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Abstract: System identification is an established approach for the derivation of
control-oriented dynamic models in the rotorcraft field (see for example the survey
paper [9], the recent books [19] [10] and the references therein). While the applica-
tion to full scale rotorcraft is by now fairly mature, less experience has been gathered
on small-scale vehicles, such as, e.g., quadrotor UAVs. In this paper the problem
of characterizing the attitude dynamics of a variable-pitch quadrotor from data is
considered and the results obtained in an experimental identification campaign are
presented and discussed. More precisely, in this study both on-line and off-line
methods have been considered and the performance of black-box versus grey-box
models has been compared.

NOMENCLATURE

A rotor disk area

Ab rotor blade area

c damping of the IMU vibration damping system

Clα blade airfoil lift curve slope

∂ CTσ
∂θR

rotor thrust coefficient over solidity curve

slope respect to collective blade pitch angle

CT rotor thrust coefficient

d quadrotor arm length

I quadrotor inertia matrix

J pitch axis inertia moment of IMU vibration

damping system

k spring rate of the IMU vibration damping

system

Q measurement noise variance

R rotor radius

Γ observability matrix

θ quadrotor pitch

Θ grey box model parameter vector

σ rotor solidity

τ closed-loop overall time delay

φ quadrotor roll angle

ψ quadrotor yaw angle

Ω̄ constant rotor angular velocity

1. INTRODUCTION AND MOTIVATION

Quadrotors have become increasingly popular in re-
cent years as platforms for both research and com-
mercial unmanned aerial vehicle (UAV) applications.
In order to fully exploit the potential performance
of such platforms, however, wide bandwidth attitude
controllers must be designed. This, in turn, calls for
accurate dynamic models of the vehicle’s response to
which advanced controller synthesis approaches can be
applied. As discussed in, e.g., [16] and the references
therein, mathematical models for quadrotor dynamics
are easy to establish as far the kinematics and dynam-
ics of linear and angular motion are concerned. In
fact a significant portion of the literature dealing with
quadrotor control is based on such models. Unfortu-
nately, characterizing aerodynamic effects and addi-
tional dynamics such as, e.g., due to actuators and
sensors, is far from trivial, and has led to the devel-
opment of many approaches to the experimental char-
acterization of the dynamic response of the quadro-



Figure 1: Aermatica Anteos on laboratory test-bed.

tor. More precisely, two classes of methods to deal
with this problem can be envisaged. The first class of
methods is based on black-box identification and aims
at modeling the dynamics of the system directly (and
solely) from measured input-output data (see for ex-
ample [14]). The second class of methods is based on
the calibration of the parameters of detailed physical
models, see for example [12]. In the present frame-
work, key requirements for the identification method
and the model class are the degree of automation of
the identification procedure and the compatibility of
the model class with existing control synthesis tools.
Meeting such requirements would enable a fast and
reliable deployment of the vehicle’s control system.

In view of the above discussion, this paper deals
with the problem of characterizing the attitude dy-
namics of a variable-pitch quadrotor directly from data
and presents the results obtained in an experimental
identification campaign based on the Aermatica An-
teos quadrotor UAV, a platform having a MTOW of
about 5 kg and an arm length of d = 0.415 m with vari-
able collective pitch - fixed rotor RPM architecture.
More precisely, a number of different model identifica-
tion methods have been considered in this study, with
the aim of covering: on-line and off-line estimation,
input-output and state space models, black-box and
grey-box modeling approaches.

This paper is organized as follows: Section 2
presents the approach to model identification of the
pitch dynamics as well as the corresponding experi-
ments. In Section 3 the black-box model identification
methods are illustrated. Subsequently, the grey-box
methods are described in Section 4. Finally, Section 5
presents the results of the identification process; these
results are then validated in the same section.

