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Abstract

The implicit formulation of rotor dynamics and its
application to helicopter flight mechanics have been
presented. The generalized vector kinematics
regarding the relative motion between coordinates
were expressed as a unified matrix operation and
applied to get an inertial velocity and acceleration at
arbitrary blade span position. Based upon these
results the rotor aeromechanic equations for blade
flapping, blade lead-lag and rotor torque (engine
dynamics) have been formulated as a fully implicit
DAE (Differential Algebraic Equations) form. While
most current formulations can evoke some doubt in
its validity and its applicable range of flight envelope
after simplification or ordering, it is easy to validate
the present results and to re-drive the rotor
aeromechanic equations for any rotor with arbitrary
hinge geometry and hinge sequence.

For flight dynamic analysis, DAE based PPTA
(Partial Periodic Trimming Algorithm) has been
developed. The iterative update of PPTA always
makes the initial conditions incompatible for DAE
solver, which causes a numerical instability. By
reducing the order of DAE solver at the initial stage
of PPTA iteration DAE solver can be integrated into
PPTA with good convergence characteristics. The
present formulation and the DAE based PPTA are
applied for Bo-105 helicopter and the results are
compared with the results of AGARD GARTEUR
AGO06 to show its convergence characteristics and
accuracy.

Symbols
C Hinge damping coefficient
C, Airfoil drag coefficient
C, Airfoil lift coefficients
C, Airfoil pitching moment coefficient
e e ,e. Unitvectorin the direction of x, y and z
F A coordinate system
FAr Blade section aerodynamic forces
1 Identity matrix
K Hinge spring coefficient
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Hinge offset distance

L Coordinate transform matrix
m, Blade mass per unit length
M*  Blade section aerodynamic moments
n, Number of blade
p.q,r  Airframe angular velocity
P Transformation matrix for periodicity
(0] Torque
r,v,a Position, velocity and acceleration vector
r, Blade span position from outer hinge
U,,U, Tangential and normal components of
blade section velocity
u,v,w  Airframe velocity
V, Flight speed
yij Flapping angle
B Flapping angle of blade j (j=1, 2, 3, 4)
o) Blade Pitch Control Input
£ Small perturbation
¢,0,w  Airframe roll, pitch and yaw angle
o, Blade pitch angle
0 Rotor rotational speed
o Angular velocity vector
0] Matrix expression of angular velocity
Ifw=/[pqr]
0 —r q
opgr)=| r 0 -p
- p 0
= p®(1,0,0)+qg®(0,1,0)+r&(0,0,1)
=pE, +qE, +rE,
o”, 0 Predictor and corrector polynomials
W Blade azimuth angle
A Non-dimensional inflow
4 Lead-lag angle
s Lead-lag angle of blade j (j=1, 2, 3, 4)
Subscripts
0,1C1S Collective, 1% cos and 1% sin harmonic
components
TR Tail rotor



1. Introduction

Rotorcraft flight dynamic modeling, applicable up
to OFE (Operational Flight Envelope), generally
needs the Level 2 rotor modeling, which requires
(1) the numerical integration of rotor aerodynamic
forces and moments along blade span, (2) the rotor
dynamics for flap, lead-lag and torque (or engine
dynamics), (3) the limited inclusion of blade elastic
deformation (Ref 1, 2). Most formulations have
been derived, based on one of following methods.

(1) explicit formulation(Ref 3)
(2) implicit formulation (Ref 4, 5, 6)
(3) by using algebraic manipulator software

The derived equations are generally expressed in
the form of DAE (Differential Algebraic Equation)
like fix,x,u,t) =0, where the state derivatives x are
implicitly included (Ref 7). Also the choice of
adequate solver for DAE is not so simple. In case
one of ODE solvers were used, the DAE form of
equations should be inevitably converted into ODE
form x = g(x,u,¢) by applying ordering scheme and it
is difficult to define the applicable flight envelope
because of the ignored higher order terms. Also if
any components like main rotor inflow, tail rotor
flapping and tail rotor inflow are modeled
algebraically, the algebraic equation solver should
be applied between each time integration steps. In
case of DAE solver the same solution procedure
can be simultaneously applied to both DAE and
algebraic equations without any timing problems.

