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Abstract  
 

The implicit formulation of rotor dynamics and its 
application to helicopter flight mechanics have been 
presented. The generalized vector kinematics 
regarding the relative motion between coordinates 
were expressed as a unified matrix operation and 
applied to get an inertial velocity and acceleration at 
arbitrary blade span position. Based upon these 
results the rotor aeromechanic equations for blade 
flapping, blade lead-lag and rotor torque (engine 
dynamics) have been formulated as a fully implicit 
DAE (Differential Algebraic Equations) form. While 
most current formulations can evoke some doubt in 
its validity and its applicable range of flight envelope 
after simplification or ordering, it is easy to validate 
the present results and to re-drive the rotor 
aeromechanic equations for any rotor with arbitrary 
hinge geometry and hinge sequence.  

For flight dynamic analysis, DAE based PPTA 
(Partial Periodic Trimming Algorithm) has been 
developed. The iterative update of PPTA always 
makes the initial conditions incompatible for DAE 
solver, which causes a numerical instability. By 
reducing the order of DAE solver at the initial stage 
of PPTA iteration DAE solver can be integrated into 
PPTA with good convergence characteristics. The 
present formulation and the DAE based PPTA are 
applied for Bo-105 helicopter and the results are 
compared with the results of AGARD GARTEUR 
AG06 to show its convergence characteristics and 
accuracy.  

 
Symbols 

 
C  Hinge damping coefficient 

DC  Airfoil drag coefficient  
LC  Airfoil lift coefficients  
MC  Airfoil pitching moment coefficient 

zyx ,, eee  Unit vector in the direction of x, y and z 
F  A coordinate system 

AeroF  Blade section aerodynamic forces  
I  Identity matrix 
K  Hinge spring coefficient 

l  Hinge offset distance 
L  Coordinate transform matrix 
bm  Blade mass per unit length  
AeroM  Blade section aerodynamic moments  
bn  Number of blade  

r,q,p  Airframe angular velocity 
P  Transformation matrix for periodicity 
Q  Torque 

avr ,,  Position, velocity and acceleration vector 
br  Blade span position from outer hinge 

PT U,U  Tangential and normal components of  
blade section velocity 

u,v,w  Airframe velocity 
FV  Flight speed  
β  Flapping angle 

)j(β  Flapping angle of blade j (j=1, 2, 3, 4)  
δ � Blade Pitch Control Input�
ε  Small perturbation 

ψθφ ,,  Airframe roll, pitch and yaw angle 
Aθ  Blade pitch angle 
Ω  Rotor rotational speed 
ω  Angular velocity vector 
ω~  Matrix expression of angular velocity 

If T[p,q,r]=ω  
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CP
,ωω  Predictor and corrector polynomials 
Rψ  Blade azimuth angle 

λ  Non-dimensional inflow 
ζ  Lead-lag angle  

)j(ζ  Lead-lag angle of blade j (j=1, 2, 3, 4) 
 
Subscripts 
 

S,C, 110  Collective, 1st cos and 1st sin harmonic 
components 

TR  Tail rotor 
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1. Introduction 

 
Rotorcraft flight dynamic modeling, applicable up 

to OFE (Operational Flight Envelope), generally 
needs the Level 2 rotor modeling, which requires 
(1) the numerical integration of rotor aerodynamic 
forces and moments along blade span, (2) the rotor 
dynamics for flap, lead-lag and torque (or engine 
dynamics), (3) the limited inclusion of blade elastic 
deformation (Ref 1, 2). Most formulations have 
been derived, based on one of following methods. 

 
(1) explicit formulation(Ref 3) 
(2) implicit formulation (Ref 4, 5, 6) 
(3) by using algebraic manipulator software 

 
The derived equations are generally expressed in 

the form of DAE (Differential Algebraic Equation) 
like 0=,t),,f( uxx& , where the state derivatives x&  are 
implicitly included (Ref 7). Also the choice of 
adequate solver for DAE is not so simple. In case  
one of ODE solvers were used, the DAE form of 
equations should be inevitably converted into ODE 
form ,t),g( uxx =& by applying ordering scheme and it 
is difficult to define the applicable flight envelope 
because of the ignored higher order terms. Also if 
any components like main rotor inflow, tail rotor 
flapping and tail rotor inflow are modeled 
algebraically, the algebraic equation solver should 
be applied between each time integration steps. In 
case of DAE solver the same solution procedure 
can be simultaneously applied to both DAE and 
algebraic equations without any timing problems. 