2. IDENTIFICATION EXPERIMENTS

The pitch attitude identification experiments dis-
cussed in this paper have been carried out in labora-

Identification PRBS signal switching
campaign interval range [s]

1 [0.05, 0.1]
2 [0.1, 0.2]
3 [0.2, 0.4]
4 [0.4, 0.8]

Table 1: PRBS min/max switching intervals for the four iden-
tification campaigns.

tory conditions, with the quadrotor placed on a test-
bed that constrains all translational and rotational
DoFs except for pitch rotation, as shown in Figure 1.
Similar experiments have been carried out in flight to
ensure that the indoor setup is representative of the
actual attitude dynamics in flight for near hovering
conditions.

The control variable of the real system is the differ-
ence between collective blade pitch on opposite rotors.
Even in controlled laboratory conditions, the design
of excitation sequences for the attitude dynamics of
the quadrotor is a critical issue because of the inher-
ent (fast) instability. In the present study a Pseudo
Random Binary Sequence (PRBS, see [15]) was se-
lected and applied in quasi open-loop conditions: while
the nominal attitude and position controllers were dis-
abled, a supervision task enforcing attitude limits dur-
ing the experiment was left active. The parameters of
the PRBS sequence (signal amplitude and min/max
switching interval) were tuned to obtain an excitation
spectrum consistent with the expected dominant atti-
tude dynamics, between 3 rad/s and 6 rad/s.

Several PRBS sequences were tested, in order to ob-
tain a spectrum with the main harmonic in the desired
frequency range and a reduced second harmonic am-
plitude. More precisely, four different identification
campaigns were conducted where the switching inter-
val was varied. The PRBS min/max switching inter-
vals in the different campaigns are reported in Table 1.
In turn, each identification campaign is composed of
three different identification tests that contain PRBS
signals with different amplitudes: in the first one the
signal switches between −0.012 rad and 0.012 rad, in
the second one between −0.015 rad and 0.015 rad and
in the last one the minimum and the maximum val-
ues of the signal are −0.019 rad and 0.019 rad respec-
tively. As illustrated in Figure 2, the input signal of
each identification experiment consists of three differ-
ent PRBS excitation sequences (I, II, III in Figure 2)
with the same switching interval and the same ampli-
tude while in the last section of each identification test
(IV in Figure 2), the nominal attitude controller was
reactivated and a desired angular reference was man-
ually imposed. This latter portion of each dataset is
not tied to the parameters of the PRBS in the identi-
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Figure 2: Input signal of an identification test, namely the dif-
ference between collective blade pitch on opposite rotors (I, II
and III are three different PRBS excitation sequences; IV repre-
sents a typical flight condition where a desired angular reference
is imposed).

fication experiment and is collected for validation pur-
poses since it representative of a typical closed-loop
flight condition. It is apparent from Figure 2 that the
input sequence of each identification experiment con-
tains portions of non-relevant information, e.g., the
periods between consecutive excitations. To deal with
the identification of the real system, it is natural to
extract from the original data only the segments that
contain relevant information about the dynamics of
the quadrotor. Thus, to obtain an input signal as in-
formative as possible, only the excitation parts must
be considered. In addition, to average out mild non-
linearities from the identification process, excitation
sequences of different amplitudes should be employed.
To this purpose, for each identification campaign one
input signal is obtained by concatenating three dis-
tinct excitations with different amplitude in ascending
order, as depicted in Figure 3a. As discussed in [15],
the concatenation of data segments can cause artificial
transients that may degrade the quality of the esti-
mate. While this is in principle an important issue, in
the present work it represents a negligible effect due
to the small number of concatenations and the large
duration of the considered sequences. For the sake
of conciseness, in this paper only the results obtained
using as input a signal resulting from the concatena-
tion of three PRBS excitation sequences belonging to
the fourth identification campaign are presented. A
graphical representation of this signal in time and fre-
quency domain is showed in Figure 3. As can be seen,
the cutoff frequency of the input signal complies with
the quadrotor dominant attitude dynamics.

