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ABSTRACT 

An overview to the performed analysis and 
lessons-learnt approach from flight control & 
hydraulic designers perspective on a condition 
monitoring (CM) concept for hydraulic pump 
application for helicopters is given. 
 
At least two levels of maturity could be 
achieved by application of CM: 
 

 The maturity Level B allows to identify 
and to distiguish failures. 

 The maturity Level A allowes to predict 
and to forecast the remaining useful life 
of the weak parts inside the equipment 
until major failure. 

 
In the first part some different processing and 
analysis philosophies for CM data (data driven 
versus physics based driven) will be discussed 
for their advantages and disadvantages. 
 
The second part of the analysis focusses on 
CM for a hydraulic pump. An axial piston 
machine type with mechanical pressure 
compensation and variable displacement 
mechanism was used for this analysis as this 
type is widely used in helicopter hydraulic 
systems. 
 
Within the third part, a selection of already 
performed studies on concepts for possible 
condition monitoring applications on hydraulic 
pumps are discussed. The selection criteria for 
these studies were made to ensure coverage 
of the different major focuses of CM like: 
 

 the merrits of data processing by 
artificial neural network,  

 the efficiency of generation of failure 
data on defined pre-damaged pumps 
for system learning,  

 the merrits of usage of noise resistant 
and acoustic sensors, 

 the impact of sensor reliability, 

 the efficiency of monitoring changes in 
global system transformation function, 

 the efficiency of event recording versus 
continous monitoring approach and 

 business case evaluation models to 
identify the necessity of CM on 
hydraulic pumps. 

 
In the final part, the analysis summarizes the 
main obstacles as lessons-learnt in the process 
to implement CM into H/C for hydraulic pumps. 
As an outlook, it is possible to lay down a CM 
concept proposal based on these lessons-
learnt.  
It is considered as unavoidable to enter the CM 
concept by a data collecting and processing 
phase (“Big Data Approach”). Thanks to the 
continuous maturity improvement of the CM 
hybrid algorithm by data feeding, the obtained 
in-service data will be then directly used to 
correctly identify the failure with a high 
probability rate in real-time, i.e. to achieve 
maturity Level B of CM. 
 
In parallel, the analysis of the trend evolution of 
the data should allow to decide if it can be used 
also as a predictive element into the CM 
system for the dedicated failure mode (“Smart 
Data Approach”). This could lead to achieve 
maturity Level A of CM. 
 
Similar approaches are currently already 
applied in several branches of industry and 
automotive, especially by car OEM like BMW, 
Mercedes and Tesla [21]. 
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1. CONSIDERATIONS TO CM 

1.1 CM maturity level 

There are at least two levels achievable by 
application of CM: 
 
Level B: this level allows to identify and to 
distinguish failures at an early stage under 
operation and environmental conditions to 
avoid un-scheduled repairs/exchanges. Also 
the governing parameters which indicate the 
failure of these parts are known. 
These informations can be used for design 
upgrades and improvements of the related 
equipment. 
 
Level A: this level is based on data and 
experience accumulated in level B. It allows to 
predict and forecast the remaining useful 
lifetime of the weak parts inside the equipment 
until major failure, taking into account the 
evolution trend of the governing parameters 
and the individual influencing environmental 
conditions. The remaining fault-free operation 
time of the equipment can be considered by 
the operator for the maintenance planning of 
the related system. 
 
An implemented CM system of level B can 
improve mission / dispatch availability of 
equipment, which has a direct positive impact 
on operational costs. 
A CM system of maturity level A can even be 
used as a improvement factor for system 
safety. 

1.2 CM data processing and analysis 
philosophy 

A complete definition of sensor data procession 
and analysis architecture would be outside the 
scope of this paper. 
A pure data driven approach has the following 
advantages and disadvantages [1]: 
Advantages 

 Relatively simple and fast to implement. 

 Variety of generic data-mining and 
machine learning techniques are 
available. 

 Helps gain understanding of physical 
behaviours from large amounts of data. 

These represent facts about what 
actually happened which may not be 
apparent from theory. 
 

