
ALLFLIGHT -
BLOB-BASED APPROACH TO DETECT DANGEROUS DRIFT VELOCITIES

DURING HELICOPTER LANDING APPROACHES

Alexander Gattera, Hans-Ullrich Doehlerb, Thomas Luekenb, Ralf Stadelhoferc

aInstitute of Flight Systems and bInstitute of Flight Guidance
German Aerospace Center, DLR, Lilienthalplatz 7

38108 Braunschweig, Germany
cAvionics Systems - COEYA 2

Cassidian Electronics, Claude-Dornier-Str. 1
88039 Friedrichshafen, Germany

ABSTRACT

The Institute of Flight Systems at the German Aerospace Center (DLR) site in Braunschweig is dedicating
much effort to the goal of making a helicopter flying safe. This paper is concentrating on decreasing the danger
of accidents caused by so called “dynamic rollovers” which may result from undetected lateral velocities during
the landing approach. Especially in degraded visual environment (DVE) situations when pilots cannot evaluate
visually the horizontal movement many accidents happen. While under normal circumstances the combination
of INS and GPS is usually sufficient to detect critical lateral drift velocities during the landing process, the INS
drift may reach a dangerously high value quite soon after the GPS signal has been lost (which may happen
e.g. in canyons, cities, or due to jamming).

The vision algorithm that is proposed here uses a blob-based approach to solve this problem. Blobs are
regions in an image that fit together bound by a specific criterion. In this paper we will describe how an image
is segmented, possible blobs are selected, characterized, how they are tracked, and how the velocity of the
helicopter is calculated. Finally, the accuracy of this algorithm will be analyzed using data recorded from flight
tests that have been conducted by the DLR’s flying helicopter simulator EC135 (ACT/FHS).

1. INTRODUCTION

The project ALLFlight (Assisted Low Level Flight
and Landing on Unprepared Landing Sites) from the
German Aerospace Center is focusing on decreasing
the workload of the helicopter pilot and on increasing
his situational and mission awareness. To that pur-
pose, a couple of sensors have been attached to the
ACT/FHS. This highly modified helicopter is equipped
with a couple of sensors: a camera that is operat-
ing at a rate of 25 Hz and is sending images with a
recorded resolution of 640x480 pixels, a thermal in-
frared bolometer camera from the company MaxViz,
Inc. that is operating at a rate of 30 Hz and is also
sending images with a resolution of 640x480 pixels,
the laser scanner system HELLAS from the company
Cassidian that is delivering data with a rate of 2 Hz
and a resolution of 95x200 pixels, and the millime-
ter wave impulse radar system AI-130 from the com-
pany ICX. Additionally, the helicopter possesses the
H-764 ACE INS from Honeywell which is a coupled

GPS/INS system that shows an error in velocity accu-
racy of under 0.05 m/s when coupled with GPS and
an error of under 1.0 m/s without coupling with GPS.
INS data during the flight tests have been recorded
at a rate of 10 Hz. Figure 1 shows the sensor mount
which is equipped with the cameras, the ladar, and
the radar. For our algorithm we used the radar altime-
ter, the camera, and the INS.

Figure 1: Picture of the sensors that have been at-
tached to the ACT/FHS.



Since dynamic rollovers are responsible for a large
amount of helicopter crashes and therefore also for
immense costs, many companies are trying to find a
reliable solution to this problem. Most of them are
setting their expectations on expensive sensor equip-
ment to overcome this dangerous situation as can be
seen in a NATO report [1] about the brown-out prob-
lem from 2010. We however provide a low-cost solu-
tion, that in case of a brown- or white-out situation ex-
ploits the circumstance that during the last seconds of
the landing approach a space below the helicopter is
created that is relatively free from dust. This is called
“donut effect”. Some first approaches to a low cost
solution already have been made in [2] and [3].