Finally, during the tests the following variables were
logged, with sampling time equal to 0.02 s: input con-
trol variable u, pitch angular acceleration q̇, angular
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Figure 3: Input PRBS signal for system identification.

velocity q and angle θ measured by the on-board Iner-
tial Measurement Unit (IMU).

3. BLACK-BOX MODEL IDENTIFICA-
TION

The problem of black-box model identification for
the attitude dynamics of hovering quadrotors has been
studied extensively in the literature (see, e.g., [2, 4, 6]
and the references therein for a detailed discussion). In
particular, from the cited references, subspace model
identification (SMI) methods emerge as a viable ap-
proach for the task. In view of this, the identification
algorithm selected for this work belongs to the MOESP
(Multivariable Output Error State Space model real-
ization) class of subspace identification methods and is
known in the literature as PI-MOESP (see, e.g., [20]).
This algorithm, which is briefly described in the fol-
lowing, considers the finite dimensional, linear time-



invariant (LTI) state space model class
(1)
xt+1 = Axt +But
ỹt = Cxt +Dut yt = ỹt + vt

where xt ∈ Rn, ut ∈ Rm, yt ∈ Rp and vt is an ad-
ditive perturbations to be defined in more detail in
the following. The algorithm proceeds in three steps.
The first problem is the consistent estimation of the
column space of the extended observability matrix Γ,
defined as:

Γ =


C
CA

...
CAi−1


from measured input-output samples {ut, yt}. On the
basis of such an estimate, the A and C matrices of
the model can be determined, by exploiting the shift-
invariance of the observability subspace. Finally, a
linear least squares problem is solved in order to deter-
mine the B and D matrices1. One important equation
in the derivation of SMI algorithms is a data equation
relating (block) Hankel matrices constructed from the
i-o data samples. Let the following block-Hankel ma-
trices be defined:

Yt,i,j =


yt yt+1 · · · yt+j−1

yt+1 yt+2 · · · yt+j
...

...
. . .

...
yt+i−1 yt+i · · · yt+i+j−2



Ut,i,j =


ut ut+1 · · · ut+j−1

ut+1 ut+2 · · · ut+j
...

...
. . .

...
ut+i−1 ut+i · · · ut+i+j−2


Xt,j =

[
xt xt+1 · · · xt+j−1

]
and let the following block-Toeplitz matrix be defined:

(2) H =


D 0 · · · 0
CB D · · · 0
CAB CB · · · 0

...
...

...
...

CAi−2B CAi−3B · · · D

 .
Considering the special case of absence of noise terms,
the data equation is compactly denoted as:

(3) Yt,i,j = ΓXt,j +HUt,i,j .

On the basis of the data equation, the PI-MOESP al-
gorithm considers the RQ factorization:

(4)

Ut+i,i,jUt,i,j
Yt+i,i,j

 =

R11 0 0
R21 R22 0
R31 R32 R33

Q1

Q2

Q3

 .
1Indeed, the forced response of the output y is a linear func-

tion of the elements of B and D.

Then, a consistent estimate of the column space of
Γ is provided via a SVD of the matrix R32 under the
assumption that vt is an ergodic sequence of finite vari-
ance, satisfying E[utv

T
s ] = 0 ∀t, s.

The presence of a time delay in the plant dynamics
appears in the model identified via the PI-MOESP al-
gorithms as a non-minimum phase zero. To account
for the time delay in a proper way, a forward shift of a
proper number of samples on data sets input signal u
was applied before identification. In order to reintro-
duce the delay removed from the model into the con-
trol scheme, a correspondent time shift was added in
simulation. The overall delay of the control loop imple-
mented on board (from IMU measurements, through
acquisition and processing, to servo actuation of blade
collective pitch) was estimated in the range between
0.05 s and 0.1 s: adopted shift is equal to three sam-
ples, corresponding to τ̂ = 0.06 s.

