =010 0.3

1* lead-lag mode: Table 2.1 shows the
eigenvalues corresponding to the 1% lead-lag
mode of the hingeless “smart” blade. As the
pitch angle is increased from 0 to 0.3, an increase
of damping are observed for all systems, i.e.,
Baseline, Static and IBC 3,4, and 5 regimes, The
oscillation frequency decreases to zero at 0.3
pitch angle for the Baseline, Static, and IBC 3
and IBC 4 cases. Divergence is experienced at
0.3 pitch angle by the Baseline and Static
regimes as each has one root on the real axis at
the right-haif- plane of the Laplace domain. At
pitch angles greater than 0.3, IBC 4 becomes
prone to divergence as one of its roots on the real
axis is approaching the stability boundary., Thus,
the presence of the “smart” spring being
activated at 3, 4, and 5/rev indeed stabilize the
hingeless blade.

Table 2.1. Eigenvalues of the “smart” blade
for the 1™ lead-lag mode with x; = 0.05,
£=02,Bp.=0,R=1.0

them sensitive to flutter if the pitch angle is
increased beyond 0.3.

Table 2.2. Eigenvalues of the “smart” blade
for the 1* flap mode with x; = 0.85, x,= 0.2,
Bpe=0,R=1.0

{rad)

g Baseline Static IBC3 IBC4 IBC S

0.0 -0.324 -0329 | -0.326 -0.339 -0.334
+0.971i +1.07 | +0.476i | +0.971i | +0.481i

0.1 -0.269 -0.274 | -0.338 -0.369 0.353
+0.9581 +1.05; | +0.4771 | +0.9581 | +1.069i

0.2 -0.175 -0.130 | -0.144 -0.138 -0.133
+0.985¢ +1.05; | +0.4827 | +0.983; | +1.013/

0.3 ~0.095 -0.037 | -0.184 -0.247 0.037
+0.926; | +0.926; | +0.1747 | +0.853i | +1.011/

2™ flap mode: A similar trend as the 1% flap
mode is observed in the 2™ flap mode as can be
seen in Table 2.3, As the pitch angle is increased
from 0 to 0.3, all systems experience a decrease
in damping, i.e., moving towards the unstable
region. A very rapid decrease of damping is
observed for both IBC 3 and IBC 4 when the
pitch angle is increased from 0.2 to 0.3. If the
pitch angle was increased beyond 0.3, both IBC
3 and IBC 4 will have experienced fiutter.

Table 2.3. Eigenvalues of the “smart” blade
for the 2* flap mode with x; = 0.05, x; = 0.2,
Bpe=0,R =10

g Baseline Static IBC3 IBC 4 IBC 5
{rad)

[~

0.

(=]

-0.001 -0.001 -0.001 -0.001 -0.001
+0.6567 +0.775i | +0.7187 | +0.7187 | +0.718f

g Baseline Static IBC3 IBC4 IBCS
rad

0.0 [ -0.758 -0.816 -0.785 -0.786 -0.787
+1.908f +1.977i | +3.4437 | +4.045{ | +5.555i

0.1 | -0057 -0.047 0018 | -0.020 | -0.020
+0.60527 | +0.766f | +0.668; | +0.664i | +H0.658¢

0.1 -0.720 -0.787 -0.728 -0.743 -0.747
+1.885/ +1.967i | +3.400f | +4.091f | +4.596/

0.2 ]-0.158 -0.197 -0.191 -0.186 -0.205
+0.4227 +0.6967 | +0.5867 | +0.583f | +0.569f

02 | -0.681 -0.754 | -0.708 £0.711 -0.712
+1.724i +1.817F | +3.270i | +4.224i | +5.727i

0.3 | 0.456; 0.319; -0.082; | -0.001; [ -0.340
-1.411 -1.471 -1.091 -1.144 +0,205i

0.3 -0.434 -0.440 -0.173 -0.108 -0.501
+1.156i +1.336/ | +3.650i | +4.9117 | +5.957