There is no absolute value to be found that states
when lateral velocity is getting dangerous, but pilot
surveys provided a maximal velocity between 0.5 m/s
and 1 m/s

Our goal is to develop a solution for the dynamic
rollover problem that is also working in situations with
much disturbance (e.g. small particles flying around)
or at night and therefore needing infrared images.
This intention prohibits the use of established algo-
rithms for image movement detection like the KLT
from Lucas and Kanade [4] that is focusing on cor-
ners with high contrast. Also, the MSER algorithm
[5] that has the highest similarity of all blob-detectors
to our algorithm is only performing really well on im-
ages with sharp contrasts and else homogeneous ar-
eas (see [6]) which we did verify by applying this al-
gorithm to our real test-scenes. Another famous blob-
detector is the SIFT algorithm [7] that calculates gra-
dients in several directions for regions and therefore
also needs high contrasts. The SURF algorithm [8]
roughly works similar to the SIFT algorithm while only
approximating the gradients.

The algorithm that has been implemented to over-
come the problem of undetected lateral velocities is
based on finding regions in an image (we often will
refer to them as so-called “blobs”) that can be tracked
reliably over a longer period of time (another blob-
based algorithm for detecting movement can be found
in [9]).

In the following sections we will show the complete
computation pipeline which starts with the segmen-
tation of an incoming image by grouping regions to-
gether that are similar in their brightness, the creation
of blobs, the selection of blobs that are suitable for
tracking, the extraction of features from those blobs,
the tracking of them over time, estimating movement
through the blob displacement over time with assis-
tance from INS data, and as a last step merging the
information of several blobs to get the final estimation
of the movement and velocity of the helicopter. The
quality of the algorithm is proven with reference data
from GPS/SBAS (Satellite Based Augmentation Sys-
tem).

2. ALGORITHM

Now let us take a look into the processing chain
of the algorithm. Before the blob detection starts,
some beforehand computation has to be done. A low-
pass filter is applied to reduce high frequencies since
recorded images tend to suffer from noise. There-
fore, a median filter is used since it maintains con-
trasts better than another low pass filter like e.g. a
Gaussian filter. The correct adjustment of the filter
size is very important since blobs could result from
heavy noise in otherwise homogeneous areas while a
too big filter size could destroy vital information. Tests
on real data have shown that a filter size of 5×5 px
is a good tradeoff between keeping important original
image data and reduction of noise.

Another important preprocessing step is the rectifi-
cation of incoming images. The TV camera used by
the ACT/FHS tends to produce distorted images with
mainly barrel effects. We use the OpenCV library [10]
together with a common chessboard calibration pat-
tern (see [11] and [12]) to eliminate those distortions.
Results of this rectification can be seen in figure 2.

(a) Distorted image. Strong curvature of the horizon

(b) Rectified image. The horizons curvature is visibly reduced.

Figure 2: Image before and after rectification



2.1. Image Segmentation

After the preprocessing is done, the next step is to
segment an incoming image into useful regions. We
decided for a region growing based initial flood fill al-
gorithm that groups pixels together according to their
intensity. Beginning from the top left pixel of the im-
age, initial blobs are created by taking the intensity
of the first pixel that is regarded as the seed point
and grouping neighboring pixels into a newly created
blob if their intensity differs only up to a certain extent.
That procedure alone is unfortunately not very effec-
tive when it comes to finding good regions that show
a high contrast to their surroundings. That’s why the
flood fill algorithm is only used to create a preseg-
mentation of the image by using a large acceptable
difference in intensity of neighboring pixels and there-
fore creating a subdivision into mostly more or less
homogeneous larger regions. Regions that already
fulfill the desired size for a blob despite the large tol-
erance in intensity are stored as a new blob without
further computation. For very small regions a check
is performed with which it is tested if they are similar
to an adjacent region that could become a possible
new blob. If this is the case, both regions are fused.
In a following step, histograms of those regions are
calculated that are above a certain size and sections
of intensity values identified from which only few pixel
exist. To those seldom occurring pixels another flood
fill is applied in order to check if they are forming con-
nected regions. They are stored as a new blob if the
size of those thereby found regions lies within certain
boundaries and following requirements are met:

• they have an acceptable size

• they do not touch any border of the image

• their position is below the horizon (detectable us-
ing INS-Data and mounting angle of the camera)

• difference in intensity between blob and sur-
rounding is large enough

With that procedure we get features that are likely dis-
tinct to their surroundings. Due to that 2-step seg-
mentation approach, our algorithm usually achieves
an even distribution of blobs containing regions that
show an overall high contrast and regions that differ
from an otherwise quite homogeneous surrounding.
The whole process of segmenting an image is illus-
trated in figure 3.

