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Abstract

This paper treats the State Dependent Matrix Exponential(SDME) technique to solve real time nonlinear
optimal control problem. Nonlinear optimal control problem can be trasfored to the Nonlinear Programming
(NLP) problem through Direct Multiple Shooting(DMS) technique. And the NLP problem can be resolved by
using Quadratic Programming(QP) problem iteratively. Generally calculation of gradients and hessian matrix
of the Karush-Kuhn-Tucker(KKT) system for the sequential quadratic programming(SQP) problem is most
time-consuming routine in DMS framework. However the required function values to obtain matrices of KKT
system can be expressed with integrals involving matrix exponentials without resorting to time integration.
Therefore the SDME technique can reduce computational time, increase efficiency and accuracy of nonliear
optimal control analysys for real time application of nonlinear optimal controller. The results of optimal control
problem using the SDME method are compared with the other method in order to verify the computaional

efficience and accuracy.
Nomenclature

: state derivative matrix
: control derivative matrix
: control gradient of equality constraint
: control gradient of inequality constraint
: state gradient of equality constraint of matrix
exponential
: inequality constraint function
: state gradient of inequality constraints
: equality constraint function
: Hessian matrix
: cost function
: control gain matrix
. integral involving matrix exponential
: number of shooting nodes
: roll rate of search direction
: pitch rate or control variable over each
shooting interval
. yaw rate
: matrix solution of ARE
: integral involving matrix exponential
: control weighting matrix
: state variable at each shooting node
. integral inveloving matrix exponential
: state variable
: initial states or equilibrium states
: solution of motion equation
: perturbed state variable
: control variable of longitudinal linear velocity
: perturbed control variable
w :linear velocity in y-, z-direction
x : state vector or x-position
xgyy.h o X-, y-positions and altitude

a : control parameter for line search
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£ :blade flap angle

S :main rotor and tail rotor controls

¢ :roll angle or terminal cost function

® : operating cost

6 : pitch angle and pitch control

A Lagrange multiplier for equality constraint

u > Lagrange multipliers for inequality constraint
A :time variable (=7-¢;)

A; :time step size (=¢;,, -1;)

1. INTRODUCTION

The flight control system of rotorcraft has a
short development history because of its instability
and nonlinearlity of dynamics compared with fixed
wing cases. And flight control system of helicopter
which is represented with multi-variables has a
limitation on design controller by using the classical
control method which can not provide enough
robustness of controller.

To improve the efficiency of rotorcraft
controller, the design of controller basis of more
accurate system model of rotorcraft is needed.
Therefore the nonlinear optimal control method that
offers enough robustness to controller and makes
effective control possible is used to design of
helicopter flight controller. Currently nonlinear
optimal control techniques are extensively applied
for the purpose of increasing efficiency of controller
in various technical fields. Also the possibility of real
time application of nonlinear optimal control
techniques is on the increase gradually from the
improvement of computer performance. But in case
of rotorcraft which has complex nonlinear equation
of motion, the capacity of computer is insufficient
currently to use on-line optimal controller. To figure
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out this problem, many researches that develop the
efficient numerical calculation method and apply
this to the complex systems are performed at
present.

There are various strategies to solve the
nonlinear optimal control problem, including indirect
multiple-shooting, direct multiple shooting and
pseudospectral methods. The preceding direct
multiple shooting method is solve the optimal
control problem using the Nonlinear Programming
method through parameterization and discretization
of state and control variables. This paper apply the
direct multiple shooting method to design of
helicopter controller which is usually preferred for
analyzing the nonlinear optimal control problem
because of its vantage points for instance large
convergence radius and easily handled constraints.
The parameterized nonlinear programming problem
obtains the solution by using the sequential
quadratic problem which is repetition of quadratic
problem algorithm. And when an optimal control
problem is parameterized with piecewise constant
control at DMS framework, the system optimality
can be represented with structured KKT system.
This type of control parameterization shows the
best numerical performance among the DMS
techniques, and the resultant KKT system can be
effectively obtained for large scale systems. But the
DMS technique applied to the complex system just
like rotorcraft require a high weighting time even
though use today’s high-end computing
environment. The time-consuming routines in the
DMS method generally include the followings

B Building the KKT system,

B Solving the Quadratic Programming(QP)
problem to find a search direction

B Conducting one dimensional search to
update design variables for the next SQP
iteration.

