9.4
 Paper No.
 43
 SIMULAMION TESTS OF THE PILOT-HELICOPTER SYSTEM IN OVEREXTREME CONDITIONS

K. SZUMANTSKI

AERONAUTICAL INSTITUTE
WARSAW, POLAND

September 8-11,1987
 ARLES, FRANCE

SIMULATION TESTS OF THE PILOT-HELICOPTER SYSTEM IN OVEREXTRIME CONDITIONS

K. Szumański
Aeronautioal Institute
Warsam, Poland

Abstract

The paper deals with investigations in the dynamios of the pilot-helicoptex system under extreme conditions, oonsidering cases when the following limits are exoeeded. The primary objeotive is to evaluate helfoopter loading and handiling teohnique under the assumed conditions. The scope of inveatigations covers simulation analyses on mathematioal models, simulator tests and flight tests.

Introduation

The paper desoribes investigations in the area of complex pilot-oontrolled dynamio systems under extreme conditions as indicated by the struotural limits of their respective parts and assemblies. Keen competition imposes increasingly rigorous requirements to be met by those systems so as to exploit all potential capabilities. Frequent oocasions of near-limit operation make the user control them as preaisely as possible and consider the risk of exceedeng the adminissible extremes.

To define the area of investightions more speoifioally ot will be helpful to autline the conoept of solution for antioipated problems. There are features they share in oommon contained in the notion of transgressionx/. For they refer to a process taking plaoe near the limits, situations when limits are exceeded, estimates as to a possibility to return from beyond the limits. Also they embrace the reasons for exoeeding limits such as control error, system failure, breaking rules forced by oiroumgtanoes or deliberate as a result of investigation procedure. Finally they oover oases of unintentional transgression in extreme situations.

Fif. 1 illustrates the issue of transgression depioting possible runs of a controlled process which effeots phases $n, n+1, \ldots$, where respeotive limits and areas could be desoribed as:

- limits and areas of risk - when limit proximity essentially affeots the syatem data so that the way of control has to be modified by this proximity;
- admissible - when having the limit exceeded it is still possible to return to the original process by speoial way of control with no prooess ohanges involved;
- failure - when following limit transgression damage occurs to the system, yet it is possible to interrupt the prooess safely using emergenoy oontrol technique at the cost of inability to continue the process as intended before;
- crash - when following limit transgression the system beoomes uncontroliable and, if going on, it may destroy the system.

Selection and proper arrangement of transgression issues encourage the attempt of transgression as investigation method under limit oonditions. Exoeeding the following limits, that is transgression, is the best way to disoover and to speoify the kind and position of those limits. It provides information on either inorease or deorease in the intensity of dangerous phenomena, feasibility of recovery and safety manoeuvres, consequences of transgression and spaces between sucoessive limits.

[^0]The introduotion of system transgression as investigation method will permit; tle following:

1. strict establishment of its limits/by confirming or denying their existanoe, position and character/s
2. deteotion of its weak and critioal points,
3. reliable estimation of its limit data and adjustment.

Interdisciplinary approaoh gives a ohanoe to oonduot investigations in a proper direction by introduoing the elements of control theory, models of operator s sotions from engineering payohology as well as description of multi-purpose and multi-phonomena models of control objeots. Failures of automatio system control under transgressive conditions contrary to numerous oases of effective system control performed by human operator in suoh conditions support, due to interdisojplinary approach, a concept of the use of the system anthropomorphic adjustment for transgressive investigations.

This paperdeals, in particular, with analysis and investigation of the dymmios of helioopters under extreme flight conditions. It oovers both theoretioal anslysis and enpletical investigations on real systems.

The investigations refexred to the humanmpliot, his extreme oapabilities and Rlexiuility of limitations an the one hand and to the machinemelicopter on the other. For investigator, when unamare of all phenomena taking place in the sybtem and negleoting the influence of handing dynamios, beoomes arbitrary in selection of oritical plight phases, simplifies their models and oonsiders the dynamios of aholicopter as an isolated object.

The investigations ooncentrated on the course of tasks assigned and operation of the helioopter systems in seleated oritloal ilight phases and under overoritiond conditions.

Simulation, anlytical and empirioal methods pere widely used throughont all investigation phases refleoting limit oonditions muoh more, if not cotally, safoly. They were employed to invertigate the least explored phenomena.

A system was developed of transgressive investigations from analyses to experiments covering:

1. investigations in cenventional time on closed mathenatical models of phot-lacioopter configuration whth the use of numexical methods and computer techniques,
2. laboratory inventigations on simulator in real time as an intermediate form berore colng over to the real object,
3. investigation on the real object including helicopter, measure equipnent and crey / Lest pilot, back-up pilot, observer and board mechanio/.

In the oase of investigations on olosed mathematioal models the handing model reflecting pilot si decisions and execution is combined with the model of the oujo or systems operation thus making it possible to investigate the pilotmelicopter sybtem simutaneously.

Helicopter simulator of a Plexible hybrid-type oonstruction equipped with a stand for ergonomic investigations permite versatie tests of the pilot-helicopter system in real time. The simulator cirouit is additionelly provided with a model of automatic control based on handing models for investigations in oonventional time. This allows to investigate the concept of anthropomorphio auto-pilot and faclitates training of extreme flight conditions using information on tranggressive control provided in flight director systen.

In order to reduce risk when testing transgresslve oonditions in plight, alternating inventigations are introduced of lolated phases. Tmpirioal simalation of hardly explored phenomena, simulator training and theoretloal analyses are used here. They are combined in a uniform program so as to oonduot tests as olose to the system limit conditions as ponsible at risk margin not exceeding that involved in conventional investigations.

The model of handing-representation of helicopter plight

Any flight assignment oan bo presented in the form ois a flight profile oomposed of manoeurne sequence N_{0} Any $n-t h$ manoeuvre an be distinguished as plight pinase subjected to fixed set of rules applying between time th up to t_{n+1} A Imithed set is availar e to compose "any flight assigmment consistifg modulio nt The modult, when solve, give solution for an assignment provided that the final data of a pro... ceding mar euvre are introduotory deta for the folloving one.

Manot vre representation oonsists in oalculation of time runs of alterntions In hellcor er flight data and in establishment of control Punotion for the asmamed rule of me oeuvre execution. For this purpose on inverse ascignment is exeoutod in olosed moi 1 converbing the manouvre rile into extreme allowable impulses ontrolling in relatic to the ground. Translated into the system conneoted with helicopter they
make it possible to speoffy neoessaxy oontrol funotion. The solution is conduoted step by step in disorete system. A section of flight assignment of a uniform passage teohnique /Fig. 2 items n and $n+1 /$ is divided into a sequence of constant time seotions i, $1+1$ for the assumed time interval Δt.

