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Abstract 
The equations of motion of a hovering hinge­
less helicopter rotor blade are obtained using 
Hamilton's principle. Finite element analysis 
is used to discretise their spatial dependence. 
An element with two nodes and five degrees of 
freedom per node is developed in order to anal­
yse the blade's flap-lag-torsion stability. All 
elements of inertia, damping and stiffness ma­
trices and its load vector are obtained explic­
itly, in analytical form from the expressions 
for strain energy, kinetic energy and virtual 
work. The nonlinear steady state trim posi­
tion in given flight conditions is solved itera­
tively starting from the linear solution. The 
aerodynamic loads in hover are considered to 
be quasi-steady and two-dimensional. The use 
of an ordering scheme makes it possible to re­
tain all the important terms in the equations. 
High order term reduction and element matrix 
selection is accomplished automatically by rou­
tines written in Mathematica. Some numerical 
examples using MATLAB concerning natural 
frequencies of rotating beams, steady-state po­
sition and flutter analysis of a hingeless blade 
are presented and compared with the results of 
other studies. 

Notation 

a = lift c1trve .slope 
c = blade chord 
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= blade- section profile medium 
drag coefficient 

= blade - section pitching 
moment coefficient 

=tension center off set from 
elastic axis, positive forward 

= aerodynamic center off set 
f1·om elastic axis, positive aft 

=center of mass offset from 
elastic axis, positive forward 

=blade root offset 
= blade axial stiffness 
= centrifugal force 
= blade elastic torsion stiffness 
=blade mass moment of inertia 

about flap axis at the root 
=blade cross section moments of 

ineTfia in the flap and lead- lag 
directions respectively 

=polar 1·adius of gyration of 
blade cross section 

=mass radius of gyration of 
blade c1·oss section 

=principal mass radii of 
gyration of blade cross section 

= length of ith element 
= blade length 
= distance between the rotor 
cente1· and the beginning of the 
ith element blade 

= blade mass per unit length 
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=number of elements 
= ith degree of freedom of the 
element or blade 

= rotor radius 
= elastic displacements in the 
x, y, z directions, respectively 

=induced inflow 
= blade section resultant 
air velocity 

= undeformed blade coordinate 
=local axial coordinate of the 
ith element 

= blade precone angle 
= Lock number , pacR4 

/ h 
=variation of kinetic and strain 
energies, respectively 
= virtual work done to the 
aerodynamic loads 
= nondimensional order of 
magnitude parameter 

= air· density 
= blade pretwist 
= control pitch angle of the blade 
= deformed blade coordinate 
= solidity ratio 
= elastic torsion about elastic axis 
= fundamental coupled rotating 
lead- lag natural frequencies 
= fundamental coupled rotating 
flap natur·al frequencies 
= fundamental coupled rotating 
torsion natur(i/ frequencies 

= rotor blade angular velocity 
= 8/8 X 

= 82 /8x 2 

= cir·culatory aerodynamic term 
= noncirculatory 
aerodynamic term 

= aerodyn(tmic matr·ix 
= linear· matr·ix 
= nonlinear matrix 
= stntcturalline(tr matrix 
= transpose of a matrix 

rotating blade equations of motion is a dif­
ficult task, for which the computerised sym­
bolic manipulation has shown itself to be a 
powerful analysis tool. Many symbolic codes 
are now available. General-purpose symbolic 
processors such as REDUCE and MACSYMA 
have been used to obtain the equations of mo­
tion of the helicopter blade [1], [2]. The lat­
ter paper also presents a special-purpose sym­
bolic processor, D EHIM (Dynamic Equations 
for Helicopter Interpretative Models). A clas­
sic approach to flexible blade aeroelastic sta­
bility analysis is the Galerkin method [3], [4]. 
In recent years, the finite element method has 
been widely used because of its potential for 
solving complex nonuniform blade configura­
tions which occur in modern hingeless or bear­
ingless rotors. Both, the Galerkin-type fi­
nite element [5] and displacement finite ele­
ment methods [6] are suitable procedures for 
rotor blade modeling. The finite element for­
mulation has now reached a high level of so­
phistication [7] and has been adopted in com­
plex helicopter dynamic analysis codes such as 
GRASP [8], UMARC [9], 2GCHAS [7]. The 
aim of the present study is to show the poten­
tial of M athematica software in solving certain 
rotary-wing aeroelastic problems by applying 
MATLAB for numerical calculus. A finite el­
ement for blade discretisation with ten nodal 
degrees of freedom was developed on the ba­
sis of Hamilton's principle; this element was 
first presented in [6]. The exact symbolic re­
lations for each element of the mass matrix, 
stiffness matrix and damping matrix were ob­
tained from the expressions for kinetic energy, 
potential energy and virtual work. The numer­
ical examples concern natural frequencies of 
the rotating blade, the nonlinear steady-state 
position of the blade in hover and flutter analy­
sis under these flight conditions. Quasi-steady 
strip theory is used in evaluating aerodynamic 
loads. 