1" flap mode: All systems experience
decreasing damping for the 1% flap mode when
the pitch angle is increased fiom 0 to 0.3 as can
be seen in Table 2.2. A sharp decrease in
damping of the Static and IBC 5 regimes make
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1" torsion mode: Table 2.4 shows an
increase of damping for the 1% torsion mode of
all systems as the pitch angle is increased from 0
to 0.3. At 0.3 pitch angle, all the systems are
highly damped and thus the amplitude of
response will quickly decrease. A particularly
interesting sifuation is observed for IBC 3
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Regime where the system responds in a damped,
non-oscillatory manner at 0 pitch, while its
damping increases as the pitch angle increases.
A negative pitch angle on IBC 3 Regime might
result in divergence due to the separation of the
roots on the real axis of the Laplace domain.

Table 2.4. Eigenvalues of the “smart” blade
for the 1% torsion mode with x; = 0.05, x;= 0.2,
Bpe=0, RN =10

Table 3.1. Eigenvalues of the “smart” biade
for tire 1** lead-lag mode with x; = 0.05,
x2= 0.4, Boe=0,R =1

| {rad)

8 Baseline Static IBC3 IBC4 IBCS

00 | -0.001 -0.001 -.001 -0.001 -0.001
+0.656f +0.9967 | +0.650f | +0.846f ; +0.845/

0.1 -0.057 -0.034 -0.046 -0.035 -0.045
+0.6057 +1.010; | +0.6517 | +0.848i | +0.847i

7] Baseline Static IBC3 IBC4 IBCS
rad

0.0 | -0.304 -0.362 -0.31%; | -0.322 -0.325
+2.7617 +3.234i | 0352 +4.997f | +6.023f

0.2 -0.158 -0.238 -0.368 -0.310 -0352
+0.4224 +0.9597 | +0.208; | +0.796i | +0.817i

0.1 -0.386 -0.619 -0.494 -0.507 -0.459
+3.018¢ +4.095{ | +3.592F | +4.425{ | +6.067

03 -1.411; -0.282; | -1.263; | -0.638; | -1.34%,
0.436 -0.914 0.336 0.370 0.298

0.2 -0.336 -1.063 -0.804 -0.813 -0.799
+3.543i +4.902i | +3.265; | +4.198; | +5.788i

0.3 -0.784 -1.024 -0.990 -1.007 -1.055
+4.009{ +4,709i | +3.1577 | +4.565f | +5.444i

4.2. DPesign Case 2: x; = 0,05, x, = 0,40, R =

1.0, 8 =0100.3

1" lead-fag mode: Table 3.1 shows the
eigenvalues corresponding to the 1* lead-lag
mode of the hingeless “smart” blade where
trends similar to Design Case 1 are observed. As
the pitch angle is increased from 0 to 0.3, an
mcrease of damping are observed for all systems,
ie. Baseline, Static and IBC 3, 4, 5 regimes.
For all systems, the oscillation frequency
decreases to zero at 0.3 pitch angle and
separation of roots on the real axis takes piace.
As the result, divergence is experienced at 0.3
pitch angle by Baseline, IBC 3, 4 and 5 regimes
as each has one root on the real axis at the right-
half-plane of the Laplace domain. The Static
Regime, however, is damped without oscillation
and becomes prone to divergence as one of its
roots on the real axis is approaching the stability
boundary at 0.3 pitch angle. At this condition,
with the activation of “smart” spring, the blade
stil} experiences divergence.

1* flap mode: For the 1% flap mode, all
systems experienice a rapid decrease in damping
towards the stability boundary when the pitch
angle is increased from 0 to 0.3 as can be seen in
Table 3.2. Flutter occurs for the Static Regime at
0.3 pitch angle while IBC 3 and 4 are sensitive to
flutter if the pitch angle is increased beyond 0.3.