Anthropomorphic structure of the handilng model
The development in the models of human behavior starts with psyohological investigations of the operatior s activities. They have resulted in psychologioal model revealing the notion of an operational image, that is, internal model.

Especially interesting is the model of pilot's aotivities desoribed by Cavalla /1/ which attempts to diverge from transmittanoe model.

In the oourse of the complex oontrol prooess pilot's antioipation provides information on flight data in the nearest future. Thus it enables him to estimate the difference between the aotual and intended levels of state veotor and manoeuvre rule indioates the direction of changes in oontrol vector.

In anthropomorphio handiling model feedbaok and reaotions based on pilot's antioipations are parallel elements of the oontrol prooess. The feedbaok system fulfils the assignment and stabilizes the system whereas the anticipation system, which is nomally intended for more complex problems, serves to establish the intended and flexibly corrected state veotor to whioh feedback system is subjeoted. According to such an extrapola ted run feedbaok system performs its oontrol funotion for the nearest moment. Antiolpation is a permanent process interfering with oontrol deoisions depending on current gonditions, position of limits and run of the aotual system state vector. For the pilot's mind is involved in antioipation process whioh is negleoted by investigations. This process embraoes ceonsequences of intended limit oontrol changes being nefther mere projeotion of ewents nor advanoing penetration of disturbances. The basio group of phenomena oovered by such an antiofpation in limit ilights refers to the dynamios of changes in state veotor limits and to evaluation of antioipation limit time.

The cruoial need to control the system in extreme conditions is to develop the helioopter model oontrol so as to maintain required oontrol run in relation ot limitations. This makes it posaible to effect aifferent variants of exoeeding limits.

Models of anthropomorphic control fall into several types.
In the first variant of control in limit flight oonditions with a provision that the envelope of selected system limits is not exoeeded, oaloulated control impulse $\triangle z$, /target impulse/ must not exoeed selected system state Iimits. This is why in eaoh step and for eaoh element it is neoessary to oaloulate set of upper and lower margins of state vector $\Delta x_{U 1}=x_{U i}-x_{i}$ and $\Delta x_{I_{i}}=x_{i}-x_{f i}$ as well as differential quotients $\Delta D_{i j}=\Delta x^{0}{ }_{j} / \Delta z_{i}^{o}$ for the assumed individual control impulse Δz_{i}^{o} /from relation $Z=G X^{3 / J}$ a proper ohange in state veator Δx_{i}^{0} oan be caloulated for $\triangle z_{i}^{0} /$.
 the minimum control margins $\Delta z_{i} U$, L min are selected.

The conditions $\left|\triangle z_{j}\right| \leqslant \mid \triangle z_{J, L}$ min \mid when fulfilled make it possible to seoure the objeotive within system oapabilities and to fly "along limits" without exoeeding them.

The principle of limit run between allowable limits have been presented in Fig. 3 where $z_{U 1}, z_{L 1}{ }^{\prime} z_{U 2}, z_{T 2}, z_{U 3}, z_{L} 3$ depict envelopes of top and bottom limit control impulses for the handilng model index 1 , helioopter - 2 and environment $\bar{U}, 3$. On section $A B$ control run $z / t /$ is effected for the oondition $\left|\Delta z{ }_{j}\right| \leqslant \mid \Delta z_{j}, J_{i}^{*}$ min \mid, the remaining area corresponding to $\left|\Delta_{z}\right|=\left|\Delta_{z}{ }^{U}{ }^{U} I_{m i n}\right|$. Shaded area indicates the area where flying and control are considerabyy affected by limit priximity /risk area/.

The second type of control deals with the models of exceeding limits. Having a problem of oontrol along limits developed it is possible, at any time, to exoeed the limits. They oan be exceeded either by intentional control acoording to the rule corresponding to structural capabilities of the system or by causing failure in selected system element and assembly. Also it is possible by changling the environmental conditions.

The third type is advance oontrol. The handling model represents the process of complex decisions oonoerning flight program cheok/evaluation of performed manoeuvre and passage to another flight phase/, detection of system failure and serious disturbanoes and, as a result, proper modifioations in flight program/alteration in $X_{n} /$ and the way of 1ts execution. Any deoision as to the choloe of flight program modification when approaching serious disturbances or intentional ohange in control vector requires on adequate representation in the model of anticipation process.

[^1]Therefore, it is neossary to caloulate extreme possibil ty of ohanges in adust ment range so as to penetrate the area in which the procoss will continue in the nearest future. At the same time some features of extreme changes in adjustment range have to be taken into consideration/Fig. $4 /$

Disturbance magnitude should be converted into magnitude of neoessary ohence in state veoto: $\triangle X$. Thas a premise is obtained to estimate to moment being a starbing point of the control system reaction to compensate disturbanoe. To do this, it is neoessaxy to estimate time which passes from the onset of the system action using limit control capabilities up to the moment when alteration in adjustment range equals disturbanoe magnitude $\triangle X_{n}$. This time is limit time indioated in Fic. 4 as $E^{\prime}{ }^{*}$ Gymbols $X_{\mathrm{U} 1}, \mathrm{X}_{\mathrm{L} 1}, \mathrm{X}_{\mathrm{U} 2}, \mathrm{X}_{\mathrm{T} 2}, \mathrm{X}_{\mathrm{U} 3}, X_{\mathrm{L}, 3}$ refer to bop and bottom inits of artem state /model of control system, objeot and environment/.

All the elementary control actions to couse required change in blate veotor Δx are mostly anticipation - type control processes. The handing model then represents characterlstio way of handing including action impulse \triangle Za which initiates alteration in state vector into required direction and advance oountreaction of control $A \operatorname{Lin}_{\text {to }}$ to impede movent so that the required level of alteration in state vector $\triangle X$ could be achiered.

The fourth variant of anthropomorphio type control deals with decisions to modify elight assignmentip, for instance, an unexpected fallure ocours to the system. Unlike static type deoision processes /as known from literature/, those processes must be synohronized with Rlight dymamics due to oonsiderable time limitations. The pilot then fis rorced to modify flight program by seleoting the ready flight prooednces. The hemristics of assigrment struotme like this have to be mastered by the pilot to be employed antomationly. Fhaking a model in suoh a case oonsists in seleotion of a proper soquence run. liaving a proper assigunent struoture seleoted, the deolston sequence is focused on seleotion of dymmio data for respeotive nequenoes.

Flf. 5 illustrates the funotionlng of feedbank olrout while in suooeasive manoeuvres the system compensates the error of the ourrent and taxget state veotor without exoeeding the limits imposed.