For the sake of comparison, another black-box model
identification method is taken into account in this
work. In particular, an on-line implementation of the
classical Least Mean Squares (LMS) algorithm is con-
sidered, which updates recursively on-board an esti-
mate of the SISO discrete-time impulse response of
pitch angular velocity q in the form of the Finite Im-
pulse Response (FIR) model

(5) yt = w1ut−1 + w2ut−2 + . . .+ wrut−r,

see [15]. A state space model for the pitch dynamics
can then be recovered from the estimated impulse re-
sponse wi, i = 1, . . . , r via suitable realization tech-
niques (specifically, Kung’s algorithm, see, again, [15],
has been employed).

4. GREY-BOX MODEL IDENTIFICATION

Unlike the black-box models discussed in the pre-
vious section, which are parameterised in an unstruc-
tured way, grey-box models have a physically moti-
vated structured parameterisation, derived from first
principle considerations. In this case, in order to work
out such a parameterisation, the equations governing
the quadrotor pitch dynamics must be introduced.

4.1 Model structure

The dynamic model described in this section adds
aerodynamic terms to the basic quadrotor rigid body
dynamics model. Let I be the right-hand inertial
frame and B the right-hand body-fixed frame. The
orientation of the rigid body is given by a rotation
matrix R : B → I and the Euler angles that describes
this rotation at time t are

Φ(t) =
(
ϕ(t), θ(t), ψ(t)

)
.

Let I denote the constant inertia matrix expressed in
the body fixed frame, assumed to be diagonal for the



sake of simplicity

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 .
Denoting ω(t) =

(
p(t), q(t), r(t)

)
the angular velocity

expressed in the body-fixed frame at time t, the dif-
ferential equation governing the evolution of the pitch
angular velocity is

Iyy q̇(t) = (Izz − Ixx) p(t) r(t) +
∂M

∂q
q(t)+

+
∂M

∂u
u(t− τ̂)

(6)

where ∂M
∂q is the stability derivative of the vehicle pitch

moment with respect to q (see [17]), i.e.,

∂M

∂q
= −2ρA

(
Ω̄R
)2 ∂CT

∂q
d

and ∂CT
∂q is the variation of the thrust coefficient with

respect to q, given by

∂CT
∂q

=
Clα
8

σ

Ω̄R
d.

In (6) the control derivative of the pitch moment with
respect to the input (see [18]) is expressed as

∂M

∂u
= ρAb

(
Ω̄R
)2 ∂ CTσ

∂θR
d.

The evolution of the Euler angles is related to the
angular velocity through the following equation

(7) Ṙ(t) = R(t) · sk
(
ω(t)

)
,

where sk(·) is the skew-symmetric matrix such that
sk(a) b = a × b for vectors in R3. Expanding (7), the
evolution of the pitch attitude is

(8) θ̇(t) = cos
(
ϕ(t)

)
q(t)− sin

(
ϕ(t)

)
r(t).

Since on the test bed the roll and yaw rotational and all
translational DoFs are constrained, from (6) and (8)
it follows that

Iyy q̇(t) =
∂M

∂q
q(t) +

∂M

∂u
u(t− τ̂)

θ̇(t) = q(t).

The IMU is not rigidly connected to quadrotor air-
frame: in order to have reliable measurements, a vibra-
tion damping system must be included in the model
as a simple rotational mass-spring-damper

Iyy q̇(t) =
∂M

∂q
q(t) +

∂M

∂u
u(t− τ̂)+

+ k
(
θP (t)− θ(t)

)
+ c
(
qP (t)− q(t)

)
Jq̇P (t) = −k

(
θP (t)− θ(t)

)
− c
(
qP (t)− q(t)

)
θ̇(t) = q(t)

θ̇P (t) = qP (t)

(9)

where qP and θP represent the vehicle angular pitch
velocity and the pitch angle measured by the IMU re-
spectively. System (9) can be rewritten in state space
form as

ẋ(t) = Ax(t) +Bu(t− τ̂)

y(t) = Cx(t) +Du(t− τ̂) + v(t)
(10)

where x(t) =
(
q(t), qP (t), θ(t), θP (t)

)
is the state vec-

tor and

A =


1
Iyy

∂M
∂q −

c
Iyy

c
Iyy

− k
Iyy

k
Iyy

c
J − c

J
k
J − k

J
1 0 0 0
0 1 0 0



B =


1
Iyy

∂M
∂u

0
0
0


C =

[
0 1 0 0

]
, D =

[
0
]
.