Recently R. Celi (Ref 8) has applied DAE solver
to rotorcraft aeromechanic equations for trim
analysis and flight simulation with two step trim
routine. After main rotor partial trim was calculated,
the unsteady aerodynamic forces and moments due
to unsteady rotor motion have been considered to
get a periodic trim response of fuselage (rigid body
dynamics). He explained two step trim routine was
required to get a periodic trim solution through time
integration of flight dynamic equations. But in his
paper there is no explanation why the efficient
periodic trim algorithm (Ref 9, 10) was not used.

In this paper the rotor aeromechanic equations
for flapping, lead-lag motion and torque dynamics
have been derived in fully implicit DAE form with no
ordering. It is easy to find any errors during
derivation and easy to reuse or modify the derived
equations for different rotor configuration (e.g.
change in hinge configuration or addition of another
hinge, etc.). To get an efficient periodic trim DAE
solver has been integrated into PPTA (Partial
Periodic Trimming Algorithm). The update of initial
condition in PPTA supplies the incompatible initial
condition to DAE solver, which can cause a
numerical instability. This problem has been
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overcome by simply adjusting the order of DAE
solver. The present DAE based PPTA has been
applied to Bo-105 helicopter to show the fast
convergence in trim calculation. Also the effect of
the size of time step, the number of blade span
wise elements and the order of DAE solver on the
periodic trim results has been investigated to
recommend the analysis conditions for the accurate
trim prediction and simulation. The average trim
states calculated with DAE based PPTA have been
correlated with the results of AGARD GARTEUR
AG-06 (Ref 11).

L,, : coordinate transformation
matrix from F,to F,

Fig. 1 Coordinates and Displacement Vectors

2. Vector Kinematics among Moving Coordinates

In this paper vector kinematics between
coordinate systems have been derived by
generalizing the approach of B. Etkin (Ref 12) and
the same notational convention is used in the
mathematical expressions.

2.1 Transformation of the derivative of a vector

An arbitrary vector r can be expressed in two
different coordinates F, and F, which have
relative motions as in Fig 1. If subscript 4 and B
are used to identify the corresponding coordinate,
the following relations are satisfied.

ry =Lyr, (1)
ry=Lyr,
Where L., denotes a coordinate transformation

matrix from F, to F, . L, is its inverse. The

vector r, and r, represent the displacement vector



r expressed as components in F, and F, ,
respectively. The following coordinate transform
relations are satisfied.

Ly, L,,=1
PN

4 T
Ly, =L,=Ly,

(2)

The derivatives of equation (1) is

';B = l:‘BArA +LBA':A (3)

ry=Lgr, +L,,F,

Let r, be an arbitrary constant vector in F,, then
its derivatives vector in F, can be expressed as
follow.

Po=0 xr, =0 r

4 (4)

, where @ is matrix expression of angular velocity
o and the superscript BA denotes that it is a
relative angular velocity of coordinate F, with
respect to F,. The same notational convention is
used throughout this paper. The differentiation of
equation (1) gives an expression for the derivative
of coordinate transformation matrix

r, :lj/m rg+ Ly ry=L,rg

(5)

~ BA
,

ry =Ly ry+ Ly r, =Ly +Lg, )"AZO

L= aN)iIMLAh‘

Ly, =-L, &% ©)

BA T BA A

The relative angular velocities satisfy ™ = - o"”,
which is independent to the specific coordinate
(0% =-0)" 0} =-0,"). With the application of
these relations to an arbitrary constant vector r,
in F, , the following coordinate transformation
relations for angular velocity and angular
acceleration between two coordinates can be
obtained.