The ansignment, it was provided, hat to be eifeated to the assumed flight progrom using the limit system oapabilities. The limitations assumed were: the use of maximum engine power $p_{r a x}$ and maximum thrust $\mathrm{m}_{\mathrm{mx}} /$ stream stall/ when maintaining the limit control data $\left.\left(d V_{0} / d t\right)_{\max } / d v_{y} / d t\right)_{\max }$ and $\varphi_{y \max }$. Flight program has been presmuted in Tig. 5 as a set of altitude - airspeed combinations at the end of each pligit phase. They have been indioated on a ourve $: / \mathrm{t} /$.

In control sequence from stick displacenents to helicopter displacements, cansen and effeots are subjeot to the folloming scheme:

where: δ o - dioplacement of collective pitoh lever, $\delta{ }_{x}-3 t i o k$ displacement in the plane of symmetry, v_{0}, V_{y} - displacenent of control disc/oollective and cyclical inclinntion pitch/, $a_{z o}$, ${ }_{x o}$ - aooelerations in helioopter system as immedizte /non inertial/ result op control action, a_{z}, a_{x} - transposition of accelerations into a system conneoted with the cround, $V_{X}, V_{z}, x, z-a j r s p e e d s$ and displacements of helioopter as a result of aoceleration effect in tine.

Accordingly a_{n} and a_{x} aooelerations have been assumed as input oontrol impulses in the model, the remaining data have been calculated.

Fic. $5 a$ shows control impulses run. It ooours that the minimum inpulses a_{x} or a_{r} are assumed as limit values. Fig. 50 illustrates entrance fin the following limit ranges of respeotive heljcopter assemblies / - - flight with maximum pitching, 2-initially plight close to stall oonditions and then at the engine maximum power, 3 and 4-flight with maximum power/.

The efleot of predictive system in the handing model is illustrated in Fico 6 for bob up - fast elevation to spot hovering at intended altitudex. In a slmque single-parameter vertical halicopter movement the elements to be considered are introductory vertical acoeleration and subsequent speed reduction so as to meintain hovering at 10 m above the eround.

In order to establish the starting point for braking vertioal movement it is necessary to caloulate the lover limitt of system adjustment for eaoh step/Fig. 4/. The advance control action/point B_{0} in Fig. $\sigma_{\text {/ for time }}$ fry pernitted, with the accuracy of numeric solution, to brake climbing speed at required altitude of 10 m /point $\mathrm{v} /$ /
$x /$ typical $\mathrm{HOE} /$ nap-of-the-earth"/ manoeuvre - bob up /6/.

Dynamios of multi-element discrete helioopter struoture

A helioopter model was developed in the form of multi-element disorete structures such as: rotor blades, fuselage struoture, models of exolting foroe generators /e.g. drive, elements of aotive or passive vibration isolation/, conneoted to one another by jofnts /e.B. blade attachment joints/. The dynamf.cs of the whole system was solved by means of bystems of equations of motion oorresponding to eaoh sub-system. The systems of equations were next conneoted with equations of constraints.

It is assumed that the whole system is moving unsteadily in relation to inertial system conneoted with the cround x_{0}, y_{0}, z_{0} and is subject to deformations evaluated in system x_{m}, y_{m}, z_{m} which are $o^{0}{ }^{0}$ oonnected with seleoted sub-systems to which due to m, m their digitizing local systems $\bar{x}_{m, 1}, \overline{\mathrm{y}}_{\mathrm{m}, 1}, \bar{z}_{\mathrm{m}, 1}$ are assigned in each i-th point of the conoentrated element state vector: ${ }^{1,} \mathrm{~m}, 1^{\prime} \mathrm{m}, \mathrm{I}$

Fig. 7 illustrates mutual finterrelations between the system elements in generalized ooordinates, where q is eeneralized displacements, P is generalized foroe, \bar{T} is positional vector of coordinates system of m-th element, T_{w}, is positional ve8tor of joint oonneoting elements m and $m+1, \bar{x}_{m, i}$ is poss-wm, $m+1$ tional veotor of 1 -th disorete point in the system oonncected with m-th element.

Equations of motion of the helfoopter system elements
Equations of motion for m-th assembly in generalized coordinates following leftsided separation of linear elements assume the form:

$$
M \ddot{q}+\Lambda \dot{q}+C q=P / t /
$$

where M is inertia matrix, Λ is suppression matrix, o is stifeness matrix, $F / t /$ is generalized force being a non-linear function of aerodynamio loads, kinematio and force inputs resulting from joint reaction, gravity forces, oontrol and friotion loads and force generator fnputs of equipment installed on the helioopter.

The solution of this system of ooupled equations representing non-linear relations of the helloopter dynamics is extremely diffioult. Modal ooordinates, when introduced, make it possible to obtain for the gystem of n degrees of freedom n independent differential equations of a single degree of freedom. And this is one of efficient means to solve the system.

By a proper selection of transformation matritx Γ so that its columns are M-orthonormal vectors of free vibrations of non-suppressed system, and substituting

$$
q=\Gamma \xi
$$

where: $p-v e c t o r$ of modal coordinates, and then premultiplying the system of equations in generalized coordinates $/ 1 /$ by Γ we obtain the following system of equations:

$$
\Gamma^{T}\left[\Gamma \ddot{\xi}+\Gamma^{T} \wedge \Gamma \dot{\xi}+\Gamma^{T} \subset \Gamma \xi=\Gamma^{T} \mathrm{P} / \mathrm{t} / \quad / 3 /\right.
$$

which can be transformed into:

$$
M^{*} \ddot{\xi}+\Lambda^{*} \dot{\xi}+C \xi=Q / t / \quad / 4 /
$$

phere

$$
\begin{equation*}
\Gamma]^{*}=\Gamma^{\mathrm{T}} \mathrm{n} \Gamma=\mathrm{I} ; \quad \Lambda^{*}=\Gamma^{\mathrm{T}} \wedge \Gamma ; \quad \mathrm{c}^{*}=\Gamma^{\mathrm{T}} c \Gamma ; \tag{151}
\end{equation*}
$$

that is into the system of n equations of a single degree of freedom

$$
\ddot{\xi}+\lambda_{i} \dot{\xi}_{i}+c_{i} \xi_{i}=Q_{i} / t / \quad i=1,2, \ldots, n
$$

Using prediotive integration to solve this system in time t, $t+\Delta t$ it is possible, having accomplished each oaloulation of modal coordinates veotor, to establish vector of the primary generalized coordinates from the formula /2/.