Introdnction Equations of motion 

In the field of rotary-wing aeroelasticity, the The formulation follows the steps presented in 
problems involved in the study of nonlinear [6] and uses results published by Hodges and 
systems with constant or periodic coeflicients Dowell [10] and Hodges and Ormiston [3]. The 
are highly complex. Determining and solving rotor blade is a single load path isotropic beam 
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Fig. 1 Blade undeformed and deformed systems 
of coordinates 

rotating with constant angular velocity !1. A 
root offset e1 and a precone angle f3P are also 
considered. The undeformed xyz coordinate 
system is shown in Fig. 1. A point P on 
the undeformed elastic axis occupies position 
P' after deformation (axial, flap-bending and 
lag-bending displacements). The cross section 
is then rotating with the angle el about the 
deformed elastic axis. The second coordinate 
system shown in Fig. 1 is obtained using the 
transformation: 

(1) 

where [T] is a transformation matrix given in 
Appendix A. In this matrix: 

e1 == en+ e, + J, = e + J, 
J, == <P- [v"w'dx (2) 

The equations of motion are derived usmg 
Hamilton's principle: 

l
t, 

( SU - ST- SW)dt = 0 
t, 

(3) 

The expressions of variations of strain energy 
and kinetic energy are presented in [6], [10]. 
Virtual work of aerodynamic forces is given by: 

SW laL ( LuOU + LvOV + LwOW 

+ Lw5w + M¢(5¢, + w'Sv'))dx (4) 

where Lu, Lv, Lw, M¢ are the external aero­
dynamic loads distributed along the length of 
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Fig. 2 The components of aerodynamic loading 

the blade in axial, lag, flap and torsion direc­
tions. Equation (3) represents four equations 
of motion regarding Su, Sv, ow and 5¢,. The 
centrifugal force: 

F(x) == t m(x)[l1 2(x + e1 ) + 2!1v]dx (5) 

can also be written as: 

F(x) = EA[u' + ~v'2 + ~w'2 + kA 2B'<f' 
2 2 

ea(v"cosfJ1 + w"sinfJ1 )] (6) 

In this case, the displacement u is eliminated 
from the expressions of SU, ST, SW. An order­
ing scheme is used in obtaining these expres­
sions, the assumed orders of magnitude of each 
parameter being the same as used in [3]. Only 
(J was considered of order o: 0 for all structural 
and aerodynamics terms ( o: is a small non di­
mensional parameter). All terms of order o2 

are retained, as are some terms of order o3 [3], 
[6]. The aerodynamic loads in hover are based 
on Greenberg's model, using a quasi-steady ap­
proximation. Nonc·irculatory terms are also in­
cluded. The force components and directions 
are shown in Fig. 2. 

The complete relations for aerodynamic 
terms are given in [6], [10]. A special proce­
dure was written in lvfathematica in order to 
evaluate the order of magnitude of each term 
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Fig. 3 Finite element discretisation of the blade 

of a complex polynomial expression and to can­
cel all high terms which are bigger than the set 
limit. This routine is given in Appendix B. The 
constant inflow .\;(v;) may be written as: 

.\; = 1.15) Cr /2, v; = OR.\; (7) 

Cr being the thrust coefficient. The effective 
pitch of the blade at 0. 75R is: 

Bo.7sR = 6Cr/(J'a + 1.5.\; (8) 

which includes the torsion deformation. 

Finite element formulation 

The blade is divided into beam elements, each 
consisting of two nodes with five degrees of 
freedom: v, v', w, w' and ~ (Fig. 3). 
Hamilton's principle is discretised as: 

n n 

I; .6.; = I;( oU;- oT;- oW;) = 0 (9) 
i=l i::::l 

where the subscript i denotes the contributions 
of the ith element. The vector of element de­
grees of freedom { q;} is defined as: 

T I I " " T [q1 , ... ,q10] = [v 1 ,v1 ,w,,w1 ,¢1 , ... ,,P2] (10) 

The distributions of the deflections v, w, 4> over 
an element are of the form: 

w = H,w, + H2w; + H3w2 + H4w; 
~ = H,~, + H6~2 (11) 

where the shape functions are: 

H, ( ~;) 2a- 3a + 1 
H2( ~;) = z;w- 2a + ~i) 
H3(~;) = -2a + 3a 
H4( ~;) w;-m 
Hs(~;) = 1- ~i 
HB( ~;) = ~i (12) 

and ~i = x;/1;. Virtual displacements ov, ow, 
o~ are similar to equation (11), and are as­
sumed to be of the same forms. With these 
relations, the contribution of the ith element 
is of the form: 