~BA

~ BA
o,

=L, oML (7)

(8)

The transform of the derivative of a vector r, can
be expressed as

AB BA

~ BA

~ BA
wB LBA

o, =L,

(9)

2.2 Velocity and acceleration in an arbitrary moving
coordinates

To get the transformation relations when another
coordinate are added, let's define three coordinates
of an inertial coordinate F, and two moving
coordinates, F,and F,. Then following relations are
satisfied.

P! ~ B4
Lr,=r,+0, r,
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Ly =Ly L, (10)

Lmil = LBIT =L,L,; =Ly, (11)
From time derivative of equation (10),

‘7)1};] = “N’gA + LBA(T)::ILAB (12)

Also angular acceleration @

by differentiating equation (12).

s can be expressed

-~ BI ~BA | <Al  ~BA Al ~ Al ~BA

o, =0, +0, -0, 0, +0;, o, (13)
~ Al ~ Al ~ Al ~ Al

,Where @, =L, o7 L,, and o, =L, o} L,

its 1% and 2™
using the above

The displacement vector and
derivatives can be derived by
transformation relations.

rB[

Al BA
T =T +L1ArA

Bl Al § . BA . B4
roo=r" +Lyr” +Lyr,

- Al - BA ~JA _ BA
=r; +Lyr; -L, o) r,
= '.‘IAI +L1A';/fA +Ly, ‘7)2” r,fA
s BI s Al -+ BA ~ Al - BA
roo=r +.L,ArA +2L, 0 rF,
+L o)+l o )rH
The vector components in F, coordinate can be
obtained by transforming with L ,, .
rf[ :LAIrIBI :rf["'rfA (14)
- BI -, BI - Al - BA ~AI _ BA
ry =L,r7 =r] +F," +0) r, (15)
i;AB/ — LAIi;[B/ — i;AA/ + i;ABA + 2(7)::[';/13/1
™ (16)

Al ~ Al ~ Al
t+\w; +to, o, |r,

3. Fully Implicit Formulation of Rotor Dynamics

Based upon the vector kinematics in section 2 the
rotor aeromechanical equations for Level 2
modeling have been derived. To show the
applicability and give a physical meaning, the
formulation has been applied for an example rotor
configuration defined in Fig. 2.

3.1 Sequential application of kinematical relation

In case multiple coordinates over three are
required, above relations can be sequentially
applied to get a linear velocity and linear
acceleration at arbitrary position. The following is a
brief description for the sequential process of
derivation.

(1) The information about F, (previously known)

Al ~ Al <Al
r, 0, ,0,

Al Al
L,.ry, ry,



(2) Define relative motions of new coordinate F,
rfA i rIfA i i;ABA
(3) Derivation of relative displacement, velocity and
inertial acceleration at the origin of F,
rBBl’ r:l ) i;BBl
(4) If further coordinate transform is required, define

~ BA

~ BA
Ly, o, 0,

(5) Repeat above processes as required.

3.2 Configuration of the example rotor system

The configuration of an example rotor system as
in Fig 2 is selected because it enough covers the
general configuration from the flight dynamic view
points. Parameters defining the geometric character
are summarized in Table 1. The related coordinates
are identified with notation, major variables,
coordinate transformation matrix, relative
displacement vector and relative angular velocity
vector. L, L, L, are the coordinate transformation
matrices as defined in equation (17) and e, e e,
be the unit vectors in x, y, z direction, respectively

(1 0 0 cosy 0 —siny
L(x)=|0 cosx sinx| L@)=| 0 1 0
|0 —sinx cosx| siny 0 cosy
[ cosz sinz 0]
Lyz)=|-sinz cosz 0 17)
0 0 1]

The direction of each coordinate axis can be
easily identified. As an example, helicopter CG
coordinate has x axis in forward direction, y-axis in
starboard side and z axis in downward direction.
The forward shaft tile angle has the positive sign
and the rotor azimuth angle is measured from the
position when reference blade is directed to
empennage.

