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Nomenclature 
x,u  state and control vectors 
y output vector 
T thrust 
β, θ disc tilt and vehicle pitch angles 
q pitch rate 
Iyy pitch moment of inertia 
l nominal shaft length 
t waypoint interval 
dt integration step 
n number of steps 
A, B system and control matrices 
C output matrix 
P, Q discrete system and control 

matrices 
P*, Q* discrete waypoint system and 

control matrices 
P† waypoint transition matrix 
λ, µ continuous and discrete 

eigenvalues 
Γ normalised torque 
ψ, r heading angle, yaw rate 
ψ0, r0 initial heading angle, yaw rate 
()s two time-scale quantity 
()d demanded quantity 
Ixx, Izz Moments of inertia 
η control deflection 
Mη control derivative 
Ty power plant pitching moment 
Λ grouped aerodynamics 
τ actuator time constant 
D  output control matrix 
 
 
 
Abstract 
This paper describes the development of the 
technique of rotorcraft inverse simulation 
since the first implementation of it as a 
practical research tool by Thomson. It 
presents an explanation of some of the 
difficulties that have been encountered by 

researchers during the various extensions of 
the original ‘pure’ method to cater for more 
advanced modelling environments.   The 
important properties of these method can be 
derived from a consideration of  rudimentary 
helicopter with basic dynamics. The 
identification of the source of the difficulties 
can lead to a satisfactory modification of the 
method to eliminate unwanted effects.  The 
challenge of resolving the trade-off between 
the elimination of these unwanted effects 
and the retention of those which are 
beneficial is discussed. 
 
Introduction 
Inverse simulation is a method of predicting 
the control actions that are needed to pilot a 
helicopter through a given manoeuvre. It 
has, therefore, particular value in providing 
an initial indication of the performance 
capabilities of a vehicle design and, for 
example, in evaluating the effect on practical 
manoeuvres of any anticipated 
configurational change: such as, for 
example, the effect of vertical tail size on the 
performance of the side-step manoeuvre.  
Many of the standard manoeuvres (MTEs) 
described in ADS33 [1] have been 
translated into a form where they can be 
simulated in order to assess a vehicle’s 
capability and the pilot’s general control 
strategy. It has also been useful in the 
design of such evaluative manoeuvres [2].  
The method has also been used to 
investigate handling qualities and pilot 
workload [3] and developments of the basic 
method and their applications have been 
widely reported [e.g. 4, 5, 6].  
 
The initial development of rotorcraft inverse 
simulation as a practical research tool by 
Thomson [7] demonstrated the benefits of 
the inverse approach.  Its obvious potential 
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encouraged other researchers to modify the 
basic method in order to overcome some of 
its implementation difficulties and to avoid 
what may be perceived as some of its 
unwanted properties.  There is a need, 
therefore, to understand the problems of 
‘pure’ inverse simulation and to appreciate 
how alternative techniques deal with them 
and, further, to recognise the disadvantages 
they, in turn, introduce. It is then possible for 
new researchers to decide what method is 
most appropriate for their investigations.   
 
In the sections to follow, the essential 
characteristics of pure inverse simulation are 
discussed first and the origins of those 
aspects of the method that are regarded as 
disadvantages are identified.  The method of 
integration due to Hess [4] is discussed 
next. The integration method solves some of 
the implementation difficulties of the ‘pure’ 
method but at the expense of being prone to 
an unusual instability - the probable source 
of which is identified.  An analysis of the two 
time-scale method of Avanzini [5] follows. 
This method is quite different to the two 
previous methods in its approach and it 
sacrifices some important properties of 
inverse simulation which may be crucial in 
certain investigations.  Finally, the method of 
Nonlinear Dynamic Inversion (NDI), 
developed by Smith [8], is discussed in the 
context of inverse simulation even though its 
initial application was in aircraft control.  It 
turns out to be directly relevant to the issues 
discussed in this paper. 
 
The important properties - whether desirable 
or undesirable - of each of the methods are 
remarkably robust and can be explained 
using a rudimentary helicopter model [9]. 
The impact on more realistic models is 
demonstrated through the properties of a 
linearisation of a state-of-the-art flight 
mechanics simulation model and, where 
appropriate, responses of the full, non-linear 
simulation. 
 