Disadvantages 

 Physical cause-effect relationships are 
not utilized, e.g. different fault growth 
regimes, effects of overloads or 
changing environmental conditions. 

 Difficulty to balance between 
generalization and learning specific 
trends in data. 
Learning what happened to several 

units on average may not be good 

enough to predict for a specific unit 

under test. 

 Requires large amounts of data. 
It is difficult to determine without 
experience what amount of data can be 
considered enough. Taking Neural Nets 
as example, one should keep balance 
between overly-trained net (i.e. too 
specialised) and insufficiently-trained 
net (i.e. unprecise). 

 

A pure physics based approach has the 

following advantages and disadvantages [1]: 

 

Advantages 

 Prediction results are intuitive based on 
modeled cause-effect relationships. 
Any deviations may indicate the need to 
introduce more fidelity for un-modeled 
effects or methods to handle noise. 

 Once a model is established, only 
calibration may be needed for different 
cases. 

 Clearly drives sensing requirements. 
Based on model inputs, it is easy to 
determine what needs to be monitored. 

 

Disadvantages 

 Developing models is not trivial. It 
requires assumptions regarding 
complete knowledge of the physical 
processes, the range of manufacturing 
tolerances and the robustness of the 
model against modelling errors, 



disturbances, is also of great 
importance for the reliability of the 
diagnosis/prediction. 

 Parameter tuning may still require 
expert knowledge or learning from field 
data. 

 High fidelity models may be 
computationally expensive to run, i.e. 
impractical for real-time applications. 

 

2. HYDRAULIC PUMP 

2.1 Function 

The hydraulic pumps used in most of AH H/C 
fleet are axial piston machines with an internal 
swash plate for pressure/flow regulation. 
It comprises of a rotatry cylinder barrel (2) in a 
manifold, which houses and guides a number 
of pistons (1). The pistons slide with shoes (4) 

on the hanger (also referred as back plate or 
swash plate) (3). The shoe retainer plate (4) 
engages the piston shoes and holds them in 
the same plane relative to the hanger. The fluid 
is sucked into the pump from hydraulic 
reservoir via suction line (8) and displaced 
back into the circuit by the pistons via the 
pressure line (9). The cylinder block is driven 
by a supported internal drive shaft (by 
bearings, parts of 2 and 5), linked to a 
supported external drive shaft (5). Rated 
pressure is controlled by a compensator valve 
with spring (6) and piston (12) assembly, which 
actuates the hanger; the compensator setting 
can be adjusted manually by a screw (7). 
All rotating parts are embedded into hydraulic 
fluid taken from suction line via internal 
leakages. This “case” fluid is used for 
lubrication of bearings and piston and piston 
shoes and circulated via case drain line (10) 
with the hydraulic reservoir.

 
Figure 1 Function of hydraulic pump, © Airbus Helicopters Deutschland GmbH. 

 

2.2 Pump failure modes 

The Table 1 gives an overview of pump failure 
modes (without design errors), the affected 

system parameters and the effects on the 
hydraulic system which can be observed from 
outside. Figure 2 shows some typical damaged 
pump parts. 



2.3 Reminder to safety and reliability 
requirements 

Hydraulic pumps of this type are considered 
having a reliability in the magnitude of 1 failure 
per 100,000 flight hours (FH) (rate 10-5 /FH). 
In order to fulfill the safety requirement in 
commercial helicopter aerospace of one failure 
per one billion FH (rate 10-9 /FH), today in 
minimum two hydraulic pumps are used in 
hydraulic system architectures for flight control 
systems. The failure of one pump is rated as 
“mission and safety critical” and leads to an 
abortion of the mission and to an unscheduled 
landing. 
Taking further mission duration influence to 
probabilty calculation and mission/dispatch 
reliabity into account, these are strong drivers 
to select an architecture with more than two 
pumps per flight control system, at least for the 
medium and heavy classes H/C. 
 

2.4 Review of pump data 

A review of reliability data for some hydraulic 
pumps used in AH commercial fleet was 
performed to identify potential weak pump 
components.  
 