Recently R. Celi (Ref 8) has applied DAE solver 
to rotorcraft aeromechanic equations for trim 
analysis and flight simulation with two step trim 
routine. After main rotor partial trim was calculated, 
the unsteady aerodynamic forces and moments due 
to unsteady rotor motion have been considered to 
get a periodic trim response of fuselage (rigid body 
dynamics). He explained two step trim routine was 
required to get a periodic trim solution through time 
integration of flight dynamic equations. But in his 
paper there is no explanation why the efficient 
periodic trim algorithm (Ref 9, 10) was not used.  

In this paper the rotor aeromechanic equations 
for flapping, lead-lag motion and torque dynamics 
have been derived in fully implicit DAE form with no 
ordering. It is easy to find any errors during 
derivation and easy to reuse or modify the derived 
equations for different rotor configuration (e.g. 
change in hinge configuration or addition of another 
hinge, etc.). To get an efficient periodic trim DAE 
solver has been integrated into PPTA (Partial 
Periodic Trimming Algorithm). The update of initial 
condition in PPTA supplies the incompatible initial 
condition to DAE solver, which can cause a 
numerical instability. This problem has been 

overcome by simply adjusting the order of DAE 
solver. The present DAE based PPTA has been 
applied to Bo-105 helicopter to show the fast 
convergence in trim calculation. Also the effect of 
the size of time step, the number of blade span 
wise elements and the order of DAE solver on the 
periodic trim results has been investigated to 
recommend the analysis conditions for the accurate 
trim prediction and simulation. The average trim 
states calculated with DAE based PPTA have been 
correlated with the results of AGARD GARTEUR 
AG-06 (Ref 11). 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
Fig. 1 Coordinates and Displacement Vectors 

 
2. Vector Kinematics among Moving Coordinates 

In this paper vector kinematics between 
coordinate systems have been derived by 
generalizing the approach of B. Etkin (Ref 12) and 
the same notational convention is used in the 
mathematical expressions.  
   
2.1 Transformation of the derivative of a vector  

An arbitrary vector r can be expressed in two 
different coordinates AF  and BF  which have 
relative motions as in Fig 1. If subscript A and B  
are used to identify the corresponding coordinate, 
the following relations are satisfied. 

BABA

ABAB
rLr
rLr

=

=      (1) 
Where BAL  denotes a coordinate transformation 

matrix from AF to BF . ABL  is its inverse. The 
vector Ar and Br represent the displacement vector 

BA
Aω �

AF �

Ar �

BA
Ar �

BF �

Br �

BAL : coordinate transformation  matrix from AF to BF  
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r  expressed as components in AF  and BF , 
respectively. The following coordinate transform 
relations are satisfied.  

T
BAABBA

ABBA

ABBA

LLL
LL

ILL

==

==

=

−1

1        (2) 

 The derivatives of equation (1) is  

BABBABA

ABAABAB

rLrLr
rLrLr
&&&

&&&

+=

+=     (3) 
 Let Br  be an arbitrary constant vector in BF , then 

its derivatives vector in AF  can be expressed as 
follow.  

A
BA
AA

BA
AA

~ rωrωr =×=&       (4)�
, where ω~  is matrix expression of angular velocity 
ω and the superscript BA denotes that it is a 
relative angular velocity of coordinate BF  with 
respect to AF . The same notational convention is 
used throughout this paper. The differentiation of 
equation (1) gives an expression for the derivative 
of coordinate transformation matrix  

( ) 0=+=+=

=+=

A
BA
ABABAABAABAB

BABBABBABA
~ rωLLrLrLr

rLrLrLr
&&&&

&&&&   (5) 

BA
ABABA

AB
BA
AAB

~

~

ωLL
LωL

−=

=

&

&        (6) 
The relative angular velocities satisfy ABBA ~~ ωω −= , 
which is independent to the specific coordinate 
( AB

A
BA
A

~~ ωω −= , AB
B

BA
B

~~ ωω −= ). With the application of 
these relations to an arbitrary constant vector Ar  
in AF , the following coordinate transformation 
relations for angular velocity and angular 
acceleration between two coordinates can be 
obtained.  