.6.; = {oq;}T ([M;(q;)] {q;} + [C;(q;)] {q;} 
+ [K;(q;)]{q;}+{Q;}) (13) 

which highlighs the element inertia, damping 
and stiffness matrices respectively and the ele­
ment load vector. These element matrices were 
obtained in Mathematica by performing an in­
tegration over the length of ith element in (9) 
and a systematic selection of the coefficients 
containing q;, q;, q; etc. The blade proper­
ties were assumed to be constant over each el­
ement. The steady centrifugal force in a given 
section of the ith element was written as: 

(14) 

where a;, b;, c; are functions of the position of 
the element: 

n 

c; I; mk(Lr+l- Lk) (15) 
kl 

The element matrices depend on the { q;} vec­
tor because of the retention of the nonlinear 
terms. In the Appendix C is illustrated the 
algorithm implemented in Mathematica for de­
termining the linear parts of the element ma­
trices and the Appendix D presents the sym­
metric stiffness matrix in this case. The global 
rna trices of the blade are obtained by the as­
sembly of the element matrices, and the global 
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load vector { Q} is formed using the element 
load vectors { Qi}· The equation (3) becomes 

[M(q)]{q} + [C(q)]{q} + [K(q)]{q} = {Q} 
(16) 

where q contains the 5( n + 1) global degrees 
of freedom. The matrix [M(q)J is banded and 
contains contribution of the inertial and aero­
dynamics terms. The [C] matrix is treated in 
a special manner writing: 

[C] = [C]NL + [C]£ + [C]A (17) 

where [C]N£ is an asymmetric nonbanded ma­
trix due of the presence of the term J~' J;( ~'v' + 
~'w')dxdxi in the expression of the kinetic 
energy, [ C]£ represents the gyroscopic linear 
terms and [ C]A is the aerodynamic contribu­
tion. The stiffness matrix [K] is banded asym­
metric containing structural, inertial and aero­
dynamic terms. 

Numerical Results 

The first example is the calculation of the nat­
ural frequencies for coupled flapwise bending­
chord wise bending and torsion for a fixed­
free blade having the following properties [11 J: 
L = 40 in, eB = 45°, Ely = 25000 lb in2

, 

EI, = 75000 lb in2
, GJ = 9000 lb in2

, m = 
0.0015 slugs/in, k!1 = 1 in2

, k!2 = 1 in 2
, 

e9 = y'2 in. The results at fl = 0 are shown in 
Table 1, where they are compared with those 
obtained in [11] using the Transmission Matrix 
Method. 

Table 1 Comparison of the natural frequencies 
[radjs] at n"" 0 

Mode T.M.M., [11] This study This study 
6 elements 12 elements 

1 30.8295 30.8383 30.8370 
2 53.8277 53.8407 53.8101 
3 184.6175 185.0116 184.7434 
4 337.3333 337.4953 337.4174 
5 484.3373 490.5315 485.9276 

-· 

The calculation uses only the linear structural 
part of the [KJ matrix and the linear part of 
[M] matrix without aerodynamic terms. The 
solved eigenvalue problem is: 

[K]s£- w 2 [M]L = {0} (18) 

The other numerical example concerns flutter 
analysis of a hingeless rotor blade. The steady­
state equations are of the form: 

[K( qo)]{ qo} = { Qo} (19) 

These nonlinear equations are solved itera­
tively starting from a linear solution. No 
special algorithms are used for this. For a 
given collective pitch angle, the inflow ve­
locity is calculated using the relations (7), 
(8). The iteration process also considers the 
torsional deflection </>o.7sR changes of blade 
pitch. The uniform blade properties used 
for testing the formulation are taken from [3] 
and are also given in Table 1 of [6]. They 
are: Eiyjmfl 2 R4 = 0.014486, Elz/mfl 2 R4 = 
0.166908, GJ/mfl 2 R4 = 0.000925 ( 0.005661), 
km1/R = 0, km>/R = 0.025, kA/km = 1.5, 
c/R = 7r/40, a- = 0.1, 1 = 5, a = 6, 
Cdo = 0.0095, CM,., = 0, {3p = -0.05, 0, 0.05 or 
0.1 rad. The center of mass, aerodynamic cen­
ter, tension center and elastic center are con­
sidered to coincide. Because this model works 
with dimensional quantities, m = 1, R = 1, 
0, = 1 was adopted. The dimensionless ro­
tating frequencies obtained for these data are 
given in Table 2. 