Table 3.2. Eigenvalues of the “smart” blade
for the 1% flap mode with x; = 0.05, x, = 0.4,
Br=0,R=1

| (rad)

8 Baseline Static IBC3 IBC 4 IBCS

0.0 | -0324 -0.337 | -0.331 -0.348 -0.336
+0.971i +1.2067 | +0.4037 | +0.9177 | +1.094)

0.1 -0.269 -0.303 -0.304 -0.336 -0.330
+0.9587 +1.177i | +0.424i | +0.903{ | +1.045]

02 | -0175 -0.073 -0.077 -0.068 -0.063
+0.989¢ +1.1907 | +0.694i | +0.677i | +0.673i

0.3 -0.096 0.061 -0.041 -0.010 -0.072
+0.9267 | +1.2437 | +0.0897 | +0.7367 | +L.139i

2" flap mode: The Baseline and Static
regimes start with a high damping and a non-
zero oscillation frequency at 0 pitch angle and
continue with a decrease in both the damping
and oscillation frequency for the 2™ flap mode,
Table 3.3. An interesting behaviour is exhibited
by IBC 3 and IBC 5. A decrease in damping
occurs in the systems when the pitch angle is
increased from 0 to 0.2. This is followed by a
reversed effect of increasing damping as the
pitch angle is increased from 0.2 to 0.3. Thus,
for this mode in all IBC systems, the decay rate
of the response is increased at higher pitch




angles rather than promoting unstable response,
which 1s a desirable output IBC 4 is damped
without oscillation at lower pitch angles of 0 to
0.1 and as the pitch angle increases, its response
follows the same trends described above.

Table 3.3. Eigenvalues of the “smart” blade
for the 2™ flap mode with x; = 0.05, x, = 6.4,
Be=0,91=1

Tabje 3.4. FEigenvalues of the “smart” biade
for the 1% torsion mode with x; = 0,05, x,= 0.4,
Bre=0,R=1

8 Baseline Static IBC3 IBC4 IBCS
(rad)

0.0 -0.304 -0.184 -0.231 -0.211 -0.233
+2.761i +2.768F | +3.2137 | +4.779i | +5.300/

8 Baseline Static IBC3 IBC4 IBCS
{rad)

0.1 -0.386 -0.217 -0.282; | -0.219 -0.245
+3.0187 +2.8497 | -0.211 | +4.852i | +5.541i

0.0 | -0.758 -0.908 -0.846 -0.931; | -0.838
+1.908; +2.127i | +3.495i | -0.766 +5.478i

02 1§ -0.536 -0.266 -(0.380 -0.408 -0.368
+3.543f +3.023; § +3.304i | +4.716F | +6.245i

0.1 -0.720 -0.887 -0.840 -0.906; | -0.817
+1.885i +2.1087 | +3.4297 | -0.786 +5.500i

03 -0.784 -0.453 -0.315 -0.455 -0.102
+4.609; +3.586¢ | +3.591; | +4.962¢ | +6.173{

02 | -0.682 -0.848 -0.673 -0.712 -0.715
+1.724f +1.9597 | +3312i | +4.225] | +5.7221

03 | -0.434 -0.521 -0.831 -L052 -0.951
+1.156§ +1.215f | +3.385f | +4.532i | +6.150;

1" torsion mode: Table 34 shows an
increase of damping and oscillation frequency
for the 1* torsion mode of the Baseline and Static
Tegimes as the pitch angle is increased from 0 to
0.3. At 0.3 pitch angle, the Bascling Regime
becomes highly damped and thus the amplitude
of responsc will quickly decrease. Just like the
corresponding system in Design Case 1, IBC 3
presents a particularly interesting situation. As
the pitch angle is increased from O to 0.1, the
oscillation frequency drops to reach zero at 0.1
pitch angle, which results in a damped, non-
oscillatory response. As the pitch angle varies
from 0.1 to 0.3, damping and frequency increase
to non-zero values. IBC 4 responds with an
increasing damping as the pitch angle vares
from ¢ to 0.3. IBC 5 also responds in an
interesting manner in which the damping
increases as the pitch angle is increased from 0 to
0.2. This is followed by a sharp decline in
damping as the pitch angle is further increased to
0.3 thus making the system prone to flutter at
higher pitch angle.
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5.0, Conclusions