BA
BA
BAB

BA
A

~~ LωLω =      (7) 
BA

BA
BAB

BA
A

~~ LωLω && =      (8)  The transform of the derivative of a vector Ar  can 
be expressed as    

B
BA
BBABA

~ rωrrL += &&      (9)  2.2 Velocity and acceleration in an arbitrary moving 
coordinates  

To get the transformation relations when another 
coordinate are added, let’s define three coordinates 
of an inertial coordinate IF  and two moving 
coordinates, AF and BF . Then following relations are 
satisfied. 

 
AIBABI LLL =     (10) 

IBABIA
T

BIBI LLLLL ===
−1    (11)  From time derivative of equation (10),   

AB
AI
ABA

BA
B

BI
B

~~~ LωLωω +=     (12)  Also angular acceleration B
BI~ω&  can be expressed 

by differentiating equation (12).  
BA
B

AI
B

AI
B

BA
B

AI
B

BA
B

BI
B

~~~~~~~ ωωωωωωω +−+= &&&   (13) 
, where AB

AI
ABA

AI
B

~~ LωLω =  and AB
AI
ABA

AI
B

~~ LωLω && =   The displacement vector and its 1st and 2nd 
derivatives can be derived by using the above 
transformation relations.  

 BA
AIA

AI
I

BI
I rLrr +=     

BA
A

AI
AIA

BA
AIA

AI
I

BA
A

IA
AIA

BA
AIA

AI
I

BA
AIA

BA
AIA

AI
I

BI
I

~

~

rωLrLr
rωLrLr

rLrLrr

++=

−+=

++=

&&

&&

&&&&

    

( ) BA
A

AI
A

AI
A

AI
AIA

BA
A

AI
AIA

BA
AIA

AI
I

BI
I

~~~

~

rωωωL
rωLrLrr

++

++=
&

&&&&&&& 2     
 The vector components in AF  coordinate can be 

obtained by transforming with AIL .  
BA
A

AI
A

BI
IAI

BI
A rrrLr +==      (14) 

BA
A

AI
A

BA
A

AI
A

BI
IAI

BI
A

~ rωrrrLr ++== &&&&   (15) 

( ) BA
A

AI
A

AI
A

AI
A

BA
A

AI
A

BA
A

AI
A

BI
IAI

BI
A

~~~

~

rωωω
rωrrrLr

++

++==
&

&&&&&&&&& 2  (16) 
 3. Fully Implicit Formulation of Rotor Dynamics 
Based upon the vector kinematics in section 2 the 

rotor aeromechanical equations for Level 2 
modeling have been derived. To show the 
applicability and give a physical meaning, the 
formulation has been applied for an example rotor 
configuration defined in Fig. 2.  
 

3.1 Sequential application of kinematical relation  
In case multiple coordinates over three are 

required, above relations can be sequentially 
applied to get a linear velocity and linear 
acceleration at arbitrary position. The following is a 
brief description for the sequential process of 
derivation. 
(1) The information about AF  (previously known) 

AI
A

AI
A

AI
A

AI
A

AI
AAI

~,~,,,, ωωrrrL &&&& �
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(2) Define relative motions of new coordinate BF   
BA
A

BA
A

BA
A ,, rrr &&& �

(3) Derivation of relative displacement, velocity and 
inertial acceleration at the origin of BF   

BI
B

BI
B

BI
B ,, rrr &&&  

(4) If further coordinate transform is required, define 
     BA

A
BA
ABA

~,~, ωωL &  
(5) Repeat above processes as required. 
 
3.2 Configuration of the example rotor system  

The configuration of an example rotor system as 
in Fig 2 is selected because it enough covers the 
general configuration from the flight dynamic view 
points. Parameters defining the geometric character 
are summarized in Table 1. The related coordinates 
are identified with notation, major variables, 
coordinate transformation matrix, relative 
displacement vector and relative angular velocity 
vector. 321 LLL ,,  are the coordinate transformation 
matrices as defined in equation (17) and zyx ,, eee  
be the unit vectors in x, y, z direction, respectively 







−

=
xcosxsin
xsinxcos(x)

0
0

001
1L  




 −
=

ycosysin

ysinycos
(y)

0
010

0
2L  







−=

100
0
0

3 zcoszsin
zsinzcos

(z)L � � � �����

The direction of each coordinate axis can be 
easily identified. As an example, helicopter CG 
coordinate has x axis in forward direction, y-axis in 
starboard side and z axis in downward direction. 
The forward shaft tile angle has the positive sign 
and the rotor azimuth angle is measured from the 
position when reference blade is directed to 
empennage. 