In (10) v represents the measurement noise, introduced
as a Gaussian process with zero mean and variance Q.

4.2 Parameter estimation

In this section the approaches considered for the es-
timation of the parametric model class derived in the
previous one are presented and discussed. In particu-
lar, the quadrotor inertia was measured through a spe-
cific identification procedure (see [7]) and was found to
be Ixx = Iyy = 0.1705 kg m2 and Izz = 0.3206 kg m2.
Thus, the unknown parameters in system (10) are:

Θ =

(
∂M

∂q
,
∂M

∂u
, k, c, J

)
.

4.2.1 Maximum likelihood estimation

The most common estimator for an output-error
model, such (10), is the maximum likelihood (ML) es-
timator. Suppose that a dataset {u(ti), y(ti)} , i ∈
[1, N ] of sampled input/output data from system (10)
is available. The ML estimate is equal to the value of
Θ that maximizes the likelihood function, which is the
probability density function of y given Θ, i.e.,

L(y,Θ) = P(y | Θ)

If P(y) is Gaussian, as in (10), the ML estimator
minimizes a positive function of the prediction er-
ror (see [13] for details about the implementation of
the maximum likelihood scheme for output-error state
space models).

4.2.2 Time-frequency domain estimation

The downside of the black-box model identification
approaches, such as the ones proposed in Section 3, is



the impossibility to enforce a-priori information on the
model structure. This information is easily imposed in
a grey-box model approach, however the batch nature
of SMI methods make them more attractive with re-
spect to output-error ones, which typically have an
iterative nature. One might consider the idea of us-
ing the black-box model obtained via SMI to initial-
ize the output-error iteration; while the idea is attrac-
tive, it suffers from a major weakness, namely the fact
that state space models obtained from SMI methods
are expressed in a state space basis which cannot be
given any physical interpretation. A novel technique
for bridge the gap between unstructured models and
structured ones was proposed in [4]. This procedure
takes advantage of frequency domain approaches, us-
ing an H∞ model matching method to relate unstruc-
tured models computed using SMI techniques to struc-
tured ones determined from first principles. As it will
be explained further, in this approach the subspace
model and the grey-box model will be compared. How-
ever, the first one is a discrete-time model whereas the
grey-box is a continuous-time model. Conversion of
the discrete LTI subspace model to continuous-time is
the fist step of this method. In this work, this conver-
sion assumes a zero order hold on the inputs.

Let Mns be the LTI unstructured black-box model
identified using the PI-MOESP algorithm in Section 3
andMs(Θ) be the structured model described in (10).
Since the two models describe the same real system
with different state space basis, they should have the
same input-output behavior. This behavior, for linear
time-invariant systems, can be represented in terms
of the transfer function. Let Gns(s) and Gs(s,Θ) de-
note the transfer function ofMns andMs(Θ) respec-
tively. The model matching problem can be effectively
resolved seeking the value of Θ that minimizes a suit-
ably chosen norm of the difference between the two
transfer functions. The infinity norm is considered,
thus the problem can be recast as

(11) Θ̂ = arg min
Θ
‖Gns(s)−Gs(s,Θ)‖∞

where the infinity norm of an asymptotically stable lin-
ear time-invariant system with transfer function G(s)
is defined as

‖G‖∞ = sup
α>0

{
sup
ω
σ̄
(
G(α+ jω)

)}
= sup

ω
σ̄
(
G(jω)

)
where σ̄ is the maximum singular value.