For simplicity, the matrices related with the
matrix expression of angular velocity are defined as

E, =&(1,0,0), E,=a(0,1,0), E,=a(0,0,1)

3.3 Linear velocity and
arbitrary blade span position
For flight dynamic analysis the velocity and
acceleration of airframe are traditionally defined in
airframe CG axis and can be defined as follow.

linear acceleration at
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u u—rv+qgw

-l _ . CT _ -cr oo |-
Fl=ve = v, I =a; =\ v—-pw+ru
w W—qu+ pv

Cl p Cl p

Oc =4} Oc =4

r F

The sequential application of above kinematical
relations from body C.G. coordinate F¢ up to blade
section coordinate Fr gives the following linear
velocity v at blade section aerodynamic center and
linear acceleration a" at blade section C.G..

GI
Yy

LIRV;{U + LIRQN)IIQUdR _ﬁLTFEZdI" _éL]LE3dL

a;}" = Lma;eu + Ly (?’11:[ + 611:[‘?’11? )y + Lzmédﬂ
+Lygd, +L,60d,+2¢BL E, L, Ed,

- 29BLTF Esz Eld_—l - 29.;LTI/E1LIA Eld/-'l

Where the coordinate transformation matrix can be
calculated by the serial matrix product and as an
example L,, has the following expression.

Ly =LyL, LLigLgy Ly,

The linear velocity, linear acceleration and angular

velocity vectors represented in rotating hub
coordinate F.
RI Cl ~(CI  HC
vy =Ly(vi +o 1)
RI Cl ~CI  HC ~(Cl ~CI  HC
ap =Lye(a; +o0 1" +0- 00 1)

oF =L, L, +QF,
The displacement vectors at each coordinates are;
d, = r/fA =rgey +l., L, e,
d, = rLGL = (IA +rBLLA)eX +1l., L, ey
d,=r?" =(, +1,L,, +r,L)e, +1.,L,e,
dy=r" =(1,+IgLy +1, Lyg+1, Ly +1,Ly,
+rgLly,Jey +1,Lye,

The angular acceleration terms due to flap,
lead-lag and pitch control are as follow

f=-BE, ~2pLyy6} Ly E, + p°E,E,
G=—CE, —2¢L,, @Y Ly E, +&*ELE,

0= 0E, —20L,6" L, E +0*EE,
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Fig. 2 Configuration of example rotor system

Table 1 Geometric definition of example rotor system

Coordinates  Svm Coordinate Relative Relative
Svstem I;Iol Main variables transform position Angular
’ matrix vector velocity
Airframe CG C
Shaft tilt : .| ¥
Hub Fixed H iti s Ly =Ly(m-ys) r({I( _|\y”] &3({,(‘ =0
Position Xy Vi Zy -
Rotating )
Hub R Azimuth angle : Ve Ly = Ly(yy) rH =0 CNUf,v” =QF,
Pre-cone angle : g
Pre-cone P L _ PR SPR
Offset distance  : 1, Lo =Lo( =B i =lpey o =0
Pre-sweep angle : ¢,
Pre-swee S ! s v _; o
P Offset distance : Ly =Ly(-C;) r = lgey op =0
Flap g Flapangle B P
hinge Hinge offset I, Ls=L(-p 5 =1y
Lead-lag , lead-lagangle : ¢ ‘ o
hinge Hinge offset D L,=L(-0 =le, o, =-(E,
Feathering A Pitch Angle Do, § o
hinge Hinge offset L L, =L®,) r=1le, o;" = 0E,
Twist and torsion :
Blade Or '1” =re,
. T Blade span r L, ~L(-6,) 4 =g
section : e

Section CG/ AC
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Table 2 Definition of Symbols

Symbols Flap Lead-Lag Torque
D g ¢ Q
H F L R
L T LFT LI,T LRT
es —-e, -e, e,
IA 0 O [DRV
QA 0 O QEngme
C, C, C, 0
K, K, K 0
Note 1) [, denotes the equivalent

moment of inertia due to gear box,
engine, gas generator, drive shaft
and etc. except the contribution
due to rotor blade and hinges
which is included in the integral
part of rotor equation.