For simplicity, the matrices related with the 
matrix expression of angular velocity are defined as 

 
)0,0,1(~1 ωE = , )0,1,0(~2 ωE = , )1,0,0(~3 ωE =  

 3.3 Linear velocity and linear acceleration at 
arbitrary blade span position  

For flight dynamic analysis the velocity and 
acceleration of airframe are traditionally defined in 
airframe CG axis and can be defined as follow.  
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 The sequential application of above kinematical 
relations from body C.G. coordinate FC up to blade 
section coordinate FT gives the following linear 
velocity GI

Tv at blade section aerodynamic center and 
linear acceleration GI

Ta at blade section C.G..   
LTLFTFR

RI
RTR

RI
RTR

GI
T ςβ~ dELdELdωLvLv 32 && −−+=  

ALATLAFATF

LFLTFATALTL

FTFR
RI
R

RI
R

RI
RTR

RI
RTR

GI
T

d
ˆˆ

ˆ)~~~(

1312

32

22
2

ELELdELEL
dELELdLdL

dLdωωωLaLa

ςθβθ
βςθς

β

&&&&

&&&&&

&&&

−−

+++

+++=
 

 Where the coordinate transformation matrix can be 
calculated by the serial matrix product and as an 
example TRL  has the following expression.  

PRSPFSLFALTATR LLLLLLL =  
 The linear velocity, linear acceleration and angular 

velocity vectors represented in rotating hub 
coordinate RF .  

)~( HC
C

CI
C

CI
CRC

RI
R rωvLv +=  

)~~~( HC
C

CI
C

CI
C

HC
C

CI
C

CI
CRC

RI
R rωωrωaLa ++= &  

3ΕLωLω Ω~~
CR

CI
CRC

RI
R +=   The displacement vectors at each coordinates are;  

YATCAXB
GA
AA lr eLerd +==  

( ) YLTCAXLABA
GL
LL lrl eLeLrd ++==  

( ) YFTCAXFABFLAL
GF
FF lrll eLeLLrd +++==  

YRTCAXRAB
RLARFLRSFRPSp

GR
RR

l)r
llll(l

eLeL
LLLLrd

++

++++==  
 The angular acceleration terms due to flap, 

lead-lag and pitch control are as follow  

11
2

11

33
2

33

22
2

22

2
2
2

EEELωLE
EEELωLE
EEELωLE

θ~θθθ̂
ς~ςςς̂
β~βββ̂

RA
RI
RAR

RL
RI
RLR

RF
RI
RFR

&&&&&&

&&&&&&

&&&&&&

+−=

+−−=

+−−=
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Fig. 2 Configuration of example rotor system 

 
Table 1 Geometric definition of example rotor system 

Coordinates 
System 

Sym- 
bol Main variables 

Coordinate 
transform 

matrix 

Relative 
position 
vector 

Relative 
Angular 
velocity 

Airframe CG C     

Hub Fixed H Shaft tilt  : Sγ  
Position  : HHH z,y,x  )γ(π SHC −= 2LL  





=

H

H

H
HC
C

z
y
x

r  
0ω =

HC
C

~  

Rotating 
Hub R Azimuth angle  : Rψ  )(ψRRH 3LL =  0r =

RH
H  3Eω Ω~ RH

H =  

Pre-cone P Pre-cone angle  : Pβ  
Offset distance  : Pl  )β( PPR −= 2LL  XP

PR
R l er =  0ω =

PR
R

~  

Pre-sweep S Pre-sweep angle : Pζ  
Offset distance  : Sl  )ζ( PSP −= 3LL  XS

SP
P l er =  0ω =

SP
P

~  
Flap  
hinge F Flap angle    : β  

Hinge offset    : Fl  β)(FS −= 2LL  XF
FS
S l er =  3Eω β~ FS

S
&−=

 
Lead-lag  
hinge L Lead-lag angle  : ζ  

Hinge offset    : Ll  ζ)(LF −= 3LL  XL
LF
F l er =  3Eω ζ~ LF

F
&−=  

Feathering  
hinge A Pitch Angle     : Aθ  

Hinge offset    : Al  )(θAAL 1LL =  XA
AL
L l er =  1Eω θ~ AL

L
&=  

Blade 
section T 

Twist and torsion : Tθ  
Blade span     : Br  
Section CG/ AC  : CAl  

)θ( TTA −= 1LL  XB
TA
A r er =  

YCA
GT
T l er =   

 

