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Abstract 

Composite materials are increasingly used in rotorcraft structures to reduce weight and improve efficiency.  The 
rotorcraft industry is constantly in need of higher-performance materials that offer improved mechanical strength 
and stiffness at a lower weight.  In polymer-matrix composite structures, matrix-dominated failures impose 
severe limitations on structural performance.  The objective of this work is to advance composite material 
technologies for rotorcraft through the use of nanoadditives to improve structural efficiency.  Technical 
challenges and potential solutions for improving matrix-dominated performance of prepreg composites through 
nanoparticle reinforcement, are discussed.  In particular, a promising technology for improving compression and 
interlaminar strength and fatigue performance, is identified.  The advanced materials technology is based on 
high weight content loading of approximately 100-nm diameter nanosilica particles in low-viscosity resins.  Such 
technology resulted in compression strength improvement for intermediate-modulus carbon-fiber/epoxy-matrix 
250° F curing prepreg composites as recently demonstrated by 3M.  This work not only supports the initial 
findings of 3M regarding the improvement of compression strength performance but also demonstrates 
improved interlaminar material properties including fatigue performance, and expands the material design space.  
Fatigue performance is critical to rotorcraft dynamic components as they are subject to extreme oscillatory flight 
loads that can result in material fatigue failures.   

 

1. INTRODUCTION1 

Fiber-reinforced composite materials are increasingly 
used in rotorcraft primary structures.  The industry is 
constantly in need of higher-performance materials 
that offer improved structural performance at a lower 
weight.  Rotorcraft dynamic components are among 
the most challenging composite applications as they 
are subject to extreme flight loads that are oscillatory 
in nature and cause material to fail in fatigue.  In 
polymer-matrix composites, matrix-dominated failures 
such as delamination and low fiber-direction 
compressive strength compared to the fiber-direction 
tensile strength, impose significant limitations on 
structural performance and longevity characteristics. 

In fiber-reinforced polymer composites, the polymer 
matrix and the matrix-fiber interface are much weaker 
than the fibers.  The incorporation of nano-sized 
reinforcement in the matrix may improve the 
recognized weaknesses of composites, such as 
interlaminar and compressive strengths.  However, 
the implementation of such advanced materials in 
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rotorcraft has been limited by conflicting information in 
the literature on the best approach for the 
enhancement of matrix-dominated properties, the lack 
of suitable material property data, and unproven 
repeatability and manufacturability at the structural 
scale. Therefore, a need exists to develop a 
knowledge base that characterizes advanced material 
technologies in conjunction with the manufacturing 
methods employed to process and post-process the 
advanced materials, establish process controls, and 
finally demonstrate the feasibility of the advanced 
materials, with the emphasis on fatigue life and life-
cycle costs, versus conventional materials for 
rotorcraft applications.   

The Vertical Lift Consortium, which represents a 
collaboration of U.S. Government, rotorcraft industry, 
and academia to develop and transition innovative 
vertical lift technologies, recently started the Advanced 
Materials Technology (AMT) Program with a goal to 
advance material technologies for the improvement of 
rotorcraft material strength and fatigue behavior.  
Specific objectives included (a) screen state-of-the-art 
material technologies; (b) select the most promising 
materials for improved matrix-dominated performance 
and acceptable processing and handling qualities; and 
(c) develop a database of material properties for use 
in structural design.  Thus, a knowledge base 



providing a foundation for the insertion of advanced 
materials in rotorcraft applications, is being developed. 

The AMT program is a multi-year collaborative effort of 
U.S. rotorcraft Original Equipment Manufacturers 
(OEMs) including Bell Helicopter, Boeing Rotorcraft, 
Sikorsky Aircraft, Kaman Helicopters, and research 
labs of academic institutions including University of 
Texas Arlington (UTA) and Pennsylvania State 
University (PSU).  The AMT program also engaged 
commercial manufacturers of pre-impregnated fiber 
reinforced polymer composites (prepreg) and offered 
a unique opportunity for the rotorcraft OEMs and the 
material manufacturers to work together towards the 
development of material solutions that improve 
structural strength and fatigue behavior.   