O..ime denotes engine torque
transferred to rotor to overcome
rotor torque.

Note 2)

3.4 Equations for rotor dynamics

The general form of hinge moment equation can
be represented as the follow equation and for flap,
lead-lag and torque, the corresponding notations
are given in Table. 2.

[ [rd™ x Ly, {dF;“"‘" -m, (a;” —g7 )drb }+ L dM;°
eg—1,0-C,d-K,0+0, =0

,where

H_ Notation for general hinge coordinates

ro""  Displacement vector from hinge to blade
section coordinate (CG or AC)

e Unit vector in the direction of hinge

3 Hinge angular displacement

I, Moment of Inertia due to accessory
subsystem except rotor blade

0, Torque source except rotor blade

The equations by using fully implicit formulation for
rotor dynamics have the following forms.

Flap equation for individual blade

o Lo 55"}y, Cy - K,
= J‘(r}g;F X LFLdF;“’” + LFLdM;em)'eY

Lead-lag equation for individual blade

(18)
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'f[mbr,f;L x Ly (a;’ - g;' %ezd”n -Cc-K¢

. ) 19
— '[(rL(zL x d Laem + d Zero ez ( )
Torque equations for rotor system
z J.[mhrlsm x LR’I'(a’f';I - g;;])]'ezdl”k +[I)RV‘Q
(20)

=3 [(r* x Ly dF + Ly dM " )-e,
+ Opgine

3.5 Aerodynamic forces, moments and gravitational
forces at blade section

The velocity vector to calculate aerodynamic
forces and moments can be represented as
components in lead-lag axis for the rotor
configuration in Fig.2. If wind components due to
turbulence and induced inflow are included, the
velocity components and the angle of attack in
blade section can be easily defined.

Gl
L,;v;
tur

_ .Gl
=V, =V

61
vy
aero

Vr - VIL”d = [UR Up Up ]T

¢p=tan' (U, /U,)
a=0-¢p=v" =0-tan' (U, /U,)

The aerodynamic forces
represented as follow.

and moments are

0 am
dF*" =| —dLsinp—dDcosg |, dM;"° =| 0
dL cos o —dD sing 0

, where

1 1
dL = ECLszcdrb dpD = ECDpVQCdrb

1
dM = ECMpVQCerb V:=U;+U;

The gravitation acceleration at blade section is a
simple coordinate transform of body components.

GI

8r

g(‘;f = g[— sin@ cosO sing cos&cosgo]f

= LTA LAL LL[" LI"S LSP LPR LRH LH(‘g((‘Y

4 Flight Dynamic Equations for Trim Analysis
The flight dynamic equations including the rotor
dynamics can be represented as a system of
general nonlinear DAE. If rigid body states x,, ,
flap x,., lead-lag x, , inflow x,, tail rotor states x,,
and rotor speed x,, are considered, they have the




following form.
f(xxyu,f):[fR’nyferlrfT’fQ]T =0

x:[xR X Xp Xp Xp xQ]T

(21)

X, = [wvw.pgr.g0.v]

X, = [,5’(”,,5’(2),B(”,B(“,ﬁ(“,ﬁm,ﬂ(”,ﬁW]T
X, = [C;(U,5(2),4;(3),4;(4),5(“,C(”,C(”,CW]T
X = [’10’/11(%’115‘ ]T

xT = [ﬁ]RO’ﬁ]Rl(,"ﬁ]RISJJ'JRO]T

X, =8

And the trim conditions applicable for both
straight flight and steady turning flight are

s = S S Fn 1" =0
, Where

Jimar =V sinye —using cos & +wcos ¢ cos 0

Fima =VE —u> =v2 =w?