2.2. Structure of a blob

In this section we want to give a short overview of
all the components that belong to a blob.

Figure 3: Processing pipeline for the image segmen-
tation

They can be grouped into three different categories:

• internally used data

• data that is used to describe a blob

• data that is used to estimate movement

A list of all this data is presented in figure 4. Later
in this paper we will go more into detail about some
of this elements. Supplementary to the stored blobs,
some arrays exist that handle indexing of blobs. First
of all, an array was created that contains the indices
for all blobs. The list of adjacent neighbors that every
blob possesses is in fact a list of pointers to entries
of that array. Pointers have been chosen because
of the fact that when a blob is deleted or fused with
another blob, it is sufficient to change the underlying
index instead of having to iterate through all blobs in
order to correct the neighborhood relations. In order
to get a fast overview of the image segmentation, a
two dimensional array in the size of the image has
been created that contains for every pixel the index
for addressing the data.



Figure 4: Components of a blob

2.3. Blob Tracking

The actual tracking of blobs is organized in a cou-
ple of processing steps. First of all we need to cre-
ate a region in which we want to search for the blob.
Therefore we create a square area around the for-
mer blob center. Since we do not want to delete
a blob the first time that we have not been able to
find it in a subsequent image there also exist situa-
tions in which we have no center to place this square
around. In that cases the center of the last time that
the blob has been found is used and the search area
is increased accordingly. Within this search square
we now apply flood fills with the minimal and maxi-
mal intensity values of the original blob as parame-
ters to create new blobs with the same intensity val-
ues. Therefore all connected regions of satisfying size
in this area are stored as blobs. This grants a high
chance that the original blob is found and selected
as a successor again. Only if regions lie within this
area that have nearly identical shape as the regarded
blob the algorithm will not be able to discriminate be-
tween those. In order to make the algorithm robust to
lighting changes we also alter the intensity field and
perform the flood fill with the new altered intensity val-
ues until the whole square is treated (blobs may of
course exceed the boundaries of that square). If nei-

ther the original parameters nor the altered ones are
able to create a new blob, the processing is repeated
one more time with stronger deviating intensity val-
ues. If this also does not produce a new blob, then
the current blob is marked as not being trackable in
this time step (and ultimately deleted after it has not
been found again for a longer time).

Provided that we found a couple of blobs during the
preceding computations, we now have to find the blob
that shows the highest resemblance to the reference
vector of features. This vector consists of the calcu-
lated features of the origin blob if this blob is tracked
for the first time or out of a mixture of features from a
number of older blobs that have been marked as re-
liably tracked. All that information have been chosen
as features are listed in figure 5.

For the comparison we calculate the features that
we have mentioned above for all newly found blobs.
We implemented a fuzzy-based voting system that
rates the similarity to the origin blob according to their
sizes to account for different error-behavior for differ-
ently sized blobs. Every feature initially contributes to
the score with “1” if it matches the compared feature
perfectly and gives lower scores the more distinct the
compared features are. After that, a weighting is ap-
plied to the single features. The votes of the surround-



Figure 5: Sketch of a blob with all data that are used
for description

ing distance and the area of the oriented bounding
box (which is calculated with [13]) are tripled and the
votes for pixel amount as well as perimeter (which has
been calculated with the algorithm of Pavlidis [14]) are
doubled. The blob that achieves the highest score is
selected to be the successor to the current blob. This
yields good recovery results as long as there are no
very similar regions in the direct neighborhood of the
regarded blob.