 
Inverse simulation. 
The starting point for the ‘pure’ inverse 
simulation is a simulation model of the 
rotorcraft expressed as a system of first 
order differential equations with a state 
vector x and control vector u. The dimension 
of x depends on the sophistication of the 

model. For example, it may be simply a 6 
DOF model with an actuator disc rotor 
representation or the blades may be 
modelled individually with a finite-state 
dynamic inflow representation. Similarly the 
dimension of the control vector depends on 
the configuration of the vehicle. For a 
conventional helicopter there are four 
controls but for a tilt-rotor in helicopter mode 
there may be five. The simulation model is 
written, therefore, 
 

),( uxfx =& , 
 
and it is required to follow a prescribed 
manoeuvre defined by an output or 
constraint equation on the state vector of the 
form 
 

)(xgy = , 
 

where y is a time dependent description of 
the  flight path. For a conventional helicopter 
the dimension of y is four so that in a typical 
application the earth referenced velocities 
and heading angle (or side slip angle) are 
specified. For a tilt-rotor an additional 
constraint, such as the angle of roll, may be 
applied. (We restrict the discussion in this 
paper to the case where the dimension of 
the control vector is the same as that of the 
output vector.) The inverse problem is to find 
the control u, as a function of time, which 
ensures that the flight path constraint is 
satisfied and the prescribed manoeuvre 
flown.  In order to achieve this it is 
necessary to differentiate the constraint 
equation to obtain 
 

),( uxf
x
fx

x
fy

∂
∂

=
∂
∂

= && , 

 
which equation may, it appears, be solved 
for u in terms of x and the rate of change of 
y.  Usually, this is not the case and further 
differentiations are required to bring in 
sufficient knowledge of u. What is happening 
here is that the direct consequences of 
control activity for the system are being 
established. For example, vehicle 
accelerations rather than velocities are 
typically the direct result of control activity.  
After the required manipulation the final 
relationship may be written 
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),( uxhy = , 
 
where y is the differentiated constraint 
vector made up of the requisite number of 
differentiations of the components of the 
original output y. This equation may be 
solved to give an explicit expression for the 
control vector 
 

),( yxgu = , 
 
where y  involves the rate of change of y 
and higher derivatives. With this control 
incorporated into the simulation equation the 
inverse system is described by  
 

)).,(,( yxgxfx =&  
 
The simulation is driven by the manoeuvre 
as described by the vector y .  Solving for u 
in this manner is not a trivial exercise for a 
simulation model of any practical benefit. 
The technique originally developed by 
Thomson relied on considerable algebraic 
manipulation of the helicopter equations of 
motion in order to recast them in an inverse 
form, finally incorporating a numerical 
procedure for finding the pitch and roll 
attitude angles. The task of recasting, 
analytically, a simulation into inverse form 
becomes progressively more difficult as the 
sophistication of the underlying flight 
mechanics model increases. This situation is 
a genuine limiting factor of the application of 
‘pure’ inverse simulation.   
 
Another issue is that the dynamics of the 
constrained system above are quite different 
to the ‘controls-fixed’ properties of the 
original [10]. Typical responses of an inverse 
simulation of a generic helicopter model 
configured to resemble a Westland Lynx [11] 
carrying out an accel-decel (or longitudinal 
repositioning manoeuvre), of 10 seconds 
duration and a maximum horizontal velocity 
of 35 kt, are shown in Fig. 1. 
 

 
 
Figure 1. Inverse simulation responses for 
an accel-decel manoeuvre. 
 
Clearly observed on the control and attitude 
responses are lightly damped oscillations 
which are not associated with the free 
modes of the aircraft. The phenomenon is 
easy to explain us when the inverse of the 
VSH model (Fig. 2) is constructed.   
 

 
 

Figure 2.  The VSH model 
 
This rudimentary vehicle is controlled by a 
thrust T, representing the rotor thrust, which 
is variable in magnitude and direction. The 
equations for longitudinal motion from Ref  
[9] with β  and θ  small may be written 
 

)( θβ −= gU&  
 

β
yyI

mglq −=&  

T

β 

θ l 
U

m
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q=θ&  

 
 
where U is the horizontal velocity, θ is the 
pitch attitude and q the pitch rate.  The angle 
β is the rotor disc tilt relative to the shaft.  
The parameters m, Iyy and l are the vehicle 
mass, moment of inertia in the pitch axis and 
shaft length respectively.  With no vertical 
motion the thrust T is equal to the weight 
mg. The manoeuvre is defined by specifying 
the horizontal velocity - as, for example, in 
an acceleration-deceleration manoeuvre. 
 