For a typical hydraulic pump, the reliability 
report shows MTBF of approximatively 16,600 

FH and 20 unscheduled removals over a four 
year period monitoring, which is in average 
expectation frame, rated with a “usability 
caution indicator” of medium (second best 
rating). 
Supplier provided a list showing components 
affected by frequent exchange/wear during 
overhaul in Qpa (quantity per annum). The 
needle bearing and screws seem to be the top 
leading items. 
The pump has no TBO and is maintained “on-
condition”. 
Bearings are located at pump hanger and 
screws are located at external drive shaft seal 
(see Figure 3). 
 
For another typical hydraulic pump, the 
reliability report shows MTBF of 13,750 FH and 
53 unscheduled removals over a five year 
period monitoring). 
Supplier provided a list showing most frequent 
causes for exchange/wear during overhaul in 
2013 (see Figure 4). 
According to also performed review on 
overhaul, worn compensator parts, piston 
shoes, cylinder bores and external drive shaft 
seal wear seem to be the top leading items. 
This pump has a TBO of 7500 FH. 
 

 

 
Figure 2 Illustration of failed pump components [8] 



Failure mode Affected parameters Effect 

Wear in compensator valve. 
Fracture or jam of compensator 
valve. 

Supply pressure. 
Swash plate position. 
Flow rate. 

Loss of pressure adjustment. 

Defective tilting mechanism of 
swash plate (friction / jam in 
bearing of swash plate). 

Supply pressure. 
Flow rate. 
Swash plate position. 

Loss of pressure adjustment and/or flow 
displacement rate. 
Loss of pressure compensation 
capability. 

Friction / wear of pistons / 
sliding piston surfaces in 
cylinder block. 

Case drain leakage rate. 
Debris in case drain and 
supply pressure line. 
(Case fluid) temperature. 

Increase of (case fluid) temperature. 
Degradation of pressure / flow rate. 
Pollution of filter. 

Alignment error of internal or 
external shaft, leading to 
excessive wear in shaft 
bearings. 
Pre-damage of external drive 
shaft.  
Friction / jam of drive shaft 
bearings. 

Case drain leakage rate 
Debris in case drain and 
supply pressure line. 
(Case fluid) temperature. 
Drive shaft speed. 

External droplet leakage at drive shaft 
seal. 
Jam of internal rotating parts (cylinder 
block, pistons).  
Increase of (case fluid) temperature. 
Fracture or damage of external drive 
shaft. 
Pollution of filter. 

Wear/loss of seal function at 
compensator adjustment screw. 

None. External droplet leakage. 

Loss of seal functions at 
plugs/housing seals/pressure 
port O-rings. 

None. External leakage. 

Table 1 Pump failure modes 
 

 

 

 

Figure 3 Bearing (item 730) and screw (item 220), © Airbus Helicopters Deutschland GmbH 
 



 
Figure 4 Reason for frequent exchange, © Airbus Helicopters Deutschland GmbH 

 

2.5 Parameters influencing pump 
performance 

The following pump parameters could be 

subject to monitoring: 

 Supply pressure. 

 Case drain pressure. 

 Inlet pressure. 

 Fluid temperature. 

 Drive shaft speed. 

 Drive shaft and bearing 
vibration/structure-born noise. 

 Flow rate / Position of swash plate. 

 Fluid pollution (particles, water, 
viscosity, total acid number (TAN). 

 

 
Figure 5 Possible locations for CM sensors in pump, © Airbus Helicopters Deutschland GmbH 
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3. Review of studies on CM for hydraulic pumps 
 

The following Table 2 gives an overview of the studies subject to review for this paper: 

 

Reference Short abstract/aim of study Lesson learnt 

[2] Neural net analysis for CM.  
The authors conclude the measurement of 
vibration as the only remaining suitable mean 
for CM.  
All tests were performed on a bench and not in 
H/C. 
Artificial neural networks were used to collect 
and analyse vibration data on several hydraulic 
pumps of an SH-60B drive train system. “… 
 

Monitoring pressure & temperature “…provides 
some monitoring capabilities, generally does not 
give early indication of incipient faults…” 
 
Using vibration measurement for CM, an 
artificial network with “Adaptive Feature Map”, 
(AFM) algorithm could be effective. 