Table 2 Nondimensional rotating frequencies of a 
hingeless blade 

Mode F.E.M. This study, This study, 
[6] 6 elements 12 elements 

Flap Ww 1.15 1.15 1.15 
Lag Wv 1.50 1.50 1.50 

Torsion 1 w,p 2.5 2.460 2.456 
Torsion 2 w,p 5.00 4.989 4.977 

Figures 4, 5 and 6 show the equilibrium deflec­
tions of a rotor blade tip having wq, = 5, as a 
function of the pitch angle e, for various values 
of {3p. They are in good agreement with these 
of the first calculation in [3] using the Galer kin 
method and the results of [6] using the same 
fmite element formulation. The flutter motion 
is assumed to be a small perturbation about 
the equilibrium position: 

{q} = {qo} + {.6.q} (20) 
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Fig. 4 Tip flap-bending equilibrium deflections 
for Wv = 1.5, Ww = 1.15, W¢ = 5.0 
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Fig. 5 Tip lag-bending equilibrium deflections for 
Wv = 1.5, Ww = 1.15, W¢ = 5.0 

and the obtained flutter equations are: 

[M(qo)]{6q}+[C(qo]{Liq}+[K(q0 )]{b.q} = {0} 
(21) 

First, the natural modes are obtained by solv­
ing the equation: 

[M){6q} + [K]s{b.q} = {0} (22) 

which contains only the structural and iner­
tial terms. The corresponding eigenvalues are 
real, and equation (23) is then transformed in 
modal space. The first five eigenfrequencies 
and eigenvectors are used in [ <l'], and perform­
ing the substitution: 

{b.q} = [<l']{p} (23) 

0 

'",:, 
-0.01 

-0.02 . . 
-0.04 '•, 

-{),05 ·--------... 
........................................... -.,,_ 

- present study , 
0 Sivaneri & Chopra '' 
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~- p.=o.os and GJ;Q,000925 

-0.08 :::::::::::::::::c:;:· ................ .J.. 

0 0.1 0.2 0.3 0.4 0.5 
9 lrad1 

Fig. 6 Tip torsion equilibrium deflections for 
Wv = 1.5, Ww = 1.15, W¢ = 5.0 
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Fig. 7 Root locus plot for a hingeless blade 

in (23) and premultiplying by [<l'jT yields the 
normal mode equations: 

[M*]{ji} + [C']{p} + [K*]{p} = {0} (24) 

The complex eigenvalues of (24) are analysed 
for a given data set. Figure 7 shows the root 
locus plot of the first modes of flap, lag and 
torsion for a blade having Wv = 1.5, Ww = 1.15, 
Wf = 2.5, 1 = 5 and f3v = 0.05 rad, when CT /a 
is varied from 0 to 0.3. Figure 8 shows the 
region of instability in the domain Wv - (i for 
a blade having the following properties: ww = 
1.15, Wf = 2.5, 1 = 5 and (3p = 0.05 rad. 
The results of [3] and [6] are also shown for 
comparison. There is good agreement, as the 
differences that occur are probably due to little 
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Fig. 8 Stability boundaries for a hingeless blade 

differences in the simplifying assumptions or in 
the data considered. 

Conclusions 

A beam type finite element with ten degrees 
of freedom was developed using the capabil­
ities of M athematica software. The finite ele­
ment formulation, first described in [6] was fol­
lowed and the exact expressions of the nonlin­
ear stiffness, inertia and damping matrices of 
the element were obtained. Quasi-steady two­
dimensional airfoil theory of Greenberg's type 
was used to evaluate the aerodynamic loads. A 
special routine was written in Mathematica in 
order to retain in the equations only the impor­
tant aerodynamic terms. The numerical appli­
cations presented concern the coupled natural 
frequency analysis of the rotating blade, the 
nonlinear steady-state position of the blade in 
hover at a set collective pitch, and flutter anal­
ysis about this equilibrium position. All these 
applications are written in MATLAB. There­
sults are in good agreement with other simi­
lar analysis. The explicit relations of the ele­
tnent's matrices are an important advantage, 
as they make it possible to investigate the in­
fluences and contributions of each constructive 
or aerodynamic parameter of the blade. When 
the number of degrees of freedom of the ele­
ment and the number of blade parameters is 
increased, however the obtained formulas may 
become very cumbersome as a result, this ad­
vantage is lost and numerical evaluation of the 

element's matrices is more appropiate [7], [12]. 
Another conclusion is that the general purpose 
symbolic code Mathematica makes it possible 
to readily perform the symbolic manipulations 
needed in problems of rotor blade dynamic and 
aeroelastic analysis. 

Acknowledgements 

This research has been funded by The Italian 
National Research Center ( CNR) to which the 
authors wish to express their especial thanks. 

References 

[1] Crespo DaSilva, M. R. M., and Hodges, 
D. H., The role of Computerized Sym­
bolic Manipulation in Rotorcraft Dy­
namic Analysis, Computers and Mathe­
matics with Applications, Vol. 12A, 1986, 
pp. 161-172. 