In general, the results of the analysis indicate
that harmonic parametric actuation of the
“smart” spring affects the aeroelastic stability of
the hingeless helicopter blade. Some unstable
conditions encountered in the Basic hingeless
blade at high pitch angles can be stabilized using
IBC. However, due to the complex mamner in
which various parameters such as the length/
position of the “smart” spring, the pitch angle of
the rotor, or the frequency of the harmenic
actuation of the “smart” spring, affect the
behaviour of the rotor, one may expect that IBC
will not always be beneficial to the overall
stability of the system. As noted by Bolotin

 (Ref. 12), stability problems may arise when the

harmonic parametric excitation approaches the
frequency associated with the structoral modes.
The present study also reveals that the aeroelastic
behaviour of the system changes significantly
with the presence of the “smart” spring. Thus, a
carefully enginecred “smart” spring technology,
applied on a hingeless helicopter rotor blade,
may improve the quality of the helicopter
operation,

The Stability of the 1* Lead-Lag Mode:
One important finding about the harmonically
actuated “smart” blade that was considered is
that it improves the general stability of the 1*
lead-lag mode response of the Baseline system
for both design cases considered. The
application of the IBC concept using the “smart”
spring technology at 3, 4, and 5 actuations per
blade revolution result in the aeroelastic stability
for Design Case 1 when the Baseline system
experiences divergence at 2 high pitch angle of
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0.3 radians (17 degrees). For Design Case 2,
however, at 0.3 pitch angle, the IBC fails to
stabilize the system at all regimes.

The Stability of the 1™ Flap Mode: For
Design Case 1, IBC 3 and 4 are beneficial in
terms of improving the stability of the Baseline
system at 0.3 pitch angle for the 1% flap mode,
ie., both IBC regimes increase damping of the
rotor. On the other hand wunder the same
operation, all IBC regimes in Design Case 2
result in lower damping than that of the Baseline
system.

The Stability of the 2°° Flap Mode: The
2 flap mode presents an interesting study case
where, depending on the length of the “smart”
spring and the frequency of its harmonic
actuation, the application of the IBC concept can
be either favourable or unfavourable towards
improving the stability of the blade. As one can
observe in Design Case 2, the IBC systems
significantly improve the stability of the Baseline
system at high pitch angles by increasing the
damping as & varies from 0.2 to 0.3. For Design
Case 1, the harmonic actuation of the “smart”
spring at IBC 3 and IBC 4 result in a sharp drop
in damping between 0.2 to 0.3 pitch angle, while
IBC 5 results in improved stability at 0.3 pitch
angle.

The Stability of the 1** Torsion Mode: In
general, it is observed that for this mode
damping increases as the pitch angle is
increased. For Design Case 2, IBC 5 initiafly
increases the damping up te 0.2 pitch angle.
This is followed by a sharp drop in damping
towards the stability boundary at 0.3 pitch angle.
This indicates that for this design, Le., the
“smart” spring located between 5% to 40% in the
axial direction, its actnation at 5/rev will result in
undesirable conditions of stability for the 1%
torsion mode at pitch angles greater or equal to
0.3.

The evaluation of the behaviour of the
harmonic actuation of the “smart” spring also
reveals that under certain conditions, IBC results
in damped, non-oscillatory response. In these
regions, the eigenvalues of the system lie on the
real axis of the Laplace domain, i.e., at the zero
frequency line with relatively high damping. For
the 2™ flap mode, in Design Case 2, the IBC 4
behaves in such a way at low pitch angles. For
each design case, IBC 3 can result in a damped,
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non- oscillatory response for the 1 torsion mode
at certain values of pitch angle.

Considering the improvement in the 1% lead-
lag stability of the Baseline Regime for Design
Case 1 in terms of increasing modal damping at
0.3 pitch angle, one may suggest the application
of “smart” spring to control aesromechanical
phenomena such as ground and air resonance.
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