These evaluations require repeated time integration
of complex motion equations to approximate
gradient and Hessian matrix of cost and constraints
function. Therefore, reducing the steps of
calculation to estimate matrices can results in direct
improvement of computational efficiency.
Accordingly, this paper treats the calculation
method of gradients and Hessian matrix on
nonlinear system stand on the linear system theory.
This paper presents the adoption of the SDC
factorization method for the nonlinear systems as a
means to derive a linear system-like structure from
nonlinear motion equations. In the case of a time
invariant linear system, the exact solution under
constant controls can be written in the form of a
matrix exponential and its integrals. Therefore, the
related quadratic cost function and continuity
constraints in the DMS method can be represented
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with various integrals involving matrix exponential.
Consequently, the KKT system for the SQP-based
DMS method can be built without any time
integration of motion equations, as opposed to the
conventional method of using time integrators. Such
an approach to a nonlinear system, if it works well,
can improve the computational efficiency of the
DMS method and enhance the accuracy of
predictions of the KKT system matrices. In addition,
the approach described above places no limitation
on handling system constraints as opposed to the
SDRE method, because its application is confined
to the prediction of the KKT system matrices,
specifically the matrices corresponding to the cost
function and continuity condition given by system
dynamic constraints. The preceding SDME method
is applied to the trajectory tracking problem of
rotorcraft. And compare the results that are attained
through apply SDME and other techniques to
helicopter maneuver trajectory tracking problem to
verify the effect of accuracy and efficiency.

2. DIRECT MULTIPLE SHOOTING METHOD

2.1 DMS approach to general nonlinear optimal
control problems

Nonlinear optimal control problems can be represent
ed by the standard Bolza form:

(1) min J(x,u,t 7) = g(x(t 7)) + ff O (x,u)dt
xulf ' ' 10
s.t.
) x(t) = f(x(0),u(0),0), te[0,tr]
x(19) = xo
(3) h(x(tf),tf) =0
(4) g(x(0),u(1),n <0

The DMS method transforms the above equations
into a solvable nonlinear programming problem in
finite dimension using suitable state and control
parameterization methods. Namely, The above
standard Bolza form formulation can be reduced to
the NLP problem (5) through the DMS framework.
The detail process of DMS framework is given in
Ref. 1. The resulting NLP problem can be
effectively resolved using the SQP method. The
equality and inequality constraints of NLP problem
shown in the equation (6).
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(5)
+1
j’q Ij (I)x] RVELY )7‘11)0”
J
s.t
hj(sj,qj):Xj(th;sj,qj)7sj+1:0 (ij,..Nfl)
(6) hy =(syty)=0

g,(,,q, ,)SO, (j=1....N)

The SQP framework for solving above NLP
problems is an iterative solution procedure which
consists of a line search procedure and the the
following QP:

N
minJ @)= 37, (3. p9)

(7)
j=0
s.t.
(8) F;p;+D;p +h ~ P =0, j=0,..,N
(9) Gjpj+Ejpj+ng0, j=L...,N-1
where
P:[Pg spls 3p1q n"':p}vV—l >p%/'—1=pf\’ ]T
Jo=J3pi += (170) "H{ pg
s s s\T s
il 1 HY (HP) | pj
Jj:(Jj\Jj ’ +5((p‘})T|(pj’-)T{ o pa |
Pj Ay HPT P
j=1...N-1
1
Iy = o+ o000 s
Toes T g
J J
2 2 2
HSS = 7 98 = o ‘Iq:an
J 2 0 2
Sj %0, oq
; ¢ o 09
oy = ¢N =
ok
Oh Oh
Fi= D, = b =hsjqot))s j=0,uN
J J 29
0s oq;
FO :DN :0
og og .
Gj:@Tj’ j:%,gj:g(sjaqj‘atj): Jj=L...,N-1
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The adjoined cost function can be defined using
Lagrange multipliers 4, and u; for the active

constraints as follows:

N
Lp =37, {p5.p9)

j—O

/1(h+ p+D
Z ;

/Nl

2#, (g;+G;p

The KKT condition can be derived with the
constraint equation shown in equations. (8) And (9),
by setting the gradient of the above adjoined cost
function to zero. The detailed derivation is given in

(10) p_[+1)

+Ejpj)

Ref. 7, and the related KKT system for j=2,...,N-1
can be summarized as:
(11)
s s\T
vav (H?S)T (Fj)T (Gj)T pj (Jj) —/‘ij_l
s g\T
S DR VAR L
Fyp Dj Ai | |k =Pia
Gj Ej Hj g

In Eq. (11), only active inequality constraints should
be included with the positivity condition of x; >0.

Therefore, the resultant KKT system is written as a
linear system with a banded structure. Since the
local cost function and continuity conditions include
time integration terms, the gradient vectors of those
functions requires repeated time integrations of
motion equations, which are generally the most
time-consuming elements in the SQP-based DMS
method.

2.2 DMS approach to LQR problems with
integrals involving matrix exponential

Consider the following local quadratic cost function in
an LQR problem.

(12) ()= [ Gte) 0exte)s

s.t

%u(T)TRu(T)de
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The exact solution of a linear time invariant system
under constant controls ¢;, which is shown in Eq.

(13), can be represented by Eq. (14).

(13) i=Ax+Bq; With x(t;)=s;

(14) X(t)=F(t~t;)s; + H(t—1,)q,
where

A(tftj)

F(t—tj):e

(15)

H(t-1;)= reA("”Bdr
D=

The states at /,,,and the local cost over [7;,7;,]
as follows:

(16) Sin1=FA)s;+H(Aj)q;

%(F(A)s j+HW, )

Ji(sj,q;)= J:l QC(F(A)SJ' +H(A)q.f) de

1
+4," Ry,
1
(17) :ESjTQSj +SjTqu
1 7 h 7
549, Wa;+54; Ra;
where
hj = tj+1 - tj
A=i-1;
Aj=tj—t;
(18) F(ay=e™0)
!
(19) H(A) = I eI Bdr
g
A .
(20) 0- jo " F@) OcF()dr
A .
(21) M= JO L F(o)! QcH (7)dr
A .
(22) W= L " H() QcH(7)dr

Therefore, the KKT system matrices related to the
cost function and dynamic constraints can be
expressed as a matrix exponential and its weighted
integrals:

D;=H(4))
s _ . T T1,T
Jj=s5;0+q; M

g_ . T T T
Jj =5 M+qj W+hjqj R
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Y =0
HY =pmT
J

99 _ T
Hj =W +th

Since the derivation of the KKT system requires no
time integration, the gradients and Hessian
matrices can be evaluated with good accuracy so
long as accurate numerical methods are used in
estimating the related integrals. This approach is
well suited to the direct multiple-shooting method
parameterized with constant controls and with finely
distributed shooting nodes.

3. FORMULATION OF NONLINEAR OPTIMAL
CONTROL PROBLEMS

By assuming the SDC matrices A4(x) and B(x)

are locally constant, the SDC factorization method
allows the definition of the SDME to be the same as
in the linear system case. Thus, initial value
problems to calculate the states and local cost over
each interval can be defined as:

(23) ¥(0)= A;(DFO)+B;(®);0 j=0L...,N-1

where the initial condition and the control input can
be written as:

)?(t]):Sj—xO(tj)

4;=4j 4o

At equilibrium, the control «,should be constant but
the state x, can vary with a constant x; .