[3, 4, 5, 6] “ProReB” study 
A study by Airbus and BOSCH dedicated to the 
impact of CM in a maintenance environment 
including the relation to added economic value, 
presented on the 28

th
 international congress of 

the aeronautical sciences. 
 
Identification of components where applied CM 
could results in benefits for operating costs. 
Hydraulic pumps beside other components like 
fluid, filters, external leakage rates and different 
valves were identified as a potential candidates 
for CM. 
 
Combination of simulation (AMESim and 
MatLab Simulink software) and hardware test 
object on test bench with artificial introduced 
failures. 
 
The chosen monitor characteristics were not 
robust against the installation orientation of the 
pump (the test results on BOSCH bench could 
not be reproduced on another test bench with 
different pump orientation). 

The monitoring and diagnostic methods are 
already used in industry and automotive 
hydraulics but not yet in aerospace hydraulics. 
 
CM contributes to economic added value (net 
present value, NPV), direct maintenance costs 
(DMC) only for those applications whose require 
a high reliability of the applied CM method. 
 
Pump internal sensors for pressure and 
temperature based on SMD- and thin-film 
technology. 
 
Stand-alone simulation model could be not 
sufficient to design CM algorithm as during 
comparison of simulation results with test bench 
results, it was not possible to distinguish 
doubtless failure influences from model 
immanent accuracies.  
 
The definition of equipment failure behaviour 
based only on physical model simulation could 
limit the success, because for such a definition, 
all physical parameters (e.g. friction coefficients 
of pump pistons versus cylinder barrel in 
relation to fluid temperature and used material) 
which affects the failure have to be known or 
have to be elaborated in an exhaustive manner 
of data mining and bench testing. 
 
Test bench environment not sufficient for proof 
of robustness of monitoring approach. 
 

[7] Noise resistant sensor 
On sensor level, to use triplex redundand 
sensors for each parameter and to monitor 
average sensor results. A voting routing rules 
out by majority decision a deviating sensor.  
 

To consider sensor failures influences in high 
vibration environment. 
 
Adress possibility of common cause failures on 
sensors / usage of dissimilar sensors. 



Reference Short abstract/aim of study Lesson learnt 

On analysis level, compensate a sensor 
malfunction by calculation of probable missing 
sensor data based on a diagram elaborated 
from tests and a tolerance range comparision. 
 

[8, 9] In-line CM 
Signal/transfer function change behaviour of 
monitored pumps during occurrence of a failure. 
 
Paper included a feasibility study using 
simulation, collection of data of faulty equipment 
on test bench and to establish a final concept to 
be integrated in A/C. The status of this last step 
of this study could not be found. 
 
Three pump parameters were used: outlet 
pressure, case drain flow rate and case drain 
temperature. It is postulated that these 
parameters show failures as bearing 
degradation via high frequency noise, see 
Figure 6. 
 

To monitor system signal /transfer function for 
changes. 
 
High sample-rate sensors needed at pump to 
detect postulated changes. 
 
To train algorithms by defined faulty 
components (same approach as in [3, 4, 5, 6]). 

[10] CM of axial piston pump 
The study focused on wear (and hence leakage) 
between the pistons and cylinder bores in the 
barrel. 
 

Wear on pump piston affects the pump output 
flow and output pressure ripple waveforms 
statically and dynamically (see Figure 7). 

[11, 12] Usage of acoustic sensors 
It could be shown that with a time synchroneous 
averaging process, it was possible to allow 
detection of a gear fault and also CM indicators 
could be defined. 
 
Company SIEMENS offers accoustic sensor CM 
for hydraulic pump branded SITRANS DA400 
[12]. It will be used to monitor internal leakage 
at the compensator valves of displacement 
piston pumps, used in heavy industry like 
oil&gas or water cleaning. 
The sensor uses the noise generated by 
cavitation inside the valves, caused by internal 
leakages. 
 