Each equation in main coordinates was solved using Runge-Kutt fourth-order method to determine $\ddot{\xi}{ }_{i}=f / t_{j}, \xi_{j}, \dot{\xi}_{i}$ / according to relation

$$
\ddot{\zeta}_{i}=Q_{i} / t /-\lambda_{i} \dot{\xi}_{i}-c_{i} \xi_{i}
$$

starting with the assumed initial conditions for $t=t_{o}, \xi=\xi_{0}$ and $\dot{\xi}=\dot{\xi}_{0}$ while shifting from t_{i} to $t_{i+1}=t_{i}+\Delta t$ the following procedure was applied.
mime jnterval vas divided into p sections $1,2 \ldots k . . . p$ of a magnitude $\Delta t_{k}=t_{k}-t_{i}=\alpha_{k} \Delta t$ and then the system of equations was solved p-time

$$
\begin{aligned}
& \ddot{\xi}_{k}=f / t_{k}, \xi_{k}, \dot{\xi}_{k} / \\
& / J / \dot{\xi}_{k+1}=\dot{\xi}_{i}+\Delta t_{k} \sum_{n=1}^{k} a_{j, n} \ddot{\xi}_{n} \\
& / J / \quad \xi_{k+1}=\xi_{i}+\Delta t \alpha_{k} \sum_{n=1}^{k} a_{j, n} \dot{\xi} n
\end{aligned}
$$

where j and $k \ldots$ sucoessive equations $j=1,2 \ldots p ; k=1,2 \ldots p ; n-$ index of term coerficients in following equation $n=1,2 \ldots k$.
The oondition is that in each equation

$$
\sum_{n=1}^{k} a_{j, n}=1 ;
$$

Disturbance of air flow round the helicopter
Uniform air flow round the helicopter is disturbed by velocity field induoed by a systen of wakes generated by the helicopter rotors /main rotor and taji rotor/, lifting areas/wings, stabilizers/, fuselage flow round and atmosphere turbulence.

Velocity pield generated by rotary wake depends on wake geometry which is shaped due to the way of its oreation and deformation in disturbed medium caused by all distuxbing faotors.

The vhirling surfaoes induoe velocity field $\overline{\mathrm{V}} / \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t} /$ aocording to Bjot and Savart rule

$$
\vec{V}=\sum_{n=1}^{I I} \iint_{F_{n}} \Delta \Gamma x \bar{h} \times \overline{d r},
$$

whexe n - element generating E_{n}-th whirling surface/blade, wing, eto./, $\vec{d}-$ lencth of wake el enent of rotation curl $\Delta \Gamma, \vec{h}$ - projeotion of distance from elemencary rotation curl to the point in which induced speed is determined.

Model veridication
Resul is of investigations of the rotor dynamios under transgressive conditione
 limit one: and especially carefully are ohecked those phenomena/model fragments/ whioh are zssential to the system behaviour when exceeding limits.

This hapter inoludes the outline of verifioations, global and partial olike, of the sy: em model by comparison with methods used by world's leading halicopter manufactu: rs, flight tests and by comparison of numerio solutions with analytical solutions.

Comparison of presented method with the methods used by the vorld's leading manufactuxers $/ 2,3 /$

Studies $/ 2$ and $3 /$ deal with comparison of calculation methods developed by the world's leading helioopter manuftoturers of which methods provided in / 3/are considered the most advanced ones.

The rotor hypothetical data provided in /2 and $3 /$ have been caloulated using the method described here in order to verlyy the data.

Codes of respeotive companies assumed in diagrams for different aloulation methods:
ARC Ames Research Center
BHC Bell Helicopter Company
BV 'Boeine Vertol Company
HiI . Muches Helioopters
TAC Keman Aerospace Corporation
LCC Lockheed Californja Conpany
MIT Massachusetts Jnstitute of Technology
OR Office National d'Etudes et de Reserches Aerospatiay es
SA Jikorsky Aircraft
UARL United Miroraft Research Laboratories
BG Poetng Stall hethod
IL Instytut Lotnicotwa/Poland/
In or er to estimate the methods an extreme oase has been selected with stream stall on returning blade and compressibility phenomena on attacking blade $/ \mathrm{H}_{1,90}, 90,9 /$ and at particular rotor position against the air flow round. It has been
assumed for high flight speed / $\mu=0,33 /$ that shaft inclination against the strean is $\alpha_{\beta}=0$ 。

Flexural loads /Fig. $8 /$ reveal conformability for all methods. Deformations and torsional loads as much more sensitive indicator of the method quality show considerable desorepanoy from one result to another. This espeolally applies to methods $/ 2 /$. Good uniformity of results have been attained for improved methods $/ 3 /$, including $I L$ method/Fisc.9/.

Gleck of method reliability by conparison with flight test results
Usins: IL method onlculations were made for the cases tested in Plight. The cesulto are shown \ln fig. 10. In the drawsing distribition of torque monent affecting helioopter blade root in steady flight has been show.

This verificotion of caloulations and tests is of particular signifioance for it ooncerns low torsional stiffness blade type ACR/4/. Extreme aensitivity of oalculation results, in particular for torsional deformation, to method errors /even slight/ and errors in data set for the rotors of this type with simultaneous oonformity of caloulation results and test results testifies to positive method verifioation.

Cheok of nuneric solution of blade motion equations by means of analityoal solution
For various frequencies of blade exoltation and various suppressions the results of numeric program solutions have been ompared analytioal solution of funcion type $y=\Lambda e-\lambda t$ oos $\bar{y} \omega$ t. Fig. 11 shows comparison of solutions for suppression $\lambda=25$ at frequency $\bar{\nu}=18$ for solution step $\Delta \psi=5^{\circ}$. Caloulation realta are not practically different from acourate solution to $\bar{\nu}=18$ for $\Delta \psi=50$. Greater oonformity /strict coinoldence of numeric and analytioal resulta/ is obtained with decreased step $\triangle \psi=2.5^{\circ}$.

Examples of simulation investigations of rotor dynamias in tranggression conditions
This chapter covers examples of investigation possibilities, by means of an accurate simulation model, of the dynamios of helfoopter rotors in transgression conditions.

The first example pertains to a hingeless rotor, wherein by reduoing the colleotive pitoh, a limit chord inctability of FLT /Flep-Iag-Torsion/ type was initially introduced, and with further reduotion of the pitoh - the limit of the divergent flutter of the blade mas exceeded. The feasibility was investigated of returning into the ranges of stability by re-inoreasing the oolleotive pitch. The enclosed diagrams 12-14 display the methods of observing the system in oonditions of transgression.

By /inertialess/ rednotion of the oolleotive pitich the ohord inatability of FLT type / Fig. 12/ was being oreated, whole mith further reduction of the pitoh the limit of the divergent flutter of the blade was exceeded/Fis. 13/. The investigations of the posslbility of returning into the ranges of stability by means of re-increasing the oollective pitch are illustrated in Fig. 14.

The seoond example deals with investigations of a two-blades teetering tail rotor, in the ement of one the blade's tip being damaged. Those oases are conoerned with investigating the consequences of rofor damage which may oase exceedeng of the Iimit of a respective type/FiE. 1/. The results of ohanges in the condition of the system when the blade tip has been injured on about 15% of length, with $10 s s$ of mass and bending of the trailitg seotion, are displayed in Fig. 15 and 16.