Since Ms(Θ) has to match Mns in the frequency
range where Mns well describes the real system, a
suitable filter GW has to be introduced to focus the
matching on this range, as showed in Figure 4.
The problem (11) is therefore rewritten as

Θ̂ = arg min
Θ

∥∥GW (s)
(
Gns(s)−Gs(s,Θ)

)∥∥
∞ .

Gns(s)

Gs(s,Θ)

GW (s)
−

+

Figure 4: Block diagram of time-frequency domain approach
with filter.

Algorithm VAF with first VAF with second
validation dataset validation dataset

LMS 23.3 % 71.5 %
PI-MOESP 64.4 % 71 %
ML 58.4 % 64.9 %
H∞ 60.1 % 64.1 %

Table 2: Variance Accounted For (VAF) corresponding to each
algorithm.

This non-convex, non-smooth optimization problem
can be solved by exploiting reliable computational
tools developed for the solution of the (mathemat-
ically equivalent) problem of fixed-structure robust
controller design (see [8]).

In the above discussion, the assumption that Mns

and Ms(Θ) describe the same real system was made.
Since the closed-loop time delay was removed in the
subspace model identification method with a forward
shift of the input signal u, the same delay has to be
removed from Ms(Θ) setting τ = 0. Later, the delay
can be easily reintroduced by setting τ to the esti-
mated value.

5. RESULTS AND VALIDATION

In this section the results obtained in the identifica-
tion of linear models for the Aermatica ANTEOS UAV
are presented and discussed. In particular, in Sections
5.1 and 5.2 the procedures used to obtain black-box
and grey-box models from data are illustrated, while
Section 5.3 is devoted to the discussion of the results.

5.1 Black-box models

The PI-MOESP algorithm described in Section 3
has been applied to identify SISO models having as
input the control variable corresponding to the differ-
ence between the pitch angles applied to the front and
back rotors (the time history of which is the combina-
tion of the excitation of the PRBS and the feedback
action provided by the on-board controller executing
the supervision task) and as output the angular rate
of the pitch axis of the quadrotor.

The model order and the hyperparameter i corre-
sponding to the number of rows in the Hankel matrices
constructed from data have been chosen by means of



a cross-validation approach, namely: the identification
has been carried out for various values, in a predefined
range, for model order n and block-size parameter i of
the data matrices; the performance of each obtained
model has been assessed on the validation portion of
the data set, in terms of the Variance Accounted For
(VAF) indicator for the simulated response of the iden-
tified models. Then, the combination of model order
and block-size that maximizes the VAF of the cross
validation dataset has been retained. In particular,
the predefined range of model order is from 1 to 5
while the the range of the block-size data matrices is
from 10 to 50. The best result of the identification
process is obtained with n = 4 and p = 40.

5.2 Grey-box models

Similarly, the approaches to grey-box modeling out-
lined in Section 4 have been applied to the problem
of modeling the pitch rate response of the quadrotor.
In particular, while the maximum likelihood approach
does not offer specific parameters to be tuned, in time
frequency domain approach the filter GW is a param-
eter of the algorithm that has to be tuned to reach
the best performance in terms of VAF using a cross
validation dataset.

Since the subspace model provides an accurate de-
scription of the real system only in the frequency range
where the system is excited, GW is a low-pass filter
with an order between 1 and 25 and a cutoff frequency
between 3 rad/s and 60 rad/s. The results in Table 2
are achieved using a 15th order low-pass Butterworth
filter with a cutoff frequency of 7 rad/s. The cutoff
frequency of the filter complies with the excitation fre-
quency of identification input signal.