Ye � Ze � Ye � Xe �

Precone  Presweep  Flap  Lead-Lag Feathering                         Blade section 

Ze �

Unit Vectors in the Direction of Hinge  
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    Table 2 Definition of Symbols 
Symbols Flap Lead-Lag Torque 

Φ  β  ζ  Ω  
H  F L R 

THL  FTL  LTL  RTL  
He  Ye−  Ze−  Ze  
AI  0 0 DRVI  
AQ  0 0 EngineQ  
ΦC  βC  ζC  0 
ΦK  βK  ζK  0 

Note 1) DRVI  denotes the equivalent 
moment of inertia due to gear box, 
engine, gas generator, drive shaft 
and etc. except the contribution 
due to rotor blade and hinges 
which is included in the integral 
part of rotor equation. 

Note 2) EngineQ denotes engine torque 
transferred to rotor to overcome 
rotor torque. 

 
3.4 Equations for rotor dynamics  
The general form of hinge moment equation can 

be represented as the follow equation and for flap, 
lead-lag and torque, the corresponding notations 
are given in Table. 2. 

�

( ){ }[ ]
0=+−−−⋅

+−−×∫
AΦΦAH

Aero
TTHb

GI
T

GI
Tb

Aero
TTH

HG
H

QΦKΦCΦI
ddrmd

&&&e
MLgaFLr

�

,where  
 

H  Notation for general hinge coordinates 
HG
Hr  Displacement vector from hinge to blade 

section coordinate (CG or AC) 
He  Unit vector in the direction of hinge 

Φ  Hinge angular displacement 
AI  Moment of Inertia due to accessory  

subsystem except rotor blade 
AQ  Torque source except rotor blade 

 �
The equations by using fully implicit formulation for 
rotor dynamics have the following forms.  
 
Flap equation for individual blade  [ ]

( )∫
∫

⋅+×=

−−⋅−×

Y
aero
LFL

aero
LFL

GF
F

ββBY
GI
T

GI
TFT

GF
Fb

dd
βKβCdr)(m

eMLFLr
egaLr &

&  (18) 
 

Lead-lag equation for individual blade  

[ ]( )∫
∫

⋅+×=

−−⋅−×

Z
aero
L

aero
L

GL
L

ςςBZ
GI
T

GI
TLT

GL
Lb

dd
ςKςCdr)(am

eMFr
egLr &

&  (19) 
 

Torque equations for rotor system  [ ]
( )
Engine

Z
aero
LRL

aero
LRL

GR
R

DRVBZ
GI
T

GI
TRT

GR
Rb

Q
dd

ΩIdr)(m

+

⋅+×=

+⋅−×

∑∫
∑∫

eMLFLr
egaLr &&

 (20) 

 3.5 Aerodynamic forces, moments and gravitational 
forces at blade section  
The velocity vector to calculate aerodynamic 

forces and moments can be represented as 
components in lead-lag axis for the rotor 
configuration in Fig.2. If wind components due to 
turbulence and induced inflow are included, the 
velocity components and the angle of attack in 
blade section can be easily defined. 

[ ]TPTR
ind
L

tur
L

GI
L

aero
L

GI
TLT

GI
L

UUU=−−=

=

vvvv
vLv  

( )
( )TP

GI
L

TP
U/Utanv

U/Utan
1

1

−

−

−==−=

=

θφθα
φ  

The aerodynamic forces and moments are 
represented as follow. 







−
−−=

φsindDφcosdL
φcosdDφsindLd Aero

L

0
F �� 





=
0
0
dM

d Aero
LM �

, where 

bL cdrVCdL 2

2
1 ρ=    bD cdrVCdD 2

2
1 ρ=  

bM drcVCdM 22

2
1 ρ= � �

222
PT UUV +=  

 
The gravitation acceleration at blade section is a 
simple coordinate transform of body components.  