Investigations on the simulator

On an investigation simulator /Fig. 17/ it is feasible to investigate isolated manoeuvers in normal, extreme, and overextreme conditions of flight, filight tasks, as vell as oertain closed problems, such as determination of operation limits, estimation of flying qualities - using subjeotive soales of estimation, investigation of pilot-helicopter configuration from point of view of exgonomios, or of processes of control as performed by a human. All those invertigations can be limited to investigations exolusively in terms of ceal tjme or they can be extended by analyzing seleoted and registered fragments in conventional time.

Isolated manoeuvers, being particularly adaptable to investigating on a simulator, inolude the folloving: braking, jumping over an obstacle, safety manoeuvers of all kinds following power plant failure, suoh as landing or ${ }^{\text {fly }}$ bway with one engine inoperative. Repeatable exeoution of a selected manoeuver enables - by means of the method of sincoessive approximations - to optimize the technique of control in oreder to utilize the limit posstiblities of the system.

The purpose of investigations on a simulator of training charaoter is to cheok the realify of analytically elaborated control techniques, and to carry out training of crews in flifgt in oxder to master the correct control dynamiog.

The monitoring on a slmulator of new problems, conneoted with flying helicopters, and solved by other means, constitutes a reliable check of the correotness of the proposed solutions prior to conveying them onto aotual systems.

Investigation of system behavior in conditions of tranggression consists mainly in resetting the system in seleoted fragments of the performed inmit manoeuver or of controlling the system beyond adminjssible limits, and in observation of consequences of that operation, chlefly the rate at which the dangerous effects are building up, so as to have the poscibility of estimating the limit of risk, admissible limit, failure limit or limit of natastrophe. The analysis of the vector of a posteriori state in oonventional time is - in this case - the principle of investigations.

The posclbility of observing on a screen in real time the paramoters of hexiooptex movements permits to investigate the probloms of antioipation of helioopter pilotege. By introduciag aooelerated onlaulations of limits of changes of etete veotor in time interval irom the ourrent moment to the limit thme, it is feasible to estinate the moment of meting the deoision as to when to begin to ohange the veotor of state to aesired maghtude。

Pigole inlustrates the oonoept of suoh investigetions oy the example ol Ianding of en autorotation heliooptor when the puiling-oif phese is computed in an acoele rated boale of time, and is exsautod in limit mode in real time in the interval ixom ourrent moment up to braking the rate of desoent domn to the admisaibie. In the event when the aoselerated course of limit trajeotories on the soreen determines solely the gequenoe of the tine - the passive informetion oonstitutos ior the pilot an indiostion as to how and when the "next" manoeuver should be initiatod.

IImit investigations in ilight

The investigations in Plight, of inmit type, apart from the measurement apparstus /board and on the ground/ registering the helioopter dynamio parameters, involye instalm ling of such apparatus whioh pormits to measure funotioning of the pilot; this enablos to entimate both his obilities as operator and the dogree of riais causod by the limit altuation. This equipment also serves to monitor the elements of pilotage of antiotpative neture.

An ooviographio epparatus was mountod to oxamine the firation of the pllot"s oyesight, while his psychophysilogiaal reaotions oan bo ostimatod by a spocial set whioh serves to measure the following:

1. EKG, aooording to whioh it is posiible to estimate the degre of axoltation, frequenoy of heart oontraotions, and selootion of Korothov tones when measuring arterial pressure,
2. ventilation paraneters of the lunge /number and volume of guocosaibe inhalations/,
3. arteriel pressure of the blood,
4. force of oontrol sthok squeeze.

The ooulographic apparatus, in addition to routine appliontion to estimato the ergonomio vort of the pilot, also sexves to analyze the antlotpative proossses, beoause the operator seye prior to taking the deoision of ohanging the control veotor, is the pirst to reveal the intention - it penetrates the area of future ovents, the somolled orientation area. Basing on this assumption it is postible to estimats the time of prediction, 100 , the time interval from the moment precedins the visual penctration to the moment of changing the oontrol vootor.

The apparatas for measuring the psyohophysioal reaotions is mainly used to estimate the lovels of peychophysioal stross whioh is the disoriminant of the degree of risk during ereoution of a slight tesk.

The ohier role in the problem of reducing the exoesgive degree of risk is performed by an adequate struoture of the progren of investigations, oreated in sooordanoe with the prinoiple of optimization of risk gradation men pessing over to suooessive, more dipiloult phases of investigetion.

Jolniag the plight tests with simulation investigations leads to reduotion of the risk of limit tosts to an adminissibie level. Inolusion of binulation inta the investigation system covers the Iolloming:
t. numerioal simulation-introduction of indial limit investigations of the tesits on a olosed model in conventicnal time in order to determine the admisaible limits, to deteot the oritioal points of the tast, and to olaborate the adequate fnvestigation techniques and teohniques of oontrol, whioh tend to utilize the reserves of the gyatom when it is neoessary to inoresco the safoty margin in Iimit aituationes
2. training in real time involving pllotage teohniques spooifind in the tert on an investigator plight simalator, indispensable ior mastoring and atorage/in mind/ an adequate stereotype of dynamio oontrol prior to golng over to experiments on an sotual objeot,
3. ompirion slmulation of oritioas phases of the test in oonditions safer than those resulting from the realizetion of the omplete tesk,
4. sinulation of tho test by moans of a verifiod /by rosults from 1 tem 3/ olosed model and axtspolation or results for extreme and overextreme onditions.

Examples of transgrossion in expertmental investigations
Three typos of experiments have been soleoted as examples illustrating the problems of treasgression in flight tests of helioopter:
 the ground in tho oontingonoy of ponar plent zalura，
2。 investigeting hollooptow turnover duxing takomez ow tandig on ajoplng tomaing 3．Invertigatiog Mimit manoouvensollity oi a holiooptor in hodgohopping．
 ransgression problens／multhtude of ovorlapping inmita oi the syotam，neooosity of
 Lediuxe／they gtross the neoessity sor en thtegral approeoh to the phlotmhol aoptar

 bonts for ertreme oonditions．

 monk and fizing arene operstione／．
lodel investigetions by moane of o olosod simulation modez datormino the oountss
 ofter a fallure of tho pover plento hatagels of thoge ooursog intorms sbout the
 and the like。

 of a vortez rine belng fommed．

 mothod op suocebsive roperitus for determining the optimed mpnocnvers on sarety toy

 pextorming tho easoby manoouver of Landeng or departurop it it posedbe to hotermino Whe EOn

 phent beleoted during the simulation analysis oy means ot 8 ologec modol，ormacd

 to model and also to provide metoris？for vaztiloztion or nethemathoms modolso Thom？

 vvading if，and to egtimate the conbromitaility op the holioopter vinen thing thxough

 gotilogram wig． $21 /$ 。

 doetcions，and selacting the tye of saiaty manoouvcro

 Purhor Imits pertain to hard bading and aate oresh．

By modytying the pilotage technique so as to optimize the plon of enersy in the system and utilize its reserves，it is possiblo to signifloantly reduoe the risky zones．