Uy =  
 
Following the procedure above this output 
equation is differentiated to give 
 

)( θβ −== gUy &&  
 
so that the required control is readily 
determined as 
 

gy&+= θβ . 
 
Given the desired profile for y this input 
does, indeed, achieve the required 
manoeuvre. Its effect on the rotational 
dynamics is expressed by 
 

gy
I
mgl

I
mgl

yyyy

&&& −=+ θθ . 

 
 
This equation reveals a persistent oscillatory 
behaviour driven by the vehicle acceleration. 
It is clear that this arises because the rotor 
tilt which is being used to control the 
acceleration of the vehicle also affects the 
rotational dynamics. The same analysis 
applies to the roll axis in lateral 
manoeuvring. This behaviour is evident in 
practical flight mechanics models.  Table 1 
compares the control -fixed modes of a 
generic helicopter model populated with 
UH60 data in trimmed flight at 20 kt with 
those of the system constrained in inertial 
velocities and heading.  
 

Table 1  Eigenvalues of free and 
constrained modes (conventional 
helicopter). 
 
 
Free (controls 
fixed) 

Constrained 

-4.3304 -0.3886 ± 5.4897i 
-1.5983 -0.1803 ± 2.4075i 
-0.2349 ± 0.8195i 0.0000 
-0.1443 ± 0.4947i 0.0000   
-0.4730   0.0000 
-0.1231 0.0000  
0.0000 0.0000 
 
The table confirms the significantly modified 
dynamics of the inverse system. In the 
constrained case, the non-zero eigenvalues 
repesent oscillatory modes in pitch and roll 
of 1.1 sec and 2.61 sec respectively. The 
additional four zero eigenvalues are 
associated with the four constraints (There 
is a zero eigenvalue in the free case 
associated with the heading angle).  The 
effect on control responses is illustrated in 
Figure 3 where the simulation model is 
pressed through a 25 second triple jinking 
manoeuvre (a slalom path, but with the 
heading along the centre line). Oscillations, 
of period approximately one second are 
clearly visible - and importantly persist well 
beyond the end of the manoeuvre at 30 
seconds. It is this phenomenon which is 
often felt to be unrealistic control activity. 
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Figure 3. Control responses for triple jink 
manoeuvre 
 
The constrained modes correspond to 
lateral and longitudinal oscillations with the 
vehicle rocking about the centre of mass 
together with four additional zeros denoting 
the four constraints.  For a tilt rotor 
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configuration where the bank angle can 
additionally be constrained results solely in a 
pitching instability as shown in Table 2 and 
an additional zero eigenvalue. 
 
Table 2.  Free and constrained modes (tilt 
rotor). 
 
Free (controls 
fixed) 

Constrained 

 0  0 
-1.2497     -0.1772 ± 2.2590i 
-0.7271  0.0000    
 0.1905 ± 0.3506i  0.0000 
 0.1291 ± 0.4047i  0.0000 
-0.4339    0.0000 
-0.1612  0.0000  
  0.0000 
 
 
In a practical application these oscillations 
which are attributed to the zero dynamics of 
the constrained system may be minimised 
by the careful selection of smooth flight path 
profiles. Nevertheless these dynamics are 
still present and are a direct result of the 
inverse formulation. They are a feature (not 
a problem) of inverse dynamics and can 
provide useful information about control 
strategy [12]. If they are unacceptable in a 
particular application then it is not ‘pure’ 
inverse simulation that should be adopted. 
 