After having identified the blob that is most likely
the original blob in the new time step, we are not done
yet. Unfortunately we only have found the best fit so
far. That the best fit may be completely different from
the original blob has not been treated yet. Therefore
we now estimate the quality of the tracking by apply-
ing certain limits that the new blob may maximally dif-
fer from its predecessor and convey these into one
number. This number decides if a blob will be used to
estimate the helicopter movement in a later step. Fi-
nally, all vital information of the old blob is transferred
to the new blob which is going to replace the old one
in the blob list. That includes a set of features of a
couple of predecessing blobs including the features
of the current blob. These features are organized in a
deque structure which means that older features are
only stored up to a certain age until they are replaced
by new ones. The process that is described above is
also visualized in figure 6.

In order to keep the processing pipeline filled with
a sufficient amount of blobs we have to segment new
incoming images to extract further blobs. This is not
done in every time step since it would increase the list

of blobs to track to a huge size. Only if the amount
of blobs in the list is dropping under a lower limit
an image is taken for a new segmentation. Com-
pared to the initial explanation of segmentation a few
more things have to be considered during resegmen-
tation. First of all we do not want blobs to overlap
during segmentation and therefore mark regions that
already contain a blob in the index map as not valid.
Furthermore such a resegmentation step may not in-
crease the amount of blobs to an amount that is over
the lower limit of blobs. If this happens, the inten-
sity region with which the blobs are searched during
segmentation is set to a finer level and the image is
segmented once more. If this also does not lead to
the desired amount of blobs the whole process is re-
peated another time and only then the segmentation
ends whether we got enough blobs or not.

Figure 6: Processing pipeline for tracking blobs



2.4. Movement Estimation

Now that we have treated the way blobs are cre-
ated and tracked we have to take a look at how to
extract actual movement estimation from the informa-
tion that we have got so far. This estimation is based
on the detected shift of the centroids of the blobs be-
tween two time steps (time of the blob creation and
current time step) and the following projection of this
relative distance into world coordinate system by tak-
ing a flat earth assumption without slope. To make
this assumption valid, we postulate that the landing
zone has been selected and has been evaluated to
be flat and without slope before the landing approach
starts.

This flat earth assumption is assigning a distance
from the helicopter to each pixel in the image. There-
fore we take the data from the radio altimeter of the
ACT/FHS to get the camera’s height above ground
together with the data of the INS and the knowledge
over mounting angle and place of the camera sys-
tem and the camera intrinsics in reference to the he-
licopter coordinate system center. Together with the
flat earth assumption we then have enough informa-
tion to assign each pixel a depth value Z by calculat-
ing intersection points between the virtual rays emit-
ted by the camera and the ground plane. The ab-
solute movement estimation of the helicopter for one
blob is calculated by solving the formula for optical
flow for ego-motion

(
u
v

)
=

1

Z

(
−f 0 x
0 −f y

)TX

TY

TZ


(1)

+
1

f

(
xy −(f2 + x2) fy

(f2 + y2) −xy −fx

)ω1

ω2

ω3


for its lateral translational component (the horizontal
part v is not needed and therefore left out in the fol-
lowing):

TX =
TZx

f
− uZ

f
+

Z

f2

(
xyω1 − (f2 + x2)ω2 + fyω3

)(2)

TX and TZ stand for the absolute lateral and direc-
tional movement estimation of the helicopter. TZ may
be calculated by the change of estimated distance on
the ground between blob and helicopter over time and
a plausibility check but we take this information from
the INS so far. ω1, ω2, and ω3 are the changes in
orientation between two time steps within the camera
coordinate system, f is the focal length, x, and y the
coordinates within the image (relative to the optical
center), and finally u and v stand for the lateral and

horizontal displacement in pixels of the centroid be-
tween two time steps. This gives us one lateral move-
ment estimation per blob in reference to the orienta-
tion of the helicopter at the time when the blob was
created (=reference coordinate system). While one
blob would already be sufficient to give us all transla-
tional information that we need we take as many blobs
as we can detect for the drift calculation to lessen the
effects of wrong tracking results of single blobs. Since
blobs from different time steps have different refer-
ence coordinate systems we have to create a global
reference system into which all local reference sys-
tems are transformed. Since the orientation of the
helicopter will not vary much during the last seconds
of a landing approach we have taken an average over
all orientations of the last seconds.