Inveatigatione carried out on a simulation model have indiaated that better utilization of energy oan be obtained when emergenoy manoouvars are oarried out in a more dymanio mamor，frathering speed with greater pitohing，and greater pullmp in puliznemp phese is deotsive in a aubstantial measuro for relooeting zone impts ／F4B．25／。

Duning the fly amay manoeuver it is reastbie to reduoe the span of levels of onergy flow hy oontinuing ilight on reduced ropom．Such a modipioation of ply amay techntque atiorda a oonsidexable gain in the form of a jeaser dron in marimum flicht acecent irom tho mowent of fallure／Fig．26／。

Similar problemg are onoountered men invastigatine interruptod takemors of a helioonter oue to power failuxe the article only points to the estimation of effeoti－ veness of plotage teohnique modolioation in the oourse or such a tairempro The oiassio teohniques of takeooff periorming，and partionzasiy of bapety manoeuvers after ongine failure／oonsiderable lowering of flight path／，do not warrant an adequate level of pllght gafety and for this reason it is guggeated to modily the beohnque of taremof， congisting in inoreasing the rate of olimb in the intial phage and fly amay，following engine tailureg by applying the technique of minimum rotor revolutions／lesser lomering of ilight poth？．The illustration oi comparing the olagaio toobnique with the modified one of vertionl takemoif in the example without utilization of rotor enerey in the phase of vertioal cilmb／is presented in Fig．27．

The effeotiveness of introduoing limit simulation investigations is illustrated by the resutte of modifying the pilotage toohnique or emergenoy manoouver after ponez plant falluy of the heliooptor when performing flying orane operations．Then applying ciassio technique，the helioopter being initially violently lovered，aiter reduction of the oolloctive pitch，requires muoh rree spece，already oooupled by the asecmbly gband and applianoes，as well as by the dropped load，previously hoistod，and by misoel－ laneons objects in the surroundings．It is，thereforg，indioated to searoh for nem toohniques of carrying out safoty manoeuvers in order to reduce this area．

For the halioopter mass whioh，after jettisoning the load，little exoeeds the empty welght，the moment of inertia of the rotor inertiel sybtem is relatively high and the ropoto drop for this mass，resulted in the ilest phase of plight arter loss of power due to failure，is substantially lesser than for the talremof mass．It is thus possible to manipulate more ireely with the time interval of onergy accumulated In the rotor，so thet in the first phase of ilight，after a failure，the halioopter could be dionlaoed as tar as possible Prom the operational site and gathor speed midle being silghty lovered．For a modified pilotage teohnique meeting those requirements \therefore it mas assmed that arter the pailure and axter the thme in whoh the pilot does not reaot $/ \sim 1 \mathrm{~d} /$ ，and after jettisoning the load，during $2-3 \mathrm{~s}$ ，with the oollootive piton not roduoed，and by pltching the helloopter／by pushing the oontrol stiok／an impulse Iorwards was oansed．Nezt，by a suitable ohange of the celleotive pitoh and thruat the rotor revolugions lovel vas established at the optimal value ror the nort phases of the manoouver．

Fig． 28 fhone the procedure of ohenging the flight parameters in the function of time vith one engive Inoperative／fallure／by means of a modifiad teohnique of flight ／iarst acoeleration，then reduction of the colleotive pitoh／vitoh speeding up the ropomo at the rate of $\mathrm{dU} / \mathrm{dt}=2 \mathrm{~m} / \mathrm{s}^{2} / \mathrm{U}=\omega \mathrm{R} /$ 。 An eatimation of the possibility of colifing with obstacles has beon displayed in Pig．29．Visible are substantislly magnified／an oompered with olassio method／the areas in mhioh the presenoe of obstao－ Les does not imperil ilight safety．

Investigating helicopter turnover during tarewop and landing on aloping terxain
The thanover investigations constitute a diferent issue－ $2 s$ compared with the brensgression investigations of HV zones and takemofs－although they also deal with transgression，but theix oharaoter is more stationary，and the oontaot of the helicopm ter pith the ground bed presents other researoh problems．The multitude of overlenping limits／turnover，sidesifpping，roll－down，limitations of blade swinging，limits of unstable equilibrium，irreversibility of building up of dangerous phenomena after trang greasing each of the limits，the neoessity of elaborating safety manoeuvers followlus the transgression；all that oreates problems whioh are common with those slgnallaed in the introduotion as being oharaoteristio for trangeression／typioal displey of limits $=715.30 \%$ 。

In ordex to verify the members of the model whioh are diffioult to be preaisoly mathonatiosily reprosented／this periains chenly to rotor aerodynamios／，the equation of turnover has been rolved by simulation method．For this purpose，the phases of hem Iloopter turnover vere investigated on flat tarraing during whion the veotor of state of the sybten was being registered：the position of the control system elementa，angan position of tho helicopter，revolution of the helioopter rotor，blade ilapping angle， components of reaction foroes aoting on Landing gear wheels，and oomponents op vertioal reantions aoting on main landing gear mheels by means or tensometrio soales／Fig． $31 /$ ．

Those investigalons regulted in the egtimation of the rate of build-up of dangerous phenomena in the vioinity of turnover limit and during its transgression, and also of the teohniques of performing safety manoeuvers for prevention of turnover.

The last phase of empirioal investigations oovered landing operations, and engine and rotor stoppage, as well as starting and takeoffe in oonditions of natural sloping of terrain, in various configurations with relation to the slope/up the slope, donn the slope, with R.H. and L. .H. side to the slope/, with various loadings of the helicopter /mass and position of mass center/, With various values of wind velooity and direotion, as weli as for various inolinetions of the slope.

By means of the vefified simulation model possibilities wera estimated of extending the admissible limits by:

- reduoing the minimum collective pitoh,
- inoreasing the ranges of maximem displaoements of the oyolic pitoh of the swash-plate,
- Inoreasing ground bed roughness,
- inoreasing the wheel braking moment and blooking the wheels,
- Inoreasing the turnover angle/partioularly when dealing with "tail" turnover by changing the balanoe/,
- Introduoing elastioity in the flapping hinge,
- morring the helloopter in parking grounds during starting phase, and prior to stopping the rotor.