The solution of Eq. (23) can be approximated at
the intervalre(z;,¢;,,], as is done in the LQR

problem:

(24) ()= F)\s; —xo(t,))+ HMg, —q0)
with A=7-¢ j

(25)  or  x(0)=xo(0)+ F(AF,(0)+ H(A,
with 5;(0)=s; —x(¢;)

Then, the state solution and the equality constraints
at (j+1)th shooting node can be written as:

(26) Xj(tj1555,9;) = x(t )+ F(A))s;(tj0) + H(A g

with
(27) Aj=tj-t;

(28) hi(sjsqst;) =X j(1j0138:4) =8 4
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Therefore, the gradient of the equality constraints
will have the same form as in the case of a linear
system.

Fi=—L=F@))

/ aSj

p =i H(A )
=g, T

In order to derive the KKT system matrices for
the cost function, consider the following local
quadratic cost function for a trajectory tracking
problem in the DMS framework:

1l
(29) Jj(sj’qj)=5£f+ D, (5655700000
J

D (s;.q;.0 = (0(0) = xz. ()" Oc (x(6) = x (1))

30
) +(‘1.f _MO)TR<qj ‘”0)

where

xz(¢) : prescribed reference trajectory

teltptin)

(31) x(t) — xg (1) = X(0) + F5,; (1) + Hg ;
where

x(#) = xo (1) = xp (1)

By substituting Eq. (30) into Eq. (29), the function
®;(s;,q,,1) can be written as:

®;(s;.q,.0) = X0 Qcx()+5," FTOcF5 (1)
+ ?1jTHTQcH?1,- + qNJ-TR%
(32) +25()" O FS (1)
+25,7 (OFT Q- H ;

+2%(" OcHg

The final formulation can be simplified by
defining two matrices, Hyz_; and My_; , which

can be obtained by substituting Egs. (19) and
(21) with B=7and F =1, respectively.

j+l
HB=1 = F(A)d'[
j

Mp_; = J?H OcH(Mdr
j
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Then, the local cost function can be rewritten as:
1, _ - PSS DU SR
Ji(s150) =5 IO Qcx D)+ 5 (005, 0+, W,
1l e7oe - o -
+hyd; R+ 3O Oc (H - )5, ()
+X(O) (Mp)g,; +5,() MG,
Therefore, the gradients and Hessian matrices for

the cost function have the following forms for the
nonlinear quadratic regulator problem:

(33) 7 =30 Qe (Hyy )+ 5,0 0+, M
(34) JI= ’_C(’_)T(MF=1)+EJ-(?)TM+6]TW+ hﬁjTR
H} =0
HY = MmT

99 _ T
Hj =W +th

Since the initial value problems is completely
solvable with initial conditions and control history,
dynamic variation in the equilibrium states appears
as dummy states originating from the superposition
principle in the linear system theory. These states
are generally related to slow dynamics, as in the
position change in x-, y-, and z-directions. Variables
to which no control action is applied can be
excluded from the optimal control formulation. For
example, if the objective of a turn maneuver is to
track a prescribed heading angle while maintaining
flight speed and altitude, there are no control
actions on the x- and y-position. These non-active
states can be predicted simply by integrating the
related kinematical equations using the optimal
control solution. Therefore, the system size can
be reduced and the matrix condition of the resultant
KKT system be improved because the continuity
constraints for the slow dynamics generally have
poor sensitivity to other states and controls. The
corresponding relations for the cost function
gradients have the following form:

(35) U5 =(xg-xxO) Oc(Hpy)+5, 0+q, M"
(36) J¢ =(xg—xx (@) (Mp_y)+5, M+G, " W+ng, R

Since various numerical experiments based on the
above gradient formulation present diverging
solutions, the following modified gradient
information is used, with which the trajectory
tracking capability can be retained:

(37) I3 =85 0c(Hp-)+5, 0+, "

— = \T ~Th, ~T ~T



35th European Rotorcraft Forum 2009

where

_ - 1 - . _
As(tj)=5(sj+sj+1)—xR(tj) with 7; =0.5(¢; +1;,1)