Jirgs =V =V sin 8

Srrea =W —(qsing+rcosp)/ cos &

2
. g ny
=+=- -1.0
v Vi \ cosyl

Ve, 7., B, and ny denote flight speed, flight path
angle, side slip and normal load factor, respectively.

5. Analysis Methodology: DAE based PPTA

5.1 PPTA (Partial Periodic Trimming Algorithm)

If the installed rotor blades have the same
configuration, helicopter states at a steady trim
condition expects to have a partial periodic
characteristic with the period of 27 /n, . The related
partial periodicity condition for state variables can
be represented with initial states x(0) as equation
(22) [2].

x(2n/n, )— Px(0) =0

(22)
., where for the four bladed rotor

P =diag(l,,P, P, I,1,)

P. = P, =diag(P,4,P.)
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0 1
PFS:[] 0

|

Since a trim is an average feature of specific flight,
its conditions can be satisfied with the average
states x and constant control # over a time
period of 27/ n,as equation (23).

Srre) = [, (5)=0 (23)

Where s = [.f ”]T =2t _[)Zﬂnb Sy )dy
2

s=[x uf

PPTA is an iterative method to find the initial state
x(0)and control input u which satisfies equations
(22) and (23). The followings are the summary of
PPTA iterative steps.

STEP 1: Specify initial conditions s(0)
STEP 2: Perturb initial conditions

5(0)=5(0)+¢, e,(0) (¢,=0)

STEP 3: Time integration and calculate error
vector (repeat STEP 2, 3 for all s,)

yi= |:X(27r/nb):| , 0= fru(X,u)
5,(0)

)
STEP 4: Calculate Jacobean Matrix @&

¢:5_y:|:¢“—P ¢12:|
os ¢21 ¢22
_ 0x(2n/n,) _ Ox(2m/n;)
! ax(0) 2 ou
00 _ 0o
2 ax(0) 2 ou

STEP 5: Newton lterative Solution to get a new
initial condition s”*'(0) (m: number of
PPTA iteration, c: relaxation constant)

sm+1(0) — s’”(O)_C¢71Em
- [x(2n'/nb )= Px( 0)} . _[

Px(0)
)

As shown in the above algorithm, time period of
integration is reduced to 2z /m, rather than 2x
for normal periodic trimming algorithm. The
computational time for time integration is greatly



reduced to the ratio of 1/n, per iteration and the
number of a required trim iteration can become
much less due to the reduced error with shorter
time integration period.

5.2 DAE(Differential Algebraic Equation) Solver

DAE solver is a two step algorithm with a
predictor step and a corrector step. The divided
difference interpolation polynomials are used to
predict the state variables and to transform its time
derivatives as a function of state variables at n+1
time step [7]. By using the notation of Reference 7
the k-th order DAE solver can be summarized as
the following steps.

I. Predictor Step (i =0,12,---,k)

a) o,.,,)=x,,

b) x:?n = w:ﬂ(tnn)

c) x2+1 = d’:ﬂ(tnﬂ)

II. Corrector Step: 1<i<k

d) a)l(llrl(tnﬂ —ih,, )= wr}:ﬂ(tnﬂ —ih,.,)
e) wz(zlrl(tnn) =X

f) a-)l(llrl(tnﬂ) =X,

g) f{a)l(llrl(tnﬂ)’ a)l(l;](tll‘#])’tn‘#] }: O

, Where #&,
P

At the predictor step the predictor polynomial @, ,
which satisfy (a), has been defined by using the
previous calculation of sate variables such as
x,,X,,,X, . Ihen state variables at ¢, can
be predicted by using the equations of (b) and (c)
and the predictor polynomial at time 7.