Alternative sensor concept to acceleration 
sensors. 
 
Robustness in noisy H/C environment to be 
investigated. 

[13] Low cost CM algorithm 
The proposed CM algorithms (Auto-Correlation 
and Cross-Correlation) record only events and 
do no continuously recording. “...The event 
recorded is not necessarily fault induced. The 
event could just be an abrupt control input by 
the pilot (i.e. aircraft manoeuvres). This is where 
the proposed DI differs from conventional 
HUMS. While conventional HUMS use 
algorithms that specifically look for individual 
faults (or faults in individual gears, bearings, 

CM algorithm which aims for changes in transfer 
function during specific events; related to 
studies [8] and [10]. 



Reference Short abstract/aim of study Lesson learnt 

etc.), the DI techniques looks for events in terms 
of changes in transfer functions...” 

[14] Fault detection for hydraulic pump based on 
chaotic parallel RBF network 
Use of neural networks in conjunction with 
chaos theory (here called CPRBF). 
Construction of a CPRBF model trained with 
data from a healthy pump. The model proves to 
be able to reproduce the healthy pump 
behaviour accurately. 
 
Data sets from a test rig in laboratory were used 
to assess the method’s ability to detect pump 
failures. Vibration data from healthy and faulty 
(valve plate wear, swash-plate/slipper wear) 
axial piston pumps were used. The fault 
detection is made through residual estimation. 

The introduced method (data-driven neural 
network based approach to model a healthy 
pump + residual estimation for diagnosis) allows 
to detect pump failures but not to isolate them 
(i.e. to tell which part is failing). 
 
As the data used was obtained in laboratory, no 
information available for robustness of process. 

[15] Wavelet approach for performance 
monitoring and diagnosis of a hydraulic 
pump 
Investigation of pump performance monitoring 
methods through outlet pressure signals 
observation. Pressure measurements give 
direct information. 
 
Comparison of Fast Fourier Transform (spectral 
analysis method) and wavelet based analysis 
method, via simulation and experimental results. 
 
The method could be “implemented on-line to 
support real-time health diagnosis without 
affecting normal operation of the pump”. 
 
Tests on three pumps: one healthy, two 
defected (1 with loose ball-socket, 1 with worn 
swash plate), using the same hydraulic test rig 
in laboratory. 
 

Shows that the discharge pressure signal “was 
not able to provide sufficient information to 
support pump health diagnosis” because of the 
too little difference between the signals of the 
healthy and defected pumps. 
 
However, the wavelet transform was able to 
improve the “capability of diagnosing the health 
conditions of the piston pumps” thanks to the 
signal decomposition. The patterns and 
amplitudes of the wavelet coefficients also 
provided the possibility to isolate both faults. 
 
No discussion about the sensor definition i.e. 
high sample rated sensor would be needed to 
correctly interprete the pressure signal. 

[16] Leakage fault detection method for axial 
piston variable displacement pumps 
Development of a general physics-based 
nonlinear model in MATLAB/Simulink 
environment with leakages (between pistons 
and cylinder bores, at valve plate – barrel 
interface to case and between two piston 
chambers). 
 
A comparison of simulations without and with 
the different leakages is made with pump 
discharge pressure as a basis. 
 
An experimental study was also done, 
comparing pressure measurements of a pump 
in healthy and simulated faulty states. The faulty 

The global model was to be validated against 
experimental results. 
 
However, it was observed that “external leakage 
[to case] could be discriminated from both 
piston leakage and internal leakage [from one 
piston chamber to another]” through 
investigation of the mean and standard 
deviation of the discharge pressure in steady 
state conditions, and that the fault severity could 
be estimated. 
 
The conclusions are in opposite to [15] as also 
discharge pressure was used as failure indicator 
and FFT used for identification. 



Reference Short abstract/aim of study Lesson learnt 

state is obtained exchanging one piston with 
one with increased radial gap (machined to 30, 
60 and 90 microns). 
 
The authors suggest comparing the simulated 
time history under faulty conditions to pump 
measurement to diagnose the pump state. 