Since the resultant formulae for nonlinear systems
are nearly the same as those for linear systems, the
increase in computing time required to estimate the
related gradients and Hessian matrices mainly
depends on the SDC factorization of the nonlinear
motion equations. Even though the SDC form of the
motion equations should be repeatedly derived at
each time interval for the nonlinear system, the
number of function calls required for the numerical
calculation of the gradients and Hessian matrices
are generally much higher than the number
required for the SDC factorization. Furthermore, this
method places no limitation on the numerical
solution of a nonlinear optimal control problem with
state and control constraints, and it also provides a
direct estimation of the Hessian matrices. The
SQP algorithm generally adopts the BFGS
(Broydon-Fletcher-Goldfrab-Shannon) formula to
iteratively update the Hessian matrix. Since
gradient information alone is required, the
computation time can be greatly reduced by this
technique. However, no general methods are
capable of providing accurate initial guesses for the
Hessian matrices. Since the cost function used in
the SQP method interpolates the real cost function
with the gradients and Hessian matrices, any
prediction errors in the estimation of these matrices
can directly affect numerical convergence and
solution accuracy. Therefore, the proposed method
can be used to provide good initial guesses of the
Hessian matrices for the iterative BFGS method.

4. DYNAMIC MODELS AND NUMERICAL
METHODS

The numerical methods outlined in the previous
sections were applied to a nonlinear optimal control
formulation of a rotorcraft slalom maneuver.
Rotorcraft maneuver problems are extensively
studied by the present authors™® ' 1719, Many
contemporary applications are based on those
previous research efforts that cover the rotorcraft
flight dynamic modeling, optimal inverse simulation

with the indirect method or the SDRE technique, etc.

The related details are well documented in each
cited reference. The major features of the rotorcraft
models and numerical methods that are used in this
paper are introduced briefly below.

4.1 Rotorcraft Model and Maneuver Trajectory
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This paper presents the usage of a rotor dynamic
model, proposed by R. T. N. Chen®, where hub
fixed flap states are used to derive the closed form
expression for aerodynamic forces and moments
based on quasi-linear aerodynamic theory. In this
study, the aerodynamic forces and moments,
generated by rotors, are calculated using the main
and tail rotor trim solution. Since this study is
focused on the possible use of linear system theory
for the nonlinear optimal control problems using the
SDME, the selected modeling retains enough
nonlinear features for research purposes. The
resultant computational burden can then be
estimated based on the results from Ref [10]. For
LQR problems, a linear time-invariant model is
derived using a finite difference formula around trim
flight conditions. A trajectory can be expressed as
the sum of states at maneuver entry and its
variation during the maneuver.

(39) x(#) = x(ten[ry) +Ax(1)
(40) or K1) = XU+ fM(r)dr
entry

The lateral-position change during a slalom
maneuver is initially described with the following
formula:

o (AX) | 32 +sin(27 1) — 20sin(47 1)
Ax == 718
(41) © 46.8 L 2sin(87 1) }

where
1= (t_tentry)/(tﬁnish _tem‘ry) 0<r<l1

The times ‘ewry and Isnisn designate maneuver

entry and finish times, respectively, and (Ax)max is
the maximum amplitude of the Y-position, which
determines the maneuver aggressiveness for a
given duration. These trajectory deviations are
considered when we define a cost function for
optimal control problems. The following form of the
quadratic cost function with no terminal cost is
implemented in this study14:

fCO (ER @), u(1),1) = 0~5()_CR - )_Ctarget )T QC ()_CR - )_Ctarget)

+0.5(w - Utrim )T R(u - ulrim)

(42)
where

Xp  :reduced rigid body states

)_Ctarget : target states
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%R (0) = v w, p.q.v. 4.0, x5, yy h]

R =diag(rsy, 150> Vg0 Torp)

Oc =diag( q,> qv> dws 4ps 4g> D> 9ps
99> 4y x> 9yN> 9H)

For simplicity of analysis, no system constraints are
imposed. The target states )_Ctarge,(t) are set to be

the trim states (Xg )iy, €XCept in cases where

they require a description of their time variation for
a specific maneuver.