CI
CHCRHPRSPFSLFALTA

GI
T gLLLLLLLLg =  

[ ]TCI
C φcosθcosφsinθcosθsing −=g  

 
4 Flight Dynamic Equations for Trim Analysis 
 The flight dynamic equations including the rotor 

dynamics can be represented as a system of 
general nonlinear DAE. If rigid body states Rx , 
flap Fx , lead-lag Lx , inflow Ix , tail rotor states Tx , and rotor speed Ωx  are considered, they have the 
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following form.  
[ ] 0==

T
TILFR f,f,f,f,f,f,t),,f( Ωuxx&   (21) 

[ ]TΩTILFR xxxxxxx =  
[ ]TR ψ,,θr,u,v,w,p,q, φ=x  
[ ]T)()()()()()()()(

F ,β,β,β,ββ,β,β,β 43214321 &&&&=x  
[ ]T)()()()()()()()(

L ,ζ,ζ,ζ,ζζ,ζ,ζ,ζ 43214321 &&&&=x  
[ ]TSCI ,λ,λλ 110=x  
[ ]TTRSTRCTRTRT ,λ,β,ββ 0110=x  
ΩΩ =x   And the trim conditions applicable for both 

straight flight and steady turning flight are  
0f ==

T
TRMTRMTRMTRMTRM ]f,f,f,f[ 1111  

 , where 
θφθφγ coscoswcossinusinVf CFTRM +−=1  

2222
2 wvuVf FTRM −−−=            

βsinVvf FTRM −=3  
θφφψ cos/)cosrsinq(fTRM +−= &4   

012

2

.cos
n

V
g

C

T

F
−±=

γ
ψ&   

VF, Cγ , β , and nT denote flight speed, flight path angle, side slip and normal load factor, respectively. 
 

5. Analysis Methodology: DAE based PPTA 
 
5.1 PPTA (Partial Periodic Trimming Algorithm)  
If the installed rotor blades have the same 

configuration, helicopter states at a steady trim 
condition expects to have a partial periodic 
characteristic with the period of bn/π2 . The related 
partial periodicity condition for state variables can 
be represented with initial states )( 0x  as equation 
(22) [2].  

0Pxx( =− )()π/nb 02     (22) 
 , where for the four bladed rotor  

),,,,diag( LF 539 IIPPIP =  
),diag( FSFSLF PPPP ==  




= 01
3I0PFS     

 Since a trim is an average feature of specific flight, 
its conditions can be satisfied with the average 
states x  and constant control u  over a time 
period of bn/π2 as equation (23).   

0sfuxf == )(),( TRMTRM      (23) 

,where [ ] ∫==
bπ/n

RR
bT )dψ(ψπ

n 2

02
suxs  

 [ ]Tuxs =   PPTA is an iterative method to find the initial state 
)( 0x and control input u  which satisfies equations 

(22) and (23). The followings are the summary of 
PPTA iterative steps. 

 
STEP 1: Specify initial conditions )( 0s  
STEP 2: Perturb initial conditions  

)(ε)(ε)()( iii 0000 0 =+= ess  
 STEP 3: Time integration and calculate error         

vector (repeat STEP 2, 3 for all is ) 

)(
b

i
i

)π/n(
0

2
s

δ
xy 


=   , ),(fTRM uxδ =  

 
STEP 4: Calculate Jacobean Matrix Φ   
       


 −=∂

∂=
2221

1211
ΦΦ
ΦPΦ

s
yΦ  

       )(
)π/n( b

0
2

11 x
xΦ
∂

∂=   
u

xΦ
∂

∂= )π/n( b2
12  

)( 021 x
δΦ

∂
∂=      

u
δΦ

∂
∂=22  

STEP 5: Newton Iterative Solution to get a new 
 initial condition )(m 01+s  (m: number of 
PPTA iteration, c: relaxation constant)  

mmm c)()( EΦss 11 00 −+
−=  




−=


 −= δ
Pxyδ

PxxE )()()π/n( bm 002
0  

 As shown in the above algorithm, time period of 
integration is reduced to bn/π2  rather than π2  
for normal periodic trimming algorithm. The 
computational time for time integration is greatly 
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reduced to the ratio of bn/1  per iteration and the 
number of a required trim iteration can become 
much less due to the reduced error with shorter 
time integration period. 

 
5.2 DAE(Differential Algebraic Equation) Solver 
DAE solver is a two step algorithm with a 

predictor step and a corrector step. The divided 
difference interpolation polynomials are used to 
predict the state variables and to transform its time 
derivatives as a function of state variables at n+1 
time step [7]. By using the notation of Reference 7 
the k-th order DAE solver can be summarized as 
the following steps. 