The AMT program started with a screening effort 
which identified the most promising candidate 
technologies for improvement of interlaminar fatigue 
performance and compressive properties.  Such 
improvement was compared to the prepregs (carbon 
and glass fibers) currently used in rotorcraft structures.  
Not only structural performance but also 
manufacturability has been considered.  For example, 
success criteria included improvement of mechanical 
properties of 350° F curing systems relative to a 
legacy baseline 350° F cure toughened epoxy system 
(Hexcel 8552 [1]) without deteriorating processing and 
handling qualities such as viscosity, tack and working 
life.  Currently, several rotor system applications use 
250° F curing resins due to the relatively high viscosity 
of 350° F curing toughened epoxy systems such as 
8552 [1].  Success criteria also included the 
improvement of mechanical performance of 250° F 
curing systems relative to legacy baseline 250° F cure 
toughened epoxy systems such as Cytec 381 [2] and 
E773 [3], at a lower viscosity compared to 8552. 

Among many candidates for improving compressive 
and interlaminar properties of composite materials are 
nanosilica-loaded matrices.  Nanosilica (~100-nm 
diameter silica particles) is cost-effective; enables high 
loading (more than 40% weight content in the resin) 
with minimum impact on viscosity; and can be 
uniformly dispersible through surface chemistry 
technology (functional groups) [4, 5].  In 2009, 3M 
launched 3M™ Matrix Resin 3831, a 36% nanosilica 
weight content 250° F curing epoxy resin system 
designed for use in composite prepreg manufacturing 
processes [5].  Initial implementation of this resin in 
the sporting goods market has produced carbon-fiber 
composite fishing rods with 60-90% increased 
compression-dominated bending failure loads [5].   

3M disclosed the material morphology as well physical 
and mechanical properties of their resin systems 
subject to various nanosilica loadings.  Also, 
mechanical properties of carbon/epoxy nanosilica 
prepregs were published [4, 5].  Unidirectional prepreg 
tape for each of the resin systems studied in Refs [4, 

5] was produced by Patz Materials and Technologies 
(Benicia, CA) using TR50S carbon fiber (Grafil Inc., 
Sacramento, CA).  In this work, the material 
characterization is expanded to carbon-fiber and 
glass-fiber prepregs applicable to rotorcraft structures.  
In particular, compression and interlaminar material 
properties including fatigue curves are determined and 
compared to existing production rotorcraft prepreg 
material systems.  It is worth noting that the previous 
studies employed standard testing and never 
questioned their suitability for measuring true material 
properties.  For example, the ASTM D 2344 standard 
short-beam shear (SBS) test method [6] used in Ref 
[5] does not capture the interlaminar shear (ILS) 
strength and modulus material properties.  Also, ILS 
fatigue characterization of carbon-fiber and glass-fiber 
epoxy nanosilica prepreg composites has not been 
accomplished before.  Furthermore, assessment of 
the interlaminar tensile (ILT) material properties, 
including strength, modulus, and S-N curves, has not 
been attempted in the previous studies.  This work not 
only supports the initial findings of 3M regarding the 
improvement of compression performance of 
intermediate-modulus carbon-fiber/epoxy-matrix 250° 
F curing prepreg composites but also expands the 
material design space to glass-fiber prepregs, and 
clarifies the interlaminar properties of nanosilica 
prepreg composites including fatigue behavior. 

2. MATERIALS 

As noted in the previous section, nanosilica-loaded 
prepreg composites are considered in this work.  
References [4, 5] provide the details of the material 
structure for 250° F curing carbon/epoxy nanosilica 
prepregs as well as their matrix-dominated properties 
measured using standard test methods.  As listed in 
Refs [4, 5], matrix stiffness can be a primary variable 
affecting composite compression strength in the fiber 
direction because fiber microbuckling – a major 
compression failure mechanism – depends on the 
amount of support provided by the matrix to the fibers.  
Incorporation of hard particles into polymers increases 
their modulus and can increase fracture resistance [4, 
5, 7].  Micron-scale inorganic fillers have been used to 
modify cured resin properties, but when processed 
into fiber-reinforced composite structures, these large 
particles are filtered out by the reinforcing fibers.  
Another undesirable effect of conventional micron-size 
fillers is increased resin viscosity before curing, which 
can compromise composite processing qualities [4, 5].  
3M attempted to achieve the desirable resin modulus 
and laminate compression strength improvements 
through the incorporation of smaller, nano-sized 
amorphous silica particles into thermoset-matrix resins 
[4, 5]. 