In order to receive reference data for comparison
reasons we also performed a movement calculation
with the velocity data from our GPS-aided INS by
transforming and summarizing the incoming signals
into the reference coordinate system of each blob and
compare them to the results of our algorithm.

For the final determination of the validity of a blob’s
measured movement we also take the information of
the INS but here we only take the maximal accuracy
of the INS without GPS backing. The INS that is built
into the ACT/FHS is delivering raw INS data with an
error of maximal one meter per second. This builds
the upper limit for acceptance of a movement estima-
tion. If a blob reports a movement that exceeds this
upper limit then it is not taken into account for deter-
mining the movement of the helicopter. With this we
also are able to back up our assumption of a flat earth
because blobs that lie on structures that are signifi-
cantly elevated over the ground will produce estima-
tions that exceed the maximal INS error and there-
fore will not be included for movement measurement.
The final result is then low pass filtered to further sup-
press high frequencies that are caused by jittering of
the centroids. Over those smoothed values we calcu-
late the velocity by simply taking the moved distance
over the last second.



Figure 7: Visualization of all blobs that have been found in an image at two different timesteps during the
tracking process

3. TEST ON REAL DATA

The algorithm has been applied to real test data
that have been recorded during flight tests at the air-
port of Braunschweig. In order to be able to survey
the ability of the algorithm to detect lateral movement
we took TZ from the reference data for the evaluation
of this flight tests.

In figure 7 we present the visualization of two time
steps during the tracking process. All blobs that have
been detected at the current time step have been
marked with a green (= actual blob borders) and white
(= contour) border. The regions that are filled with red
are the blobs that have been kept tracked successfully
after a couple of time steps. In this example we can
see that all except of two remaining blobs have been
tracked correctly. The lower of those falsely tracked
blobs can easily be identified by a comparison be-
tween measurement and INS data. The blobs are dis-
tributed quite evenly and despite having the strongest
contrasts lying behind the taxiway these regions con-
tain no blobs because the possible blobs that have
been found there all touch the horizon and therefore
have been deleted.

3.1. Test scene 1

Some background information to this test:

• lateral flight at the airport Braunschweig

• height above ground is 3 meter

• mounting angle of the camera is forwarded and
approximately 16 degrees downwards

• lateral speed of the helicopter is approximately 3
meter per second

• total length of regarded test file is 35 seconds

• The camera sends data at a rate of 25 Hz

• INS information is available at a rate of 10 Hz

In figure 8, we present the behavior of selected blobs
to visualize the possible accuracy in absolutely moved
distance that we can achieve. Due to the fact that
the blobs form did quiver a bit over time because of
small lighting changes and discretization effects the
measured moved distance jumps slightly around the



(a) Over the tracking time of four seconds the helicopter moved
sideways with a speed of approximately 3 meter per second. The
error peak at second 3.5 is induced by a wrong detection of the
blob.

(b) Over the tracking time of 8.6 seconds the helicopter moved
sideways with a speed of slightly over 3 meters per second. The
error peak at second 4.8 is induced by a wrong detection of the
blob over 2 time steps.

Figure 8: Tracking of selected blobs in test scene 1

reference data but the error that is induced by that
does not increase over time.

After having presented the performance of selected
blobs we now will show the complete processing of
a scene. Therefore we start the computation at the
same time step as in figure 8(a).

Explanation for the evaluation-plots of the tests:
The red segments in the top left image of figure 9 rep-
resent the calculated shift of the movement of the he-
licopter in comparison to the reference data. Since
this algorithm is only interested in drift velocities and
not in absolute deposition we did not accumulate any
moved distances here. The measured values are just
the differences between reference data and measure-
ments of every blob in its own coordinate system at
every time step. The blue parts are normally dis-
tributed random values based on the maximal error
of the unaided INS that have been used instead of
the measurements of the blobs because at these time
steps too few blobs were able to give a vote (see the
picture on the top right side that depicts the amount of
blobs that took part in the voting for each time step).
The bottom left picture shows the averaged measured
values and the bottom right picture shows the esti-
mated difference in velocity in meter per second.