4.2 Numerical Methods for the SQP-based DMS

Gradients and Hessian matrices related to the
continuity condition and cost function can be
estimated using the SDME technique, as described
in the previous section. The Hessian matrix can
also be updated using the BFGS method. The
BFGS method iteratively update the Hessian
matrix, &7 , for the following general NLP problem
with the design variable x :

(43) minJ(x) subjectto h(x)=0

The BFGS method is the most popular technique
for the iterative Hessian update in the SQP method
because it is fast and widely applicable despite its
simplicity. The line search procedure based on the
Powell's method® is applied in this study, using
the L1-penality function (or the L1-merit
function) Pp, which can be used to represent a

system having equality constraints #;(»), i=1,....,m
and active inequality constraints g;(»),/j=L....m
as follows:

m /
(44) Pr(x,0,7) = J () + z o |y () + z 7 |max(0, g, (x))

i=1 j=1

Next, the one-dimensional line search and the
update of design variables are performed using the
following formulae:

(45) S =3k v agd,
(46) oy = arg{min 7(a)}
(47) T(a) = Pp(x* +ady,o4,7)

One-dimensional optimization, shown in Eq. (46), is
performed using the Powell’s algorithm in Ref [20].
The above steps generally work well in the DMS
method with a linear system but sometimes the
initial step size can becomes too large to reach a

©DGLR 2009

converged solution when applied to a DMS with
nonlinear dynamics. In this case, the initial step size
is limited in order to guarantee numerical
convergence by using this formula:

(48) a](co) = mln(l .0, K‘l||xk,1|| /||dk71||), and Kl =0.8

There exist various other strategies to improve the
numerical efficiency of the one-dimensional search,
such as higher-order correction methods to prevent
the Maratos effect, the watchdog technique to cope
with the cycling effect, etc. However, the
appropriate selection from such methods depends
on the problem at hand and, in most cases, is
heuristically determined resulting in increased
computational burden. For this reason, the
convergence characteristics of the one-dimensional
search algorithm in question were investigated
during the code development stage.

5. APPLICATIONS

The proposed SDME technique was applied to the
slalom maneuver problems of the Bo-105
helicopter, where the slalom trajectory was defined
as follows:

(Ay)max 5.0m
tenlry 1.0s
tﬁnish 9.0s

In this setup, the slalom maneuver begins in a
steady level flight at a forward speed of 60 knots.
The 4-stage Runge-Kutta time integrator was used
for the forward simulations. the time interval
between two adjacent shooting nodes was divided
into 32 integration stages. In case of the LQR
problem, KKT system matrices corresponding to the
cost function and continuity conditions could be
expressed exactly, with the SDME under the DMS
framework. Therefore, the pure SDME method (L-
F1-G1-H1: the code is defined below) can provide a
baseline solution to compare the pros and cons of
various approaches. Before analyzing the results of
the present SDME application, the details regarding
various possible approaches to building up the KKT
system matrices will help identify each method with
a different code. Table 1 presents a summary of the
available methods for each component of the KKT
system, along with the corresponding identification
codes.
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total cost J

iteration number

a. Total cost

gradient, |dJ/du|

- - — - — — ]

iteration number

b. Gradient of total cost

iteration number

c. Line search parameter

<Fig 1. Convergence characteristics of LQR problem with
varying initial line search parameter (L-F1-G1-H1)>
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Fig. 1 shows the convergence characteristics
with varying initial values of the line search

parameter ' . The analysis with o\ =1.0

requires only one or two iterations to achieve a fully
converged value of the cost function.

T T
= L-F1-G1-H1
=e=e= L-FO-G1-H1
L-FO-GO-H1

time (s)
a. Main rotor collective pitch
6 . . . . . :
| | | | ! ! [ L-F1-G1-H1
! ! ! ! ! ! ! L-FO-G1-H1
=== === + 4
I I I I
I I I |
|
time (s)
b. Lateral cyclic pitch
3 : . : : : : : , ,
! ! ! ! ! ! || =——LF1-G1-H1
I I I I I I I | memee LFO-G1-H1
e e B R e I I N SUNAnY &
L =\
I | :
5 | I
s I+
[ 1