In 2009, Patz Materials and Technologies (PMT) 
began working with 3M to address specific 
applications where 3M’s nanosilica technology could 
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available in literature.  Recent publications document 
the development of experimental techniques for 
measuring accurate ILS and ILT material properties, 
including modulus, strength, and S-N curves, and the 
application of such techniques to IM7/8552 prepreg [8 
– 13].  In this particular situation, not only nanosilica-
loaded prepregs but also carbon nanotube (CNT) and 
graphene additives are considered due to their recent 
publicity as potential solutions for improving 
interlaminar properties.  PMT manufactured 350° F 
curing IM7-carbon prepregs with 0.5% CNT, 0.8% 
graphene nanoplatelets (GR), and a mixture of 40% 
nanosilica and 0.8% graphene (40%NS + 0.8%GR) by 
resin weight.  A uniform dispersion of CNT and GR in 
the PMT resin was challenging at higher weight 
content as the CNT length and the GR in-plane 
dimensions are not nm but microns.  Also, CNT and 
GR are known to increase resin viscosity at higher 
weight content.   

Experimental data generated in this work are 
presented in a limited fashion as the AMT program 
effort to generate reliable material performance 
characteristics, is in progress, and the availability of 
data appropriate for publication is limited.  However, 
such limited information indicates potential benefits of 
the advanced materials technology to emerging 
rotorcraft platforms and prompts more extensive 
material qualification. 

3. FIBER COMPRESSION 

In Refs [4, 5], fiber-direction compression strength of 
the 250° F curing TR50S-carbon/epoxy nanosilica 
prepreg composites was assessed based on SACMA 
SRM 1R-94 [14] RTA testing of tabbed unidirectional 
12-ply laminates.  Nine specimens were tested for 
each material configuration.  Table I lists compression 
strength data corresponding to the different nanosilica 
weight contents in the resin. 

Table I.  Fiber-direction compression strength of 
250°F curing carbon prepreg composites [4, 5] 

Silica (wt%) Strength (ksi) FV (%) 

0 258 62.5 

15 267 61.2 

25 274 60.3 

35 276 60.3 

45 287 59.2 

 

The apparent strength changed by 11.2% at 45 wt% 
nanosilica loading. After the strength values were 
normalized to a 60% fiber volume (FV), the change 
from the unfilled to the most highly filled material 
became 17.4%. 

In this work, in-plane fiber compression performance 
of 250° F curing PMT prepregs was evaluated using 
the ASTM D6641 combined loading compression 
(CLC) test method [15] with a 50/50 (50% 0-deg. plies 
and 50% 90-deg. plies) cross-ply laminate.  Use of a 
cross-ply laminate rather than a unidirectionally 
reinforced laminate reduces the maximum load 
applied to the specimen and the CLC fixture splits the 
load path between face shear and end loading, 
thereby avoiding premature failure at either the grip 
entry region or the end of the specimen without the 
need for tabs.  However, the use of a cross-ply 
specimen requires that classical laminated plate 
theory [16] be used to back-calculate the stress in the 
0-deg. plies at failure.  While it is recognized that 
variations in matrix modulus will affect the relationship 
between stress at the laminate level and 0-deg. ply 
level, back-out factors for the 0-deg. stress were held 
constant throughout this investigation, based on 
typical unidirectional ply properties: 1.6 for glass/epoxy 
and 1.9 for carbon/epoxy.  Multiplying the laminate 
stress by these back-out factors provides the stress in 
the fiber direction of the 0-deg. plies.  The fiber-
direction compressive strength of a ply determined 
using a 50/50 cross-ply specimen is considered to be 
representative of the in situ compressive strength of a 
unidirectional ply in a wide range of practical laminate 
configurations used in aircraft structures [17]. 

Based on ply and laminate properties estimated at the 
start of this investigation, a 0.5 in. specimen 
unsupported length, and other specimen design 
recommendations in ASTM D6641, a [90/0]4s laminate 
was selected to achieve 0-deg. ply failure prior to 
Euler buckling for both the carbon/epoxy and 
glass/epoxy laminates.  The thicknesses of the glass 
and carbon fiber laminates were approximately 0.144 
and 0.091 in., respectively.  Uniaxial strain gages of 
1/16th in. grid length (Measurements Group CEA-06-
062UW-350) were bonded to both sides of the 
specimen to record mean and bending strains in the 
loading direction.  Strains and load were recorded 
throughout the compression tests using a digital data 
acquisition system.  Five to six replicate tests were run 
for each type of material. 