Figure 9 shows all important data that have been
evaluated. The averaged shift of all blobs in test
scene 1 reaches error peaks of up to 2.5 meter shift
from the INS data but lies under 1 meter most of the
time. The measurements also do not tend to drift
away from the reference data. The amount of blobs
that did vote for the movement estimation ranges be-
tween 0 and 28. Whenever only 3 or less blobs did
give a voting then their vote was discarded and in-

stead we used INS data that we modified with a nor-
mally distributed error to simulate an accuracy of an
INS that is not coupled with GPS.

This did happen in test scene 1 between seconds
5 and 6, at second 23, and between seconds 23 and
25. These time segments are visualized in figure 9(a)
by changing the color of the graph to blue and by
framing those segments with blue dotted lines. Under
the assumption of a quite uniform landing approach
and the nonexistence of undetected aggressive pilot
inputs we decided to take the average of measure-
ments over the last 3 seconds and determine the ve-
locity estimation for the helicopter with these. This led
to an estimated error in velocity of 0.1 meter per sec-
ond in test scene 1. Shortening the area of averaging
by 1 or 2 seconds would result in an increase of cal-
culated resulting velocity by 0.1 or 0.2 seconds in its
error peaks. Even a shortening of the sampling range
to 1 second would therefore not violate the require-
ments specification.



(a) Position error between measured data and reference data (b) Amount of blobs that took part in the voting

(c) Mean value of position error data over 3 seconds (d) Velocity error between reference and measured data

Figure 9: Evaluation of test scene 1

3.1.1. Test scene 2

Some background information to this test:

• landing approach at the airport Braunschweig

• height above ground goes from 3 meter in the
beginning to 1 meter

• mounting angle of the camera is forwarded and
approximately 16 degrees downwards

• speed of the helicopter is approximately 3 meter
per second

• total length of regarded test file is 9 seconds

• The camera sends data at a rate of 25 Hz

• INS information is available at a rate of 10 Hz

Figure 10 shows all important data that have been
evaluated for test scene 2 and is structured identical
to the evaluation of test scene 1. Test scene 2 shows
up error peaks of only about 1 meter. The measure-
ments also do not tend to drift away from the refer-
ence data. The minimal amount of 3 blobs has only
been breached once between seconds 6 and 7. Av-
eraging the data in the same manner as in test scene
1 led to an estimated error in velocity of 0.06 meter
per second. Shortening the area of averaging by 1
or 2 seconds would also result in an increase of cal-
culated resulting velocity by 0.1 or 0.2 seconds in its
error peaks.



(a) Position error between measured data and reference data (b) Amount of blobs that took part in the voting

(c) Mean value of position error data over 3 seconds (d) Velocity error between reference and measured data

Figure 10: Evaluation of test scene 2

4. CONCLUSION

In this paper we have presented an alternative ap-
proach for the estimation of movement speed of a he-
licopter with a camera and the backup from an INS.
This algorithm is aimed at adverse contrast situations
and scenarios where parts of the image or even the
whole image may sometimes be disturbed over sev-
eral time steps. Following single features over sev-
eral time steps while judging if the tracked region is
still identical to the original one enables estimation of
movement that can reduce discretization problems by
a large amount and prevent drifting of the measure-
ments up to a certain extent. As well it enables us to
recover features that have been obscured for a short
time. Missing depth information has been estimated
by a flat earth assumption and the suitability of the
algorithm for detecting dangerous drift velocities has
been evaluated by the use of real test data, showing
an error in velocity estimation of about 0.1 meter per

second on averaged input data. This error is signifi-
cantly smaller than the most restrictive demand of a
drift velocity of under 0.5 meter per second and there-
fore fulfills the required performance. In the future we
want to improve the algorithm with following points:

• the principal movement direction will in future
be calculated dependent on the relation between
orientation and absolute movement in a direction,

• the square based search method will be ad-
vanced by additionally using the information that
we get from the INS (like in [15]),

• the algorithm shall be enhanced by additionally
taking features of different kind to overcome sce-
narios where the blob based algorithm does not
return a sufficient, amount of blobs

• the capability of coping with adverse weather and
lighting situations shall be tested on virtual and
real image data.