5.3 Validation and discussion

As outlined in Section 2, the identified models have
been validated using two new datasets. The former
dataset corresponds to normal closed-loop operation of
the pitch control system. Since it represents a typical
flight condition, the validation on this dataset provides
an assessment of the real performance of the models.
This dataset is obtained by imposing a desired angular
reference manually and measuring the closed-loop re-
sponse when the nominal attitude controller is enabled
(Figure 5). As illustrated in Section 2, this process is
done at the end of each identification test. Since it
does not depend on the parameters of the PRBS se-
quence in the test, the validation dataset is selected
randomly between all the identification tests.

The latter validation dataset, on the other hand, is
a single PRBS excitation signal with an amplitude of
0.015 rad and a switching interval between 0.4 s and
0.8 s that was not employed in the identification pro-
cess. This dataset allows to assess the performance

of the identification campaign therefore the values of
the identification algorithm parameters are chosen to
maximize the matching between the model output and
this dataset in terms of VAF.

In Figure 6 the measured pitch rate and the sim-
ulated ones obtained from the identified models are
compared using the first validation dataset as input,
while the Figure 7 shows the same results exploiting
the second validation dataset. The VAF correspond-
ing to each model is reported in Table 2 for both the
validation datasets.

As far as black-box models are concerned, it can
be seen from the figures and the table that the model
obtained using the LMS algorithm provides good per-
formance using the excitation validation signal, but
its ability to replicate the data degrades significantly
when it is applied to data corresponding to normal
closed-loop operation. The LMS algorithm is deeply
tied with the identification signal and therefore it leads
to the least accurate model since it has poor general-
ization capability. On the contrary, the PI-MOESP
subspace method leads to a black-box model with the
best validation performance, on both the considered
datasets.
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Figure 5: The attitude angular reference and the measured at-
titude angle of the first validation dataset.

As for the grey-box models, it is well known in the
literature (see, for example, the classical paper [11])
that as they have a fixed structure to deal with a-
priori information, normally they lead to inferior per-
formance with respect to black-box models. Indeed,
as reported in Table 2, this is the case also for the
application under study, as the two grey-box models
perform sightly less satisfactorily than the SMI black-
box one. It is interesting to point out that similar
conclusions have been reached in a related study (see
[5]) devoted to the identification of the flight dynamics
of a full scale helicopter. Finally, since, as explained in
Section 4, the time-frequency domain approach deals
with a model matching problem, it is also interesting



0 5 10 15 20 25

−0.5

0

0.5

[s]

[r
a

d
/s

]

 

 

LMS

0 5 10 15 20 25

−0.5

0

0.5

[s]

[r
a

d
/s

]

 

 

PI−MOESP

0 5 10 15 20 25

−0.5

0

0.5

[s]

[r
a

d
/s

]

 

 

ML

0 5 10 15 20 25

−0.5

0

0.5

[s]

[r
a

d
/s

]

 

 

H
∞

Figure 6: Validation of the identified models with the normal
closed-loop operation dataset (blue lines: measured pitch rate;
red dashed lines: model simulations).
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Figure 7: Validation of the identified models with the excitation
dataset (blue lines: measured pitch rate; red dashed lines: model
simulations).
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Figure 8: Bode diagrams of the PI-MOESP model and the H∞
model.

to compare the frequency response of the black-box
SMI model to the frequency response of the grey-box
one obtained from the time-frequency domain method.
As showed in Figure 8, where the Bode diagrams of
the PI-MOESP model and the model identified with
the H∞ algorithm are illustrated, the match between
the two models is quite accurate before the cutoff fre-
quency of the filter with VAF = 96.9% using the exci-
tation validation dataset as input.

6. CONCLUSIONS

The problem of characterizing the attitude dynam-
ics of a variable pitch quadrotor has been considered
and a number of approaches to its identification have
been applied to data collected on the real quadrotor, in
laboratory conditions. In view of both its non-iterative
nature and the accurate performance in replicating the
experimental data, the subspace approach appears to
be a good candidate for the identification part of a
fast, highly automated control design tool chain for
quadrotor attitude.
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