 
I. Predictor Step ( k,,,,i L210= )  
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, where nnn tth −= ++ 11  
At the predictor step the predictor polynomial P

n 1+ω , 
which satisfy (a), has been defined by using the 
previous calculation of sate variables such as 

L,,, nnn 21 −−
xxx . Then state variables at 1+nt  can 

be predicted by using the equations of (b) and (c) 
and the predictor polynomial at time t .  
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The corrector polynomial C

n 1+ω , which satisfies (d) 
and (e), can be defined and by applying (f) the state 
derivative 1+nx&  can be replaced with state 
variable 1+nx . Then the equation (g) is reduced to 
the system of algebraic equations as follow.  
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Or ( ) 0=+ ,tβ,αf xx  (without subscript 1+n ) 
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By applying Newton iterative method, the following 
form of DAE solver can be obtained.  ( ) 011 =+−= −+ ,tβ,αfc (m)(m)(m))(m xxGxx  

, where 
xx

G
∂
∂+

∂
∂= ffα
&

  

 c is under-relaxation constant 
 

The Jacobean matrix G  can be numerically 
calculated as follows 

[ ][ ]
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+++≈ ,t∆xβ,)∆x(αf
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j
j exex

exex
G

2
1  

 5.3 Integration of DAE solver into PPTA  
The accuracy and convergence of DAE solver for 

linear differential algebraic equation can be 
achieved with compatible initial conditions, which 
should satisfy the original DAE [4]. But DAE based 
PPTA cannot meet this compatibility condition due 
to state perturbations and state updates during 
iterative solution of PPTA. From the detail 
investigation, the reduction of DAE order at initial 
integration steps has been found to be an effective 
way for good convergence and the allowed 
maximum accuracy can be recovered by gradually 
increasing the order k of DAE solver according to 
the following logic.   




 += n,k,mMINk max1
5

         (25) 
, where m   Number of PPTA iteration 

kmax  Allowed maximum DAE order 
n    Time step (n=1 at 0=Rψ )  The flight simulation from a calculated periodic 

trim condition can start with the allowed maximum 
DAE order. 
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6 APPLICATION 
 

The present rotor aeromechanical equations and 
DAE based PPTA were applied to Bo-105 CBM 
(Common Baseline Model) helicopter which had 
been used by AGARD AGRTEUR AG06 working 
group during their collaborative research for 
helicopter flight mechanic analysis [6]. CBM 
helicopter has flapping dynamics with flap hinge 
spring and flap hinge damping. At the present 
analysis the dynamic inflow model (Ref 13) has 
been used rather than classical Glauert-trapezoidal 
inflow model in CBM. With the disc model for tail 
rotor, the flapping and the inflow of tail rotor have 
the forms of pure algebraic equation. But as already 
mentioned, the time integration by DAE solver can 
simultaneously process these algebraic equations 
with DAE for the dynamic equations of airframe, 
main rotor flapping and main rotor inflow.  

The convergence history in section 6.1 has 
been calculated with; 
� Azimuth element = 144 ( 52.R =ψ∆ Deg) 
� Forward speed VF= 250 km/hr  If not specifically mentioned, the trim calculations 

have been obtained with the following baseline 
conditions. 
� DAE order = 3rd order  
� Azimuth element = 36 ( =Rψ∆ 10 Deg) 
� Radial blade elements = 10  6.1 Convergence history  

The convergent periodic trim history has been 
calculated at forward flight speed of VF= 250 km/hr. Fig. 3 shows the RMS value of the difference 
between two successive calculations of initial trim 
states. Around 20 iterations (5 rotor revolutions) are 
enough for the converged periodic trim calculation 
and the jumps in 5th and 10th iteration are occurred 
due to the stepwise increase in the order of DAE 
solver. The time history of states and pitch controls 
are shown in Fig.4, Fig.5 and Fig.6, which showed 
the nearly periodic properties after 2 rotor 
revolutions (8 PPTA iterations). 
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Fig. 3 Convergence History  
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  Fig. 5 History of Angular Response 
 

6.2 Periodic Flap Response  
The analysis conditions for good trim prediction 

have been deduced from the fully converged 
periodic flap solution with variations of the time step 
size, the number of radial blade elements and the 
desired order of DAE solver. The trim conditions 
were calculated for the forward flight speed of VF= 250 km/hr. 
 