[2] Ravichandra, S., and Gaonkar, G., A 
Study of Symbolic Processing and Com­
putational aspects in Helicopter Dynam­
ics, Journal of Sound and Vibration, Vol. 
137, No.3, 1990, pp. 495-507. 

[3] Hodges, D. H., and Ormiston, R. A., Sta­
bility of Elastic Bending and Torsion of 
Uniform Cantilever Rotor Blade in Hover 
with Variable Structural Coupling, NASA 
TN D-8192, April, 1976. 

[4] Friedmann, P.P., Formulation and Solu­
tion of Rotary-Wing Aeroelastic Stability 
and Response Problems, Vertica, Vol. 7, 
No. 2, 1983, pp.l01-104. 

[5] Straub, F. K., and Friedmann, P. P., 
Galer kin Type Finite Element Method for 
Rotary-Wing Aeroelasticity in Hover and 
Forward Flight, Vol. 5, No. 1, 1981, pp. 
75-98. 

[6] Sivaneri, N. T., and Chopra, I., Dynamic 
Stability of a Rotor Blade Using Finite 

95.7 



Element Analysis, A.I.A.A Journal, Vol. 
20, No. 5, May, 1982, pp. 716-723. 

[7] Straub, F. K., Sangha, K. B. and Panda, 
B., Advanced Finite Element Modeling of 
Rotor Blade Aeroelasticity, Journal of the 
American Helicopter Society, Vol. 39, No. 
2, April, 1994, pp. 56-68. 

[8] Hodges, D. H., Hopkins, A. S., Kunz, D. 
L., and Hinant, H. E., Introduction to 
GRASP-General Rotorcraft Aeromechan­
ical Stability Program- A Modern Ap­
proach to Rotorcraft Modeling, Journal of 
the American Helicopter Society, Vol. 32, 
No.2, April, 1987, pp. 78-90. 

[9] Bir, G.S., Chopra, I., and Nguyen, K., 
Development of UMARC (University of 
Maryland Advanced Rotorcraft Code), 
Proceedings of 46th Annual Forum of 
the American Helicopter Society, Vol. I, 
Washington, DC, May, 1990, pp. 55-78. 

[10] Hodges, D. H., and Dowell, E. H., Non­
linear Equations of Motion for the Elastic 
Bending and Torsion of Twisted Non uni­
form Rotor Blades, NASA TN D-7818, 
December, 1974. 

[11] Murthy, V.R., Dynamic Characteristics of 
Rotor Blades, Journal of Sound and Vi­
bration, Vo\.49, No. 4, 1976, pp. 483-500. 

[12] Rand, 0., and Barkai, S. M., Numerical 
Evaluation of the Equation of Motion of 
Helicopter Blades with Symbolic Exact­
ness, Journal of the American Helicopter 
Society, Vol. 40, No. 1, January, 1995, pp. 
59-71. 

95.8 



[ 

1 _ v" _ w" 
2 2 

[T] = -v1cosli1 - w 1 sinll1 

v 1 sinli1 - w 1 cosll1 

BeginPackage["Reduce'"] 

vi 

(1 o'') II 1''11 - 2 cos 1 - v w· S'l-n 1 

( 1 v'2 ) • 0 I I 0 - - 2 Stnut - V 1lJ COSUt 

Apr•endix B 

(1 - w;' )sinll1 
wl I 

( 1 - w~' )cosll1 

Reduce: :usage = "Reduce [expres, ordmax] reduces <'.11 the terms of the 
expression 'expres' whose orde:r· is bigger than 'ordmax' " 

Reduce[expres_, ordmax_] := 
Module [{mag, factor, ordine, var, exp•>ut}, 

row=5; (*number of the paramete:s in the table mag *) 
mag=Table[O,{i,1,row},{j,1,2}]; 
mag[[1,1)]=A; mag[[1,2]]=0; 
mag[[2,1]]=B; mag[[2,2]]=1; 
mag[[3,1]]=C; mag[[3,2]]=2; 
mag[[4,1]]=D; mag[[4,2]]=1.5; 
mag[[5,1]]=E; mag[[5,2]]=1; 
expout=O; 
Do[{ 

factor=Part[expres,i]; 
ordtot=O; 
include=1; 
var=Variables[factor]; 
Do[{ 

here=O; 

(* parameter 
(* parameter 
(* 
(* 
(* 

parameter 
po.ramoter 
parameter 

A· • order of magnitude 
B· • order of magnitude 
C· 

' order of magnitude 
D· • order of magnitude 
E· • order of magnitude 

Do[ If[ TrueQ[var[[jlJ==mag[[k,1]] ] ,{ 
ordtot=ordtot+mag[[k,2]]*Exponent[factor,var[[j]]]; 
here=1}] , 

{k,1,riga}]; 
If[ here==O,{ 

Wr·iteString[{"stdout"},Error in the term,i]; 
include=O}]; 

},{j,1,Length[var]}]; 

0 
1 
2 

1.5 
1 

If[ ((ordtot <= ordmax) && (include-- 1)), expout=expout+factor]; 
},{i,1,Length[expres]}]; 
expout 

] 
End[] 
EndPackage [] 

For cKample, if expres==AC' + A3 BD + :JABE + 2DE 2 + D and orclmax=2 
the output expression is AC+3ABE-t-D. 