T T
— L-F1-G1-H1
==es LFO-G1-H1
==== LF0-GO-H1

]
|
|
|
|
L _ ]
|
|
L
|
|
L
|
|
+
|
|
+
L
I

37 (deg)

time (s)

d. Tail rotor collective pitch

<Fig. 2 Control history for LQR problem>
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Table 1. Codes for the identification of calculation methods

Items in KKT system Estimation methods Code
. . - e Time integration FO
Functions of the cost function and continuity conditions SDME F1
. . - . Finite difference formula GO
Gradients of the cost function and continuity conditions SDME G1
Finite difference formula HO
SDME H1
Hessian matrices for the cost function BFGS with Identity matrix H3
initial Hessian Finite difference H4
matrix by using | SDME HS5

¢ (deg)

: :

L-F1-G1-H1
=e=es LFO-GI-H1
=== L-FO-GO-H1

i
1

|

: ,) p L-F0-GO-HO
! .

l

|

time (s)

a. roll attitude angle

0 (deg)

: : : : : : :
[ S R LF1-GIH1] |
: ﬂ‘ ﬂ‘ T T = msn LFO-GT-H1

I

|

|

7777777777 — T o ====LFOGOH1 [
L-F0-GO-HO

__ 4?“§ -
I H .
i4 *ﬁ‘_]\. ! “1}1:\% S,
"'-§.\ ,5' RN

time (s)

b. Pitch attitude angle

v (deg)
-

L-F1-G1-H1
==es LFO-GT-H1
=== LF0-GO-H1

v (deg)
-

77777 [ Y B

—— LF1-G1-H1
4 — — 4+ —| =e=e= LFOG1-H1
| || ==——LFO0-GO-H1

T 7| seeee L-F0-GO-HO
I

| | [ [

1 1 1 1

2 3 4 5 6 7 8 9 10
time (s)

d. Y-positioni

<Fig 3. Body state changes for LQR problem>
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Figs. 2 and Fig. 3 show the time history of the
controls and body states with different ways of
building the KKT system matrices. The converged
solutions using the SQP-based DMS depend
significantly on the estimation of the KKT system
matrices. The matrix exponential approach in the
DMS framework provides an exact formula for
function values, gradients, and Hessian matrices.
Therefore, the solution accuracy using the L-F1-G1-
H1 method depends on the computational accuracy
of the matrix exponential and its integrals.

The nonlinear optimal control analyses using the
SDME method involve several difficulties not found
in their linear counterparts. In the case of the LQR
problem, where an evenly distributed node system
was used, the KKT system matrices corresponding
to the cost function and continuity constraints were
constant over the SQP iteration. Therefore, the
calculation of residual vectors in the KKT system
alone was enough to continue the SQP iteration.
Furthermore a full one-dimensional search step with
a=1.0 allowed fast convergence in the SQP
procedure, as shown in Fig. 1. On the other hand,
the SDC form of the general nonlinear system has
state-dependent system matrices, which resulted in
local variation in the related KKT system matrices.
The SDME method also inherited numerical
characteristics of the SQP approach for the general
NLP problems.
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3, (deg)

gradient, [dJ/dc|

time (s)

a. Main rotor collective pitch

1 1 1
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iteration number

8¢ (deg)

b. gradient of total cost

time (s)

b. Lateral cyclic pitch

lIA ull

87 (deg)

iteration number time (s)

c. Control correction c. Longitudinal cyclic pitch

8 (deg)

lIa Il

time (s)

d. Tail rotor collective pitch

el e e ke ks Sk <Fig 5. Effect of state calculation method on
10750 ; 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50 Contr0|s>

iteration number 0.9

N-F1-G1-H1
= N-FO-G1-H1

d. State correction |

<Fig 4. Convergence characteristics of SDME
method>

0 (deg)

Fig. 4 shows the convergence characteristics
with variations in the SDME method. The history of
the cost function and error corrections for the states 0
and controls could be used to measure the solution a. Pitch atti{ILm;g)e angle
convergence. Various combinations of methods, as
defined in Table. 1, have been tried in order to
obtain a converged solution, but only the analyses
with the N-F1-G1-H1 and N-F0-G1-H1 methods
converged. Moreover, any combined analyses with
the BFGS update formula failed to achieve a
successful solution with the present SQP strategy.