Effects of time step size (in azimuth angle) Fig. 7 
shows the converged flap response with variation of 
time step size of =Rψ∆ 5, 10, 15 and 22.5 deg (72 
~16 azimuth elements). The desired accuracy can 
be obtained if ≤Rψ∆ 10 deg. Fig. 8 showed the 
partially enlarged view of flap response to see more 
detail difference. 
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Fig. 6 Convergence History of Pitch Controls  
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 Fig 7 Converged Flap Response with time step size 
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Fig 8 Enlarged View of Flap Response 

 
Effects of the number of radial blade elements Fig. 
9 shows the converged flap response with variation 
of the number of radial blade elements from 5 to 20. 
The analysis with more than 10 radial elements 
represents the nearly same results.   
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Fig.9 Flap Responses with Variation of the Number  

of Blade Radial Elements 
 

Effects of the order of DAE solver Fig. 10 shows the 
effect of DAE order on the converged flap response. 
The analysis with DAE order equal to 1 differs from 
the other. So the good accuracy can be obtained 
with DAE order greater than or equal to 2.   
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Fig.10 Flap Responses with Variation of DAE 
Order 

 
6.3 Effects of Forward Speed on Trim Control  
Fig.11, Fig.12 and Fig.13 show the blade pitch 

control inputs with variation of forward flight speed 
from 0 to 250 km/hr. The PPTA assumes the control 
inputs are constant even if the state variables 
should meet a partial periodicity condition given in 
equation (22). The effects of time step size, the 
number of blade radial elements and DAE order on 
the trim control inputs are negligible except a minor 
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difference in the lateral cyclic control C1δ  of main 
rotor. As in the flap response the effect of DAE 
order is the greatest and DAE order greater than 2 
is enough to get a good accuracy. 
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Fig.11 Trim Controls with Varying Time Step Size 
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 Fig.12 Trim Controls with Varying the Number of  
Blade Radial Elements 
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Fig.13 Trim Controls with Varying DAE Order 
 

6.4 Correlation with AGARD GARTEUR AG06 
Results  
To show the accuracy of present algorithm, the 

calculated results are correlated with the results of 
AGARD GARTEUR AG06 (Ref 11). Two kinds of 
trim analysis methods have been applied to the 
present formulation of helicopter flight dynamic 
equations. One is the harmonic balance methods 
and the other is the DAE based PPTA. Because the 
trim states calculated by DAE based PPTA show 
the periodic characters, those are averaged over 
one rotor revolution for comparisons. Fig. 14 shows 
the airframe pitch angle and main rotor controls 
with variation of forward flight speed. The average 
trim states calculated by present DAE based PPTA 
are nearly same as the trim calculation by harmonic 
balance method. Also except the lateral cyclic 
control of main rotor the calculated results have 
shown good correlations with Nominal CBM Trends 
which are the averaged trim value over different 
participants in the AGARD GARTEUR AG06. To 
show the scatter in the trim results among AG06, 
the variations are presented at VF= 150 km/hr in the figure. The root cause of the difference in the lateral 
cyclic trim control has been already investigated in 
Ref 11. 
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(a) Airframe Pitch Angle 
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    (b) Main Rotor Collective Pitch 
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   (c) Main Rotor Lateral Cyclic Pitch 
 
Fig. 14 Correlation with AGARD AG06 Results 

 
The cyclic trim control calculated with dynamic 
inflow model rather than classical Glauert-
trapezoidal inflow model has shown a clearer shape 

of spoon which is similar to with flight test results 
(Ref 11). The present analysis with dynamic inflow 
has presented the same tendency.  

 
CONCLUSIONS 

 
The present formulation for rotor dynamics and 

the periodic trim calculation with DAE based PPTA 
show the following key results. 

 
1. The fully implicit formulation in this study can be 

easily modified for its application to any rotor 
with arbitrary hinge geometry and hinge 
sequence. 

2. The DAE solver and PPTA have been 
successfully integrated by adjusting DAE order 
and the results show the fast convergence. 

3. From the application to AGARD AG06 CBM 
helicopter, the accurate calculation can be 
obtained with (1) azimuth elements more than 
36, (2) radial blade elements larger than 10 and 
(3) DAE order greater or equal to 2. 

4. The calculated trim states and trim control 
inputs are well correlated with the results of 
AGARD GARTEUR AG06 
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