*) 
*) 
*) 
*) 
*) 

The n1essage nError in the tcnn i'' is given in the c.asc of an unknn\VH parmnet.er (uncont.ained 

in Table 'tnag') 
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Appendix 9 

The following symbols are used in M athematica: 

ai, bi, ci = the coefficients of the centrifugal force 
eg = e9 ; EA, Ely, Eiz, GJ = stiffness EA, EI", EI., GJ 
km, kml, km2 = km, kml, km2; I= li 
Li = Li; m = m; Om= fl; s = ~i = x;/li 
st, ct = sin( Ba +Be), cos( Ba +Be) 
v[s_J, w[s_], f[s_J = the displacements v, w, ~ 
vd[s_J, wd[s_], fd[s_J = the derivatives of v, w, ~with respect to x 
vdd[s_J, wdd[s_J = the double derivatives of v, w with respect to x 
vp[s_], wp[s_], fp[s .. ] = the derivatives of v, w, ~ with respect to time 
vpp[s_], wpp[s_J, fpp[s_J =the double derivatives of v, w, ~with respect to time 
vdp[s_J, wdp[s_J =the derivatives of 1/, w' with respect to time 
Hl[s-J ... H6[s_J = the shape functions H1 •.• H6 

Hlcl[s_J ... H6cl[s_J =the derivatives with respect to x of the shape functions 
Hldd[s_J ... H6dd[s_J =the double derivative with respect to x of the shape functions 
q[i], qp[i], qpp[i] = qi, qi, iji, i = 1..10; dq[i] = 5qi 
clv[s_] =, clw[s_J, clf[s_] = 5v, 5w, 5~ respectively 

dvcl[s_J =, dwd[s_J, dfd[s_J = 5v', 5w', 5J' respectively 
dvcld[s_J, dwdd[s_J = 5v", 5w" 
First the shape functions and the centrifugal force are defined: 

H1 [s_]: ;2*s'3-3*s'2+1; 

H2[s_] ;;l*(s'3-2*s'2+s); 

H3[s_] ;;-2*s'3+3*s'2; 
H4[s_] ;;1*(s'3-s'2); 

HS[s_] :;1-s; 

H6[s_] :;s; 

F[s_] ;;ai*s'2+bi*s+ci; 

The first and the second derivatives with respect to x of the shape functions are: 

H1d[s_] :;D[H1[s] ,s]/1; 

H6d[s_] :;D[H6[s] ,s]/1; 

Hldd [s_] : ;D [D [!!1 [s], s] /1, s] /1; 

H6dd[s_] :~D(D[H6[s] ,s]/1,s]/l; 

The cxpressious of the displacemcut field and of the derivatives with respect to x and t are: 
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v[s_] :=H1[s]•q[1]+H2[s]*q[2]+H3[s]•q[6]+H4[s]•q[7]; 
w[s_] :=H1[s]*q[3]+H2[s]•q[4]+H3[s]•q[8]+H4[s]•q[9]; 
f[s_] :=H5[s]•q[5]+H6[s]•q[10]; 

vd[s_] :=H1d[s]*q[1]+H2d[s]•q[2]+H3d[s]*q[6]+H4d[s]*q[7]; 
wd[s_] :=H1d[s]*q[3]+H2d[s]•q[4]+H3d[s]•q[8]+H4d[s]*q[9]; 
fd[s_] :=H5d[s]*q[5]+H6d[s]•q[10]; 

vdd[s_] :=H1dd[s]*q[1]+H2dd[s]*q[2]+H3dd[s]•q[6]+H4dd[s]•q[7]; 
wdd[s_] :=H1dd[s]*q[3]+H2dd[s]*q[4]+H3dd[s]*q[8]+H4dd[s]•q[9]; 

vp [s_] : =H1 [s] *qp [1] +H2 [s] *qp [2] +H3 [s] *qp [6] +H4 [s] *qp [7] ; 
wp [s_] :=Hi [s] *qp [3] +H2 [s] *qp [4] +H3 [s] *qp [8] +H4 [s] *qp [9] ; 
fp [s_] : =H5 [s] *qp [5] +H6 [s] *qp [10]; 

vdp [s_] : =H1d [s] *qp [1] +H2d [s] *qp [2] +H3d [s] *qp [6] +H4d[s] *qp [7] ; 
wdp[s_] :=H1d[s]*qp[3]+H2d[s]•qp[4]+H3d[s]•qp[8]+H4d[s]•qp[9]; 

vpp [s_] : =H1 [s] *qpp [1] +H2 [s] *qpp [2] +H3 [s] *qpp [6] +H4 [s] *qpp [7]; 
wpp [s_] : =H1 [s] *qpp [3] +H2 [s] *qpp [ 4] +H3 [s] *qpp [8] +H4 [s] *qpp [9] ; 
fpp [s_] : =H5 [s] *qpp [5] +H6 [s] *qpp [10]; 