(
(
(

(
(
(
(

= tn+l - tn

wfﬂ(v = xn +(t _tn)[xn’xnfl

+ (t - tn)(t - tnfl)[xn’xnfl’xan]

R

+ (t - tn)(t - Z‘nfl). . (t - tnfkﬂ)[xn’xnfl’ T xnfk ]

The corrector polynomial w,,, which satisfies (d)

and (e), can be defined and by applying (f) the state
derivative x,,, can be replaced with state
variable x,,, . Then the equation (g) is reduced to
the system of algebraic equations as follow.
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(0)
_ (0) aS(anrl —X

n+l

X =
n+l n+l
hn+l
LAy |
ag ==~
j=1J
(0)
©.(0) _ as(an - xn+l

n+l

h

s

Or fla x+pBxt)=0 (withoutsubscriptz+1)

’xn+1’tn+1 \J = 0 (24)

n+l

(0)

n+l

(0)

n+l

s

,where a=-——- , f=x

-0 X

n+l

By applying Newton iterative method, the following
form of DAE solver can be obtained.

x™V = xm —cG"f(a x™ + ﬁ,x(’”),t): 0

o o

, Where G=a«a
ox ox

¢ is under-relaxation constant

The Jacobean matrix G can be numerically
calculated as follows
1 fla(x+Ax]ej)+ﬁ,x+ije],tJ
7 24x, —fa(x—ije])+ﬂ,x—ije],t]
5.3 Integration of DAE solver into PPTA
The accuracy and convergence of DAE solver for
linear differential algebraic equation can be
achieved with compatible initial conditions, which
should satisfy the original DAE [4]. But DAE based
PPTA cannot meet this compatibility condition due
to state perturbations and state updates during
iterative solution of PPTA. From the detall
investigation, the reduction of DAE order at initial
integration steps has been found to be an effective
way for good convergence and the allowed
maximum accuracy can be recovered by gradually

increasing the order k of DAE solver according to
the following logic.

,where m Number of PPTA iteration
Kkmax Allowed maximum DAE order
n Time step (n=1at y, =0)

The flight simulation from a calculated periodic
trim condition can start with the allowed maximum
DAE order.

k = MIN{% +Lk, .n (25)



6 APPLICATION

The present rotor aeromechanical equations and
DAE based PPTA were applied to Bo-105 CBM
(Common Baseline Model) helicopter which had
been used by AGARD AGRTEUR AGO06 working
group during their collaborative research for
helicopter flight mechanic analysis [6]. CBM
helicopter has flapping dynamics with flap hinge
spring and flap hinge damping. At the present
analysis the dynamic inflow model (Ref 13) has
been used rather than classical Glauert-trapezoidal
infow model in CBM. With the disc model for tail
rotor, the flapping and the inflow of tail rotor have
the forms of pure algebraic equation. But as already
mentioned, the time integration by DAE solver can
simultaneously process these algebraic equations
with DAE for the dynamic equations of airframe,
main rotor flapping and main rotor inflow.

The convergence history in section 6.1 has
been calculated with;

v' Azimuth element = 144 ( Ay, =2.5Deg)

v' Forward speed V=250 km/hr
If not specifically mentioned, the trim calculations
have been obtained with the following baseline
conditions.

v" DAE order = 3" order

v' Azimuth element = 36 ( Ay, = 10 Deg)

v' Radial blade elements = 10

6.1 Convergence history

The convergent periodic trim history has been
calculated at forward flight speed of V=250 km/hr.
Fig. 3 shows the RMS value of the difference
between two successive calculations of initial trim
states. Around 20 iterations (5 rotor revolutions) are
enough for the converged periodic trim calculation
and the jumps in 5" and 10" iteration are occurred
due to the stepwise increase in the order of DAE
solver. The time history of states and pitch controls
are shown in Fig.4, Fig.5 and Fig.6, which showed
the nearly periodic properties after 2 rotor
revolutions (8 PPTA iterations).

Error (RMS)

Number of PPTA Iteration

Fig. 3 Convergence History
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p (deg/sec)

q (deg/sec)

r (deg/sec)
O O ¢

Rotor Revolution

Fig. 5 History of Angular Response

6.2 Periodic Flap Response

The analysis conditions for good trim prediction
have been deduced from the fully converged
periodic flap solution with variations of the time step
size, the number of radial blade elements and the
desired order of DAE solver. The trim conditions
were calculated for the forward flight speed of Ve=
250 km/hr.