Investigations of the limit manoeuverability of the helicopter in low flying/hedgehopping/

The inveatigations inoluded analysis of problems pertaining to investigating low flying of the helioopter olose to the ground, the so-oalled NOE/taking place, for ingtanoe, when performing agrioultural airborne operations/. Iimit possibilities of their exeoution were estimated, with maximum utilization of funotional and struotural reserves of the pilotmelicopter oonfiguration.

The proximity of the ground makes suoh flight risky owing to the possibility of helicopter colliding with the earth or with obstaoles on the ground. The existenoe of dangerous zones inside of whioh flying is not reoommended oreates additional risk in the ewent of power plant fallure in those zones. Such faots are reaponsible for a algnifioant inorease of requirements oonoerning both the pilot who flifes in those oonditions and the helioopter, and espeoially its dynamio qualities. Nearly eaoh filght is featured by suoh oharacteristio manoeuvers as: soramble, quiok top/normal, sideways, reversal/, jumping over an obstacle at low speed $V=70-90 \mathrm{~km} / \mathrm{h}$, enoountered in agrioultural airborne operations, and at medium speed $V=120-160 \mathrm{~km} / \mathrm{h}$, employing the teohnique of maximum altitude when hedgehopping, and the teohnique of minimum altitude over the obstaole, symmetriaal hopping, as well as those involving ohange of aireotion, agrioultural wingover/pedal turn, turns to a target and in a speoified direction, slalom, and manoeuver of S type, bob up i.e. a rapid ohange of altitude in hovering flight, and hit the deok - sudden descent with a sharp passing over to low flying.

An example is displayed in Fig. 32-34 for agrioultural returng. The ooulogram signalizes advanoed moments of visual penetration of future areas of the flight oourse. The teohnique of performing returns has been utilized for the most effeotive modifioation of the braking manoeuver - braking by means of return. The reduotion of braking distance as oompared with previous teohniques is manifold, and moreover a signifioant bank of the helicopter with relation to the obstacle reduoes the risk of oollision of the blade tips with the obstaole, and reduces the indispensable braking distance by the radius of the rotor /Fig. $34 /$.

Prediotion prooesses in control of the system during performing limit manoeuvers in low flying /hedgehopping/

The prooess of prediotion in low flying oonoerns oontrol advanoe aotions /e.g. deoision to begin braking, or jumping over an obstaale, or levelling out/ from the point of view of forming the flight path, as well as by means of onergy in the system. In limit low flying, the ourrent phase, in addition to the requirement of being oorreotly performed, must be a phase whioh prepares the system for the best posilble oarrying out of consecutive phases. The prediotion ilmit time will reaoh those next phases in which the effeot of operations in the ourrent phase will be subfeot to disaipation. Partioularly important are the energy-consuming and energy-negative elemente of the manoeuver.

In the first oase - it is necessary, in the preoeding phases, to exeoute oontrol in suoh a manner that it would be possible in the critioal phase to utilize the maximum of components of the system energy /e.g. by oumulating the energy of the helicopter rotor to increase the rotational speed of the rotor, and by stimulation of the available pomer along the maximum gradient of acoeleration, and - if neoessary - ohange of alr speed to the viointty of energy-gaving zone/; In the second oase - the preparation of the aystenl for absorption of power /e.g. by reduaing the rated rotational speed of the rotor, or by maintaining the air speed in such ranges that will enable substantial absorption of power, acoelerations - medium speeds/.

Invest gations of prediotion proacsecs aro extromaly deffioult sinoo they pertain to bought prooesses and imagination, but in some degree the ooulographio measurement: and measurements of psyohophysloiogiaal parametera permit to ponetrate into the na are of antioipation processes end oontroi thereof, and in partioular it is feani le to looalize falrly preoisely the moments o? maring advanoad decictons as to contr i operations.

By oon ring the eyesigit firation paths on ooulograms with the time runs of the vector " state, and anelybing the advanoe of visual penetration of the diplay of antiaipa za changes of the system, it is possible to ostimato fairly acouratoly the inmit t ne of antiolpation/see Pig. 20 and 33/. In some manoauvers, in whioh the prediot limit change of the reotor of state is not connooted with the aecersity of visual p usai of the area of future events, it is praoticabla to utillze the measu. rements of gyohophysialogioal perameters /building up of stress prior to oocurrence of the risky phase/.

OP the physlologioal parameters, the irequenoy of heart contractions proved to be the most sensitive indioator of phybioal and emotional burden during plight, the mearurement of axterial pressure, although not repleoting the dynamios of ohanges ocourring in ilight, made it possible to deeply inspeot the behavior of the cironlatory syatem in seleoted filght conditions. The exaninations of minute ventilation of the lungs and freguenoy of respiration constitute a souroe of information about the degree op load oaused by flight.

The investigations point to the fact that the greatest peyohophysioal load on the pilot tie inourred by those manoeuvers in whioh the prediation prooesses must be carried out very preoisely owing to the irreversibility of oonsequenoes, partioulariy dangerous Fiken the limit time is inoorreotiy estimatod. Such oase has been observed during the manoeuver of lowering and low levelling out /hit the deok/.

Summary
The presented hypothesis on tive advisability of introduoige tranggreasion as a mothod of investigating oomplex systeme, suoh as helioopters - in result of whioh It is peasible to achieve a signisioant progress in the development of soienoe about the subjeot of investigations - has been supported by proviaing adoquate exemples or the investigations.

The oreated system of transgression investigations, inoluding the set of almulation models of the pilot-helicopter oonfiguration, the laboratory station of the helioopter inveatigation gimulator, as well as the prepared process of limit flight tests of heliooptors, enable in a large range the reaination of the presented problem in an eqfeo tive manner and with adequate preoision required in thet type of researoh.

Due to a holistio approach, with an interdiscipiinary oonection of the aubjeot problems, it mes possible a.o. to work out an integral model of the heliooper as a multielement elastio struoture controlled by an anthropomorphio model of pilotage. and to buila a hybrid laboratory station - imitator of limit prooesses of the pilotholioopter oonfiguration, and a safe exeoution of numerous and multilateral plight testa, inolading the aystem of transgression investigations into those ilight tests whioh were teatured by a particularly high degree of ribk.

The performed processes for verifying the producod mathomatical modela and systems जhioh substauted actual objeots, oonfirm the Iilselihood of utilizing the aforementioned. system, as a multi-role device for investigating the helloopter system.

The herein mentioned examples of techniques and types of investigations as rell as thellinit cases of helicopter flight signalize the researoh possibilities of the system and the charaotex of achieved results.