The displacements variations are of the form: 

dv [s_] :=Hi [s] *dq [1] +H2 [s] *dq [2] +H3 [s] *dq [6] +H4 [s] *dq [7] ; 
dw[s_] :=H1[s]•dq[3]+H2[s]•dq[4]+H3[s]•dq[8]+H4[s]•dq[9]; 
df [s_] : =H5 [s] *dq [5] +H6 [s] *dq[10]; 

dvd[s_] :=H1d[s]•dq[1]+H2d[s]*dq[2]+H3d[s]*dq[6]+H4d[s]•dq[7]; 
dwd[s_] :=H1d[s]*dq[3]+H2d[s]*dq[4]+H3d[s]•dq[8]+H4d[s]*dq[9]; 
dfd[s_] :=H5d[s]*dq[5]+H6d[s]•dq[10]; 

dvdd[s_] :=H1dd[s]•dq[1]+H2dd[s]*dq[2]+H3dd[s]*dq[6]+H4dd[s]*dq[7]; 
dwdd[s_] :=H1dd[s]*dq[3]+H2dd[s]*dq[4]+H3dd[s]*dq[8]+H4dd[s]*dq[9]; 

This is followed by the expressions for strain energy, kinetic energy and virtual work: 

(* only for linear terms in [M], [C] and [K]: 
Eizy=(Eiz-Eiy)•st•ct 
Eiz1=Eiz•ct-2+Eiy•st·2 
Eiy1=Eiz•st-2+Eiy•ct-2 *) 

dUintlin[s_] :=F[s]*(vd[s]*dvd[s] 
+wd[s]•dwd[s])+GJ•fd[s]*dfd[s]+ 
(Eiz1•vdd[s]+Eizy*wdd[s])*dvdd[s]+ 
(Eiy1•wdd[s]+Eizy•vdd[s])•dwdd[s]; 

dTintlin[s_] :=(Om-2•(v[s]+eg*ct)+2•eg•Dm*(vdp[s]•ct+ 
wdp[s]•st)-vpp[s]+eg*fpp[s]•st)•dv[s]-(wpp[s]+ 
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eg*fpp[s]*ct)*dw[s]-(km'2*fpp[s]+Om'2*(km2'2-km1'2)*st*ct+ 
Om'2*eg*(Li+s*l)*(wd[s]*ct-vd[s]*st)+eg*Dm'2*v[s]*st­
eg*(vpp[s]*st-wpp[s]*ct))*df[s]-eg*(Om'2*(Li+s*l)*ct+ 
2*Dm*vp[s]*ct)*dvd[s]-eg*(Om'2*(Li+s*l)*st+ 
2*Dm*vp[s]*st)*dwd[s]); 

dWintlin[s_] :=0; 

elint[s]=dUintlin[s]-dTintlin[s]-dWintlin[s]; 
elintl=Expand[elint[s]]; 

as well as by integration along the length of the element, 

sumterms=O; 
Do[{ 
term=Part[elintl,i]; 

sumterms=sumterms+l*Integrate[term,{s,0,1}]; 
},{i,l,Length[elint1]}] 

and the systematic selection of each element of the mass, stiffness and damping matrices: 

K=Table[O,{i,1,10},{j,1,10}]; 
M=Table[O,{i,1,10},{j,1,10}]; 
C=Table[O,{i,1,10},{j,1,10}]; 
Do [ { 

K [ [i, j]] =Coefficient [sumterms, dq [i] *q[j]] ; 
M[[i,j])=Coefficient[sumterms,dq[i]*qpp[j]]; 
C[[i,j]]=Coefficient[sumterms,dq[i]*qp[j]]; 
},{i,1,10},{j,1,10}] 

The symbolic expressions of these matrices are written m MATLAB as files maslOlin.m, 
stilOlin.m and chunlOlin.m. 