As a final conclusion it can be summarized that this al-
gorithm possesses the potential to aiding pilots during
landing approaches by reliably detecting lateral ve-
locities that could be responsible for dangerous acci-
dents and therefore is contributing to the goal of mak-
ing a helicopter flying more safely.

COPYRIGHT STATEMENT

The authors confirm that they, and/or their company
or organization, hold copyright on all of the original
material included in this paper. The authors also
confirm that they have obtained permission, from the
copyright holder of any third party material included
in this paper, to publish it as part of their paper. The
authors confirm that they give permission, or have ob-
tained permission from the copyright holder of this pa-
per, for the publication and distribution of this paper
as part of the ERF2013 proceedings or as individual
offprints from the proceedings and for inclusion in a
freely accessible web-based repository.

REFERENCES

[1] NATO Science and Technology Orga-
nization, “Rotary-wing brownout mit-
igation: Technologies and training.”
http://www.cso.nato.int/Pubs/rdp.asp?RDP=RTO-
TR-HFM-162, 2010.

[2] H.-U. Doehler and N. Peinecke, “Image-based
drift and height estimation for helicopter landings
in brownout,” in ICIAR 10 Proceedings of the 7th
international conference on Image Analysis and
Recognition - Volume Part II, pp. 366–377, 2010.

[3] M. Hebel, K. Bers, and K. Jäger, “Imaging sensor
fusion and enhanced vision for helicopter landing
operations,” SPIE, vol. 6226, pp. 62260M:1–10,
May 2006.

[4] B. D. Lucas and T. Kanade, “An iterative im-
age registration technique with an application to
stereo vision,” in Proceedings of Imaging Under-
standing Workshop, pp. 121–130, 1981.

[5] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Ro-
bust Wide Baseline Stereo from Maximally Sta-
ble Extremal Regions,” Procedings of the British
Machine Vision Conference 2002, pp. 36.1–
36.10, 2002.

[6] T. Tuytelaars and K. Mikolajczyk, “Local Invariant
Feature Detectors: A Survey,” Foundations and
Trends in Computer Graphics and Vision, vol. 3,
no. 3, pp. 177–280, 2007.

[7] D. G. Lowe, “Distinctive image features from
scale-invariant keypoints,” in International Jour-
nal of Computer Vision 60, pp. 91–110, 2004.

[8] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf:
Speeded up robust features,” in Proceedings of
the 9th European Conference on Computer Vi-
sion, pp. 404–417, 2006.

[9] L. Goormann, “Objektorientierte Bildverar-
beitungsalgorithmen zum relativen Hovern
eines autonomen Helikopters,” Diplomarbeit,
Fachhochschule Braunschweig/Wolfenbüttel,
2004.

[10] G. Bradsky and A. Kaehler, Learning OpenCV
- Computer Vision with the OpenCV Library.
O’Reilly, 2011.

[11] D. C. Brown, “Close-range camera calibration,” in
Photogrammetric Engineering 37, pp. 855–866,
1971.

[12] Z. Zhang, “A flexible new technique for cam-
era calibration,” in Proc. of IEEE Transaction on
Pattern Analysis and Machine Intelligence 22,
pp. 1330–1334, 2000.

[13] S. Gottschalk, Collision Queries using Oriented
Bounding Boxes. PhD thesis, Chapel Hill, 2000.

[14] T. Pavlidis, Algorithms for Graphics and Image
Processing. Computer Science Press, 1982.

[15] M. Veth and J. Raquet, “Fusion of low-cost imag-
ing and inertial sensors for navigation,” Proceed-
ings of the ION meeting on Global Navigation
Satellite Systems, 2007.


	INTRODUCTION
	ALGORITHM
	Image Segmentation
	Structure of a blob
	Blob Tracking
	Movement Estimation

	TEST ON REAL DATA
	Test scene 1
	Test scene 2


	CONCLUSION