Effects of time step size (in azimuth angle) Fig. 7
shows the converged flap response with variation of
time step size of Ay, =5, 10, 15 and 22.5 deg (72
~16 azimuth elements). The desired accuracy can
be obtained if Ay, <10 deg. Fig. 8 showed the
partially enlarged view of flap response to see more
detail difference.




Rotor Revolution

Fig. 6 Convergence History of Pitch Controls
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Fig 8 Enlarged View of Flap Response

Effects of the number of radial blade elements Fig.
9 shows the converged flap response with variation
of the number of radial blade elements from 5 to 20.
The analysis with more than 10 radial elements
represents the nearly same results.
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Fig.9 Flap Responses with Variation of the Number
of Blade Radial Elements

Effects of the order of DAE solver Fig. 10 shows the
effect of DAE order on the converged flap response.
The analysis with DAE order equal to 1 differs from
the other. So the good accuracy can be obtained
with DAE order greater than or equal to 2.
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Fig.10 Flap Responses with Variation of DAE
Order

6.3 Effects of Forward Speed on Trim Control
Fig.11, Fig.12 and Fig.13 show the blade pitch
control inputs with variation of forward flight speed
from 0 to 250 km/hr. The PPTA assumes the control
inputs are constant even if the state variables
should meet a partial periodicity condition given in
equation (22). The effects of time step size, the
number of blade radial elements and DAE order on
the trim control inputs are negligible except a minor
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difference in the lateral cyclic control &, of main
rotor. As in the flap response the effect of DAE
order is the greatest and DAE order greater than 2
is enough to get a good accuracy.
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Fig.11 Trim Controls with Varying Time Step Size
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Fig.12 Trim Controls with Varying the Number of
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Fig.13 Trim Controls with Varying DAE Order

6.4 Correlation with AGARD GARTEUR AG06
Results

To show the accuracy of present algorithm, the
calculated results are correlated with the results of
AGARD GARTEUR AGO06 (Ref 11). Two kinds of
trim analysis methods have been applied to the
present formulation of helicopter flight dynamic
equations. One is the harmonic balance methods
and the other is the DAE based PPTA. Because the
trim states calculated by DAE based PPTA show
the periodic characters, those are averaged over
one rotor revolution for comparisons. Fig. 14 shows
the airframe pitch angle and main rotor controls
with variation of forward flight speed. The average
trim states calculated by present DAE based PPTA
are nearly same as the trim calculation by harmonic
balance method. Also except the lateral cyclic
control of main rotor the calculated results have
shown good correlations with Nominal CBM Trends
which are the averaged trim value over different
participants in the AGARD GARTEUR AGO06. To
show the scatter in the trim results among AGO06,
the variations are presented at Ve= 150 km/hr in the
figure. The root cause of the difference in the lateral
cyclic trim control has been already investigated in
Ref 11.
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Fig. 14 Correlation with AGARD AGO06 Results

The cyclic trim control calculated with dynamic
infow model rather than classical Glauert-
trapezoidal inflow model has shown a clearer shape

of spoon which is similar to with flight test results
(Ref 11). The present analysis with dynamic inflow
has presented the same tendency.

CONCLUSIONS

The present formulation for rotor dynamics and
the periodic trim calculation with DAE based PPTA
show the following key results.

1. The fully implicit formulation in this study can be
easily modified for its application to any rotor
with arbitrary hinge geometry and hinge
sequence.

2. The DAE solver and PPTA have been
successfully integrated by adjusting DAE order
and the results show the fast convergence.

3. From the application to AGARD AG06 CBM
helicopter, the accurate calculation can be
obtained with (1) azimuth elements more than
36, (2) radial blade elements larger than 10 and
(3) DAE order greater or equal to 2.

4. The calculated trim states and trim control
inputs are well correlated with the results of
AGARD GARTEUR AG06
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