The CLC test results for 0-deg. ply compressive 
ultimate strength are normalized to the fiber-direction 
compressive strength of 250° F curing IM7/381 
production prepreg composite, measured based on 
the SACMA testing of unidirectional laminate, which is 
215 ksi (COV 3%) [2]. The CLC cross-ply laminate 
modulus results are normalized to the calculated 
cross-ply modulus of IM7/381 (11.4 Msi).  These 
results are plotted in Figure 2.  The coefficient of 
variation was typically less than 5% for the strength 
and modulus data.  Such results are consistent with 
Refs [4, 5].  An additional set of data for the 
IM7/PMT(40%NS) cross-ply laminate, obtained using 
the SACMA test method, shows a higher 0-deg. 
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prepreg composites with 40% nanosilica show more 
than a factor of ten increase in fatigue life compared to 
the control laminate.  The ILS fatigue data for 
IM7/PMT(40%NS) show larger scatter compared to 
the other composites.  About half of the 
IM7/PMT(40%NS) SBS fatigue coupons were 
mistakenly tested with a 2-in diameter loading nose 
instead of the 4-in diameter.  Compression damage 
was detected in some of the carbon SBS coupons 
fatigue tested with the 2-in diameter loading nose.   

The 250° F curing S2-glass prepreg composites with 
nanosilica and the appropriate fiber sizing also show 
significant improvement in the ILS characteristics.  
Figure 7 shows the ILS modulus and strength test 
data normalized to the S2/E773 baseline composite 
with a 10.0 ksi (COV 2.19%) ILS strength and a 0.609 
Msi (COV 1.98%) ILS modulus.   

 

Figure 7.  ILS strength and modulus results for 250° F 
curing S2-glass composites 

 

Figure 8.  ILS S-N curves for 250° F curing S2-glass 
composites with and without nanosilica 

Figure 8 shows the ILS fatigue data with the peak 
stress values normalized to the ILS strength of the 
S2/E773 composite.  S2/PMT had 933 sizing based 
on the best ILS strength behavior.  ILS fatigue data for 
the S2/381 composite slightly outperformed S2/E773 
(not included in the figure). 

Similar to the carbon ILS fatigue data, the S-N curves 
were generated based on constant load amplitude 
unidirectional SBS fatigue tests run at 0.1 load ratio 
and 10 Hz frequency.  The loading nose diameter was 
two inches.  All SBS coupons exhibited shear 
delamination failure.  The tests were conducted at the 
RTA condition and the infrared thermometer was used 
to monitor coupon lateral surface temperature.  No 
appreciable increase of the surface temperature was 
detected.  Figure 8 shows that nanosilica improves 
ILS fatigue performance of 250° F curing S2-glass 
PMT prepreg composites with 933 sizing compared to 
the legacy system.   

The final sets of unidirectional SBS test data represent 
ILS material properties of 350°F curing carbon/epoxy 
composite systems.  Figure 9 shows the ILS modulus 
and strength test data normalized to the IM7/8552 
baseline composite with a 16.0 ksi (COV 2.70%) ILS 
strength and a 0.742 Msi (COV 2.26%) ILS modulus.  
The IM7/8552 SBS coupons were not manufactured 
(cured and machined) by the same laboratory that 
manufactured the IM7/PMT laminates. 

 

Figure 9.  ILS strength and modulus results for 350° F 
curing carbon composites 

The IM7/PMT prepreg composite with 40% nanosilica 
shows a 12% higher ILS strength compared to the 
control material and a 14% higher ILS strength 
compared to the IM7/8552 system.  It is worth noting 
that IM7/PMT(40%NS) also outperformed the prepreg 
composites with CNT and graphene.  In fact, adding 
only 0.8% graphene to the resin with 40% nanosilica 
reduced the ILT strength by 26% compared to the 
single 40% nanosilica in the resin.  ILS strength values 
for the composites with 0.8% graphene only and with 
0.8% graphene and 40% nanosilica were too low to 
support their fatigue performance evaluation.    