[17] Evaluation of analysis methods for fault 
diagnosis on axial piston pumps 
Vibration measurements, taken on a flawless 
pump and on a pump with various built-in faults, 
are used for the fault diagnosis. 
 
The fault diagnosis method is based on a 
pattern recognition approach. 
The author tests its robustness through 
inspections and modification of the hydraulic 
system as well as changes in the operating 
point.  
 
Different feature extractions methods and fault 
classifiers performances are assessed. 

All tests made were made in laboratory and for 
steady state conditions. All of them were short 
terms tests. 
 
Pattern recognition approaches were able to 
properly detect faults in axial piston pumps 
“even when assembly and system variations 
caused high variations in the measured 
vibration signals”. 
No evidence for this last statement could be 
found. 

[18] Layered clustering multi-fault diagnosis for 
hydraulic piston pumps 
The authors propose a method for multiple fault 
diagnosis for axial piston pumps based on the 
layered clustering algorithm. 
 
5 fault types are taken into account: valve plate 
wear, insufficient inlet pressure, bearing wear, 
swash plate eccentricity and increased 
clearance between slipper and piston. 
 
To simulate experimentally a multiple-fault 
occurrence, the 5 type of faults were artificially 
set on pump. 

The proposed algorithm successfully classifies 
the 5 types of faults considered, using as entry 
data the discharge pressure, leakage flow, and 
the axial and radial vibrations. 
 
Is it also able to detect progressive faults (e.g. 
piston-slipper clearance increase) with “higher 
precision and reliability” compared to the 
classical Fast Fourier Transform-based method. 
 
Tests made in laboratory conditions. 
An analysis for environmental influences was 
not performed. 

Table 2 Overview to reviewed studies 
 



 
Figure 6 Illustration of indication of pump failure by signal change [8] 

 
Figure 7 Illustration of pump pressure ripple waveform;  

Comparison between healthy versus faulty pump (piston wear) [10] 

 



4. Discussion 

The review led to the lessons-learnt given in 
Table 2. 
Furthermore, the following main obstacles in 
the process to implement CM into H/C for 
hydraulic pumps i.e. to establish maturity level 
B of CM were identified: 
 

 Either the nonavailabiltiy of in-service 
data or the missing performed 
correlation of these data with 
maintenance/repair/overhaul (MRO) 
shop findings. 

 The non-sufficient consideration of 
environmental influences. 

 
To overcome the non-availabilty of in-service 
data, all studies have started on simulation, 
bench testing with artificial damages or a 
combination of both. In all reviewed studies, if 
hardware was used, it was tested in a 
laboratory environment only. 
Despite showing promising results, especially 
the outcome of the study from BOSCH [6] 
showed that changes of test benches even 
under controlled laboratory conditions, not said 
of real operational environment of an aircraft, 
can make a CM concept become instable due 
to missing robustness against external 
influencing parameters.  
 
The definition of equipment failure behaviour 
based only on physical model simulation could 
limit the success. This conclusion is inline with 
reported experience in NASA report [1]. A 
hybrid approach to the CM processing 
(combination of physical model plus real data 
based training of fault identification algorithm) 
seems therefore the best promising way 
ahead. 

Outlook: a CM concept proposal 

As an outlook, it is possible to lay down a CM 
concept proposal based on these lessons-
learnt. Such concept would require the 
following items to be defined for each individual 
hydraulic pump build standard (i.e. specific 
helicopter hydraulic system): 

 A definition of the pump failures which 
are considered as main drivers for 
system reliablity. 

 A selection of a combination of limited 
number of sensor types (for reliability, 
feasibility and economic reasons) and 
their location for failure identification. 

 A definition of suitable operation event 
conditions for data acquisition. 

 A definition and validation of a suitable 
simulation model. 

 To establish an information flow 
process from involved MRO shops for 
repair/inspection result data to allow 
correlation with in-service obtained 
data. 

 A well trained hybrid CM algorithm 
based on simulation data, bench test 
data, in-service data and MRO shop 
finding results. 

 A benefit analysis, using the identified 
efforts above to validate improvement 
to operating costs/safety by CM 
concept introduction. 