B1bliography

1. D.Cavalli and DoSoultages, Disorete time modelization of human pilot behavior, ONERA May 1975, No 52,
2. RsIf.Ormiston, Comparison of aeveral methods for predioting loads on a hypothetioal rotor, JoA.Ho Soo. Ootober 1974.
3. W.Johnson, Compaxison of three mothods for oaloulation of helloopter rotor blade loading and stresses due to stall, NASA mN Dm7833, Hovember 1974.
4. R.H.Blaokwell and DoJ.Makley, The aemelastioally oonformable motor ooncept, J. $\mathrm{A}_{\mathrm{o}} \mathrm{H}, \mathrm{SoO}$. July 197.
5. ToPoShertdan and WoRoFerrel, Man mechine syetems, MII, Iondon 1974.
6. HoLokeliny, end $\mathrm{H}_{0} J_{0}$ Pegg and F .A. Champine, Flying quallty factors ourrently limjting helicoptex nepmor-the earth maneuverability as identified by flight investigetion, Mass TN D-4931, December 1968.

7. Types of oontrol prooest runs for various oases of transgreseion。

8. Diagram of adopted designations for oyerplught of geotox $n_{\text {Li }}$.

9. Diagram ox a limit run.

10. Varlation ol system regutation renge acconding to time elapae Irom the mom ment of intorvontion of oontrol system.

11. Illustretion of flight golurion "along $11 \mathrm{mitations"}$ on the example of a noxmal tajem-opi of the helim oopter: \& m Punotion of oontrol impulses, 5 - run of ohange of parameterg of oyetem state.

12. Manoeuver of helioopter bob up. Example of funotioning of prediotjon cirouit.

13. Diagram of conneotions of the structure of deformable elements of the helloopter.

14. Ampli de of bending moments in plane of th $13 \mathrm{t}_{\text {. Comparison of }}$ methods aco. to $/ 23 /$ and $I L$.

 94-14

15. Inspection of the correotness of the solution of the dirferenm tial equations gystem of blade movenent; a - mumerioal solution/LI/, b - analytioal solublon.

16. Run of instability FLT for the hingeless rotor at reduotion of oolleotive pitoh by $\Delta \vartheta_{0}=-10^{\circ}$.

17. Transgression of aeroelestio instebility of the hingeless rotor/blade $\mathbb{C l u t t e r / ~ c a u s s e d ~ b y ~ a ~ s u b s t a n t i a l ~ r e d u o t i o n ~}$ of the colleotive pitoh.

18. Trangression of aercelastio instability of the hingeless rotor blede in result of the reduotion of the oolleotive pitoh and return into the ranges of stajility of movement of the blade whioh is subjeat to violent flutter /Fig. 13/ by reminoreasing the oolleotive pitoh to initial value.

19. Distributions of tail rotor blade tips torsions/twomblade teetexing tail rotor/ in the event of failure of the blade tip at an azimuth $180^{\circ} / 15 \%$ of blade tip damage - With $108 s$ of mass - calusing its torsional deformation displayed in Fig. 16/1- damaged blade tip, $2-0.5 \mathrm{R}$ of damaged blade, $3-0,5 \mathrm{R}$ of undamaged opposite blade, $4-t i p$ of undemgged apposite blade.

20. Distributions along the radius: $P x$ - of centrifugal force, ϑ - of pitoh angle, $M x$ - of torsion moment for case described. in Fig. 15 . Mark symbols every 45° in sequence: $+\times Y \lambda \mathbb{X} \circ \circ \circ$
21. Diagram of the physioal sy: em of a simulator. Station of operatc of investigation simulator of the hel oopter: 1board instruments $V_{3} h, n, \eta, y$; 2- artifioial horizon $\varphi_{x} \varphi_{y}$; 3- iligh path hux; 4- control stiok; 5-peda s; 6-1ever -pitoh-power; 7 - adjistable seat for pilot; 8 - Poroe imitator -. trim tab; 9 - lever and lrnobs for erg nomio regulation of operator station; 10-signalling of power plan failue; 11 -miniaturized, integrated controiler.

22. Types of limits of zones H-V /equivalent of Fig.1/. As the oriterdum adopted was the admissible landing speed oxample for heavy lift helicopter faslure of two engines/.
Zones: 1 - soft landing, 2-hard landing, 3-admissible orash landing, 4-area of oatastrophe.

23. Display on osoillosoope soreen of antioipation prooesses for the oase of autorotational landing /information diagram/.

24. Run of veotor of state during autorotationsl landing 1 - periods of visual anticipation for estimation of flare moment.

94-17

25. Influenoe of dynamios of pertorming a safety manoeuver on the size of $\mathrm{H}-\mathrm{V}$ zone.

26. The ourve of maximum altitude loss in phase of bringing up to speed from the rate of one engine fallure to the moment of attaining the steady rate of olimb.
Full IInemaltitude logses at speeding-up the rotor after fallure at the rate of $\dot{U}=\mathrm{dU} / \mathrm{dt}=$ rotor after fallure at the rate of
$6 \mathrm{~m} / \mathrm{s}^{2}$; broken line for $\hat{0}=2 \mathrm{~m} / \mathrm{s}^{2}$.

27. Influence of modifioation of handling teohnique on flight path during interrupted vertioal takemoff of the I oategory helioopter. M modipied tech nique.

28. The course of alterations in helioopter system data following fallure of one engine by a mom dified handing technique.

30. Limits of helioopter operation in lateral position in relation to slope. Helioopter mass $Q=3000 \mathrm{~kg}$, coefficient of friction of wheela and landing gear $\Psi_{t r}$ a 4 , admissible wind velocity from adveroe direction: 1 - Ilghtening at $\vartheta^{\circ} \mathrm{min}^{\mathrm{m}} 7^{\circ}, \omega_{\text {nom }}$ and wind $V=5 \mathrm{~m} / \mathrm{s}$ up the $\mathrm{m}^{\circ} \mathrm{min}$ alopes 2 - area of admissible operation, $3-$ turnover for wind $V=5 \mathrm{~m} / \mathrm{s}$ down the slope, 4 sidesiipping $f_{t r}=4$, wind $V=5 \mathrm{~m} / \mathrm{s}$ down die slope.

29. Filght paths of the helioopter following fatlure of one engine by a modified handling teohnique.

31. A helicopter loosing balance While turning over to the left. 1,2 - extensometer balances.

32. Flight path/in three projeotions/ of two agrioulturel manoeuves - Fingover/pedal turn /irom kinetheodolite measurements/。

33. Ooulogram of agricultural return /wingover/pedal turn/o

34. Comparison of olassioal braking and braking by return.

[^0]: $x /$ Lat. transgressio - in narrom meaning: crossing in a broader sense: orossing boundries, infringing law and regulations, exoeeding one s own limits and competence. The issue of transgression was developed as a theory by the Frenoh sooiologist Maroel Mauss and, as a doctrine, it was presented in " m Homme et le Saore" by Roger Caillois giving the foundation for interdisoiplinary synthesis of transgressive problems.

[^1]: 捿/ equations connecting control veotor Z with state vector X.