Figure 10 compares ILS fatigue data for 350°F curing 
carbon composites selected based on their ILS 
strength behavior.  Constant load amplitude 
unidirectional SBS fatigue tests were run at 0.1 load 
ratio and 10 Hz frequency.  The peak stress values 
were normalized with respect to the mean ILS 
strength value for the IM7/8552 composite to plot the 
S-N data.  All SBS coupons exhibited shear 
delamination failure.   
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Figure 15.  ILT fatigue data for 250° F curing carbon 
composites with and without nanosilica 

Large scatter in the ILT fatigue test data is evident.  
IM7/PMT(Control) and the IM7/381 CB coupons had 
similar ASTM D 6415 stress values at 1,000 cycles to 
failure and 10,000,000 cycle runouts.  It does not 
necessarily mean that S-N curve is “flat” as a higher 
stress level might result in the same trend if large 
number of coupons is tested.  IM8/PMT(40%NS) also 
had similar stress levels at much different lifetimes, 
from thousands of cycles to a runout in some cases.  
Due to limited recourses, the CB fatigue sample sizes 
were 10 coupons – too small for any reliable 
assessment of the S-N fatigue curves.  And scatter in 
the CB fatigue data for glass composites was even 
worse than for the carbon composites characterized in 
this work. 

A more thorough follow up assessment of the 
manufacturing defects and their effects on the ILT 
strength and fatigue performance is required as 
suggested in [12, 13].  Fidelity of the non-destructive 
inspection needed to characterize the critical defects 
becomes extremely important.  The susceptibility of 
the CB radius area to delamination limits the 
nondestructive inspections to the radius area and 
makes such specimens strong candidates to study the 
effects of manufacturing defects.   

6. CONCLUDING REMARKS 

This work shows that incorporating nano-sized silica 
reinforcement in the matrix may improve the well 
known weaknesses of carbon-fiber and glass-fiber 
thermoset-matrix prepreg composites, including 
compressive strength in the fiber direction as well as 
interlaminar strength and fatigue performance 
characteristics.  The implementation of such advanced 
materials technology in rotorcraft has been limited by 
conflicting information in the literature, the lack of 
reliable material property data, and unproven 

repeatability and manufacturability at the structural 
scale. A need exists to collaboratively develop a 
knowledge base that characterizes advanced material 
technologies in conjunction with the manufacturing 
methods employed to process and post-process the 
advanced materials, establish process controls, and 
finally demonstrate the feasibility of the advanced 
materials, with the emphasis on fatigue life and life-
cycle costs, versus legacy composite materials for 
rotorcraft applications.   

Test results indicate that prepreg composites with 
40% nanosilica weight content in the matrix 
demonstrate improved fiber-direction compressive 
strength and the interlaminar strength and fatigue 
performance, and maintain comparable density and 
lower resin viscosity compared to the legacy systems.  
As high as 45% improvement in compressive strength; 
20% improvement in the interlaminar strength and 
more than a factor of 10 increase in fatigue life are 
demonstrated.  Functionalized nanosilica particles are 
cost-effective and well-integrated in the resins used in 
this work.  Small diameter (100 nm) of the nanosilica 
particles, compared to the fibers, enables uniform 
dispersion in the composite.  On the other hand, 
micron-scale length of CNT and in-plane dimensions 
of graphene platelets cause filtration of such fillers by 
the fibers, and result in poor interlaminar performance 
of prepreg composite material systems.   

Physical mechanisms governing the improvement in 
matrix-dominated performance must be further 
investigated.  For example, nanosilica increases ILS 
and ILT stiffness of the composite system.  It is 
expected that increased matrix-dominated stiffness 
provides better support to the fibers and therefore it 
might improve compressive strength in the fiber 
direction.  But matrix stiffness is far from being the 
only characteristic driving fiber compression strength.  
Bond of the fibers to the resin and the nanosilica to the 
resin must also be strong.  Appropriate sizing is critical 
to enabling good chemical bond of the fibers to the 
resin in the glass-fiber prepreg composites.  Also, the 
SEM assessment showing a rougher ILS failure 
surface in the nanosilica-loaded resin compared to the 
resin without nanosilica, confirms different shear 
failure mechanism yet to be understood.  Better 
understanding of the failure mechanisms is required 
for engineering optimum material reinforcement.   
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