 
This concept is illustrated in Figure 8. 
 
It is considered as unavoidable to enter the CM 
concept by a data collecting and processing 
phase (“Big Data Approach”) without 
immediate benefit/feedback to customer. 
Thanks to the continuous maturity 
improvement of the CM hybrid algorithm by 
data feeding, the obtained in-service data will 
be then directly used to correctly identify the 
failure with a high probability rate in real-time, 
i.e. to achieve Level B of CM. 
 
In parallel, the analysis of the data evolution 
trend should allow to decide if data can be 
used also as a predictive element into the CM 
system for the dedicated failure mode (“Smart 
Data Approach”). 
 
This could lead to the next phase of CM, where 
the obtained data will allow predicting the 
failure mode with a high probability rate in real-
time, i.e. to achieve maturity Level A of CM. 
 



Similar approaches are currently already 
applied in several branches of industry and 
automotive, especially by car OEM like BMW, 
Mercedes and Tesla. 

How to build a mature CM algorithm? 

A hybrid approach as described in [1] is 
proposed for the processing and analysis step. 
A pure model based approach turned out to be 
too complicated and costly [6]. 
 

 Use a physical simulation model (e.g. 
like in [5, 16]) to make prediction and 
make adjustment based on observed 
data accumulated from in-service 
equipment. 
The output of this model will be 
implemented into the fault identification 
routines of the CM software. 

 Fault identification routine (could make 
use of artificial neural networks like in 
[2, 15, 18] and/or a type of FFT like in 
[15, 16, 18]). 

 Learn current damage state from in-
service data and propagate using 
model 

 Use knowledge about the physical 
behaviour to guide learning process 
from the data. 

 Train the process with the in-service 
data already collected in the first step. 

 

The output of this hybrid approach can be 

successively introduced into the CM software 

of the H/C: 

 Recognition of defined events and state 
changes (e.g. using transfer functions) 
as proposed in [13, 15, 18]. 

 First focus on one specific failure (e.g. 
bearing of cylinder barrel). 

 Later increase scope to two or more 
different specific failures. 

How to certify? 

In terms of certification, the guidelines and 
requirements of Miscellaneous Guidance (MG) 
15 in FAA AC 29-2C [19] have to be 
considered.  
It addresses the most complex/extensive 
HUMS; for systems of lesser complexity only 
the parts of this section those are pertinent for 
the affected H/C could be used. 

How to obtain in-service data? 

In the first step, only a collecting mode (“Big 

Data Approach”) is proposed to be 

implemented at customer H/C. Similar 

approaches as currently already applied in 

several branches of industry and automotive 

(“internet of thinks”) could be used [20]. 

Especially, some automobile car OEM like 

BMW, Mercedes and Tesla are using 

transmission of maintenance related data for 

CM purposes [21].  

Not all necessary elements of such a provision 

chain have to be fully elaborated by Airbus 

Helicopter, as potential business partners for 

the different tasks (data sampling, data 

transmission, data storage/data clouds, data 

analysis, cyber security) could be involved. 

 

The data collection and processing has to 

ensure “cyber security”. Transparent 

communication to customer and detailed 

definition of necessary data is recommended to 

avoid miss-use of data and customer rejection 

of data collection approach. The data collection 

approach of automobile industry and its 

discrepancy to customer expectations was 

lately uncovered [22]. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 CM Concept graphic, © Airbus Helicopters Deutschland GmbH 

 

5. Conclusion 

During the process of reviewing already 

available research results for the different 

aspects concerning CM, a CM concept with 

focus on hydraulic pump used in H/C was 

created. 

It was identified that such a concept could 

cover the “missing link” of real in-service 

information from customer and MRO. As such, 

an approach needs all aspects of bench 

testing, simulation model and in-service data. 

It has to be highlighted that there will be no 

immediate “profit generation”. The maturity of 

the CM algorithm will depend on availability 

and accuracy of data. 

The final achievement of level A would require 

a highly mature CM algorithm, which is not 

achievable in short time frame. 
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