©DGLR 2009 10
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time (s)

c. Y-position

N-F1-G1-H1
==+ N-FO-G1-H1

H (m)

time (s)

d. Altitude
<Fig 6. Effect of state calculation method on pitch
attitude angle and positions>

Fig. 5 and Fig. 6 compare the converged
solutions with the N-F1-G1-H1 and N-FO0-G1-H1
methods. Minor deviations in the main rotor
collective  pitch and pitch attitude angle
differentiates the effect of the time integration
methods on the solution of the nonlinear system
equations. The SDME approach provided
comparable performance in integrating the
nonlinear motion equation as the Runge-Kutta
method. This result can prove the usefulness of the
SDME method in accurately predicting the KKT
system matrices.

In principle, the SDC form of the motion
equations should be re-calculated at each time
interval in order to implement the SDME method.
This could be a big drawback in its application to
the MPC because of the large computational
burden. If the helicopter maintains a nearly steady
flight condition, the SDC matrices calculated in the
previous time step could be used, since they
generally involve negligible change. This could
provide the update logic for the SDC matrices to
increase computational efficiency. The final
application in this paper is related to this kind of
update logic. The standard SDME method updates
the KKT system matrices at every time interval,
which corresponds to the update time of

©DGLR 2009
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Aj=tjy—t;,j=0,...,N-1 The matrices calculated

at Ap=11—1y could be used without any update, if
minor variation exists in system states. In such an
extreme case, a one-time forward simulation is
enough to build the KKT system over whole time
horizon, which could provide various opportunities
to enhance the overall computational efficiency in
the MPC application. For this purpose, Fig. 7
compares the effect of the update frequency of the
SDC matrices on the optimal control solution when
the shooting nodes are evenly distributed. Three
different update logics were selected with update
frequencies of A , 5A ,and NA, respectively.

time (s)

a. Main rotor collective pitch

B (de0)

— SDC update = A
=== SDC update = 5A

5, (deg)

S1g(deg)

<Fig 7. Effect of update frequency of SDC Matrices
on controls>

Even though the results show some
discrepancy, especially in the main rotor collective
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pitch and pitch attitude angle, the trajectory
comparison in the Y-position shows that the SDME
method maintained its excellent trajectory tracking
performance without any update to the KKT system
matrices over the time horizon of interest. Where
the update frequency was five times that of the
standard application, the longitudinal cyclic pitch
shows oscillatory behaviors. However, the
calculated trajectory and controls were nearly the
same as those calculated with the standard
application. Therefore, these analyses provide a
good incentive to use the SDME technique in real-
time MPC applications.

6. CONCLUSION

A new approach to the estimation of the KKT
system matrices using integrals involving matrix
exponential has been proposed. Applications to
linear quadratic regulator problems showed that the
matrix exponential approach yields better numerical
accuracy and convergence with the direct multiple-
shooting method than the conventional estimations
of the KKT system matrices. More importantly, this
approach simultaneously calculates system states
at the end of each shooting node as well as
gradients and Hessian matrices for the cost function
and continuity constraints. The derivations for
nonlinear regulator problems resulted in nearly the
same formula as for linear regulator problems.
Here, repeated computations for the state-
dependent factorization and integrals weighted by
matrix exponential are the major contributors to
long computing times for nonlinear optimal control
analyses. However, the related computational
burden is generally much less than that associated
with the finite difference methods to estimate
gradients of the cost function and continuity
constraints. The proposed method calculates the
converged solutions for the nonlinear trajectory
tracking problem, even though the solutions using
conventional approaches are mostly divergent. In
addition, the state-dependent matrix exponential
approach can be used to integrate nonlinear motion
equations. However, the Runge-Kutta time
integrator showed better convergence
characteristics when combined with the present
matrix exponential approach in the direct multiple
shooting method. The update frequency of state-
dependent coefficient matrices had a minor effect
on the accuracy of trajectory tracking over the
present time horizon. Therefore, the compared
results could be utilized to design an efficient MPC
framework using the present method.
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