Do[{ t=ToString[StringForm["K('', '')=' ';" ,i,j,InputForm[K[[i,j]]]]]; 
t »> "\symb\sti10lin.m" }, {i,1,10}, {j,1,10}] 

Do [ { t=ToString [StringForm["M(' ',' ')='';" ,i, j, InputForm[M [ [i ,j]]]]]; 
t »> "\symb\mas10lin.m" }, {i,1,10}, {j,1,10}] 

Do[{ t=ToString[StringForm["C(' ', '')=' ';",i,j,InputForm[C[[i,j]]]]]; 
t »> "\symb\dam10lin.m" }, {i,1,10}, {j,1,10}] 

The nonzero terms of the symmetric stiffness matrix are listed in Appendix D. With this 
method, it is also possible to obtain these matrices in other cases starting from the more 
complct2 expressions of U, T and W. For example, (3p, kA, eA can be included. First the linear 
cuntributwm in these matrices are obtained separately, as presented above. The nonlinear and 
aerodynamic contributions are then obtained using the ordering scheme to reduce the expanded 
expressions for the strain or kinetic energy and virtual work. In particular, the expression of 
the virtual work of the quasisteady aerodynamic loads contains several thousands terms, and 
the reduction procedure must he used. 
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Appendix D 

For eg = 0 the symmetric stiffness matrix of the element is: 

K(1,1)=(12*Eiz1)/1"3+ (12*ai)/(35*1) +(3*bi)/(5*1) + (6*ci)/(5*1) -
(13*l*m*Om"2)/35; 

K(1,2)=ai/14 + bi/10 + ci/10 + (6*Eiz1)/1"2- (11*1"2*m*Om"2)/210; 
K(1,3)=(12*Eizy)/1"3; 
K(1,4)=(6*Eizy)/1"2; 
K(1,6)=(-12*Eiz1)/1"3- (12*ai)/(35*1) - (3*bi)/(5*1) - (6*ci)/(5*1) -

(9*Hm*Om"2)/70; 
K(1,7)=-ai/35 + ci/10 + (6*Eiz1)/1"2 + (13*1"2*m*Om"2)/420; 
K(1,8)=(-12*Eizy)/1"3; 
K(1,9)=(6*Eizy)/1"2; 
K(2,2)=(4*Eiz1)/l + (2*ai*l)/105 + (bi*l)/30 + (2*ci*l)/15 -

(l"3*m*Om"2)/105; 
K(2,3)=(6*Eizy)/1"2; 
K(2,4)=(4*Eizy)/l; 
K(2,6)=-ai/14- bi/10- ci/10- (6*Eiz1)/1"2- (13*1"2*m*Om"2)/420; 
K(2,7)=(2*Eiz1)/l- (ai*l)/70- (bi*l)/60- (ci*l)/30 + (1"3*m*Om"2)/140; 
K(2,8)=(-6*Eizy)/1"2; 
K(2,9)=(2*Eizy)/l; 
K(3,3)=(12*Eiy1)/1"3 + (12*ai)/(35*1) + (3*bi)/(5*1) + (6*ci)/(5*1); 
K(3,4)=ai/14 + bi/10 + ci/10 + (6*Eiy1)/1"2; 
K(3,6)=(-12*Eizy)/1"3; 
K(3,7)=(6*Elzy)/1"2; 
K(3,8)=(-12*Eiy1)/1"3- (12*ai)/(35*1)- (3*bi)/(5*1)- (6*ci)/(5*1); 
K(3,9)=-ai/35 + ci/10 + (6*Eiy1)/1"2; 
K(4,4)=(4*Eiy1)/l + (2*ai*l)/105 + (bi*l)/30 + (2*ci*l)/15; 
K(4,6)=(-6*Eizy)/1"2; 
K(4,7)=(2*Eizy)/l; 
K(4,8)=-ai/14- bi/10- ci/10- (6*Eiy1)/1"2; 
K(4,9)=(2*Eiy1)/l - (ai*l)/70 - (bi*l)/60 - (ci*l)/30; 
K(5,5)=GJ/l; 
K(5,10)=-(GJ/l); 
K(6,6)=(12*Eiz1)/l"3 + (12*ai)/(35*l) + (3*bi)/(5*l) + (6*ci)/(5*1) -

(13*l*m*Om"2)/35; 
K(6,7)=ai/35- ci/10- (6*Eiz1)/1"2 + (11*1"2*m*Om"2)/210; 
K(6,8)=(12*Eizy)/1"3; 
K(6,9)=(-6*Eizy)/1"2; 
K(7,7)=(4*Eiz1)/l + (3*ai*l)/35 + (bi*l)/10 + (2*ci*l)/15-

(1"3*m*Om"2)/105; 
K(7,8)=(-6*Eizy)/1"2; 
K(7,9)=(4*Eizy)/l; 
K(8,8)=(12*Eiy1)/1"3 + (12*ai)/(35*1) + (3*bi)/(5*1) + (6*ci)/(5*1); 
K(8,9)=ai/35- ci/10- (6*Eiy1)/1"2; 
K(9,9)=(4*Eiyi)/l + (3*ai*l)/35 + (bi*l)/10 + (2*ci*l)/15; 
K(10,10)=GJ/l; 
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