 
Method of Integration. 
Because of the need to implement inverse 
simulation by analytic or numeric 
differentiation it is often termed the 
differentiation method of inverse simulation.  
As discussed above, the tractability of this 
approach reduces as model sophistication 
increases.  In order to overcome this 
problem and to employ a simulation model 
in a more convenient forward simulation, the 
method of integration (or waypoint method), 
as it is called, integrates the simulation over 
a chosen interval (here called the waypoint 
interval) with the controls set at the values 
which result in the desired flight path being 
achieved at the end. The values for the 
controls are not known in advance, of 
course, and are usually found through an 
iterative scheme based on Newton-
Raphson.  Formally the method can be 
expressed via 

 

∫+=
t

t dtuxfxx
0

00 ),(  

 
)( tt xgy =  

 
from which the required control u0 may be 
found.  It is essential that the waypoint 
interval is sufficiently large as to allow 
control activity to be adequately detectable 
in the output variables. Otherwise changes 
in u0 lose significance and the algorithm will 
fail. What is not often recognised is that the 
essence of the zero dynamics is retained in 
this method.  The VSH can demonstrate this 
property quite simply.  If the control β0 is 
made constant through the interval [0,t] then 
the pitch rate may be written 
 

t
I
mglqq

yy
β−= 0  

In turn, the pitch attitude becomes 
 

2

2

00
t

I
mgltq

yy
βθθ −+=  

 
and finally, the horizontal velocity at time t 
may be written. 
 

))
62

((
32

000
t

I
mgltqttgUU

yy
βθβ −+−+= . 

 
In order to examine the zero dynamics, U 
and U0 are set to zero and the transition 
matrix over the waypoint interval is 

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡

0

0

1

1
θθ
q

t

t
I
mglq

yy  

to first order in t.  The eigenvalues of the 
transition matrix are 
 

t
I
mgli

yy
±= 1λ  

 
and recall that titi ωω ±≈± 1)exp(  to regain 
the familiar frequency of the zero dynamics. 
 
It is possible that some control of the zero 
dynamics can be maintained by a judicious 
choice of the waypoint interval. This aspect 
may be investigated via a linear, time 
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independent, model with system and control 
matrices A and B respectively. Consider a 
constraint step of t starting at time zero with 
state vector x0 and ending with xn  at tn  =t 
after n integration steps.  The required 
output can be set at zero since we are 
investigating stability so we have: 
 

0BuAxx +=&  
 

where u0 denotes the value of the control 
vector, held constant over the constraint 
step, and 

.0=nCx  
 
Indexing quantities by the intermediate 
integration steps 1 to n, (nh=t), the transition 
of the state vector from time tr to tr+1 may be 
written:  
 

xr+1=Pxr+Qu0 
 
where u0 is to be determined, and where the 
particular form of the transition matrices P 
and Q depend on the numerical method 
chosen for the integration step.  
Over the whole interval t the stepping 
process may be written 
 

xn=P*x0+Q*u0 
 
where 

P*=Pn 

and 
Q*=(I+P+...+Pn-1 )Q. 

 
At the end of the constrained step the 
requirement is that 
 

Cxn= CP*x0+CQ*u0=0.  
 
This condition may be achieved by selecting 
 

0
1

0 ***)( xPCCQu −−=  
 
provided det(CQ*)≠0 – which should indeed 
be the case since that is the whole purpose 
behind the integration approach. The 
robustness of the solution and some 
guidance on the choice of the interval t can 
be interpreted by inspecting the condition 
number of CQ*.  Figure 4 shows the 
variation of the condition number with 
waypoint interval for the UH60 configured 
model introduced above. The basic 

integration (explicit method) step, dt, is 
approximately 15° of rotor revolution and the 
waypoint interval is varied up to four rotor 
revolutions. On the evidence of Figure 4, a 
waypoint interval greater than one rotor 
revolution should be employed for this 
helicopter.  
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Figure 4. Condition number with waypoint 
interval 
 
 
Further, the equivalence of the constrained 
dynamics should be revealed by the 
eigenvalues of the transition matrix, P† for a 
single constraint step: 
 

P†=P*+Q* (CQ)-1C*P*. 
 
 
Figure 5 shows the migration of the 
eigenvalues of the constrained system for 
the UH60 configuration introduced above as 
the waypoint interval is varied. The 
eigenvalues, µ, of the discrete system are 
converted to an equivalent continuous form, 
λ, through: 
 

)exp( dtnλµ = , 
recast as: 

( ))arg()(log(1 µµλ iabs
ndt

+= . 

It is clear that the constrained dynamics 
persist and retain their oscillatory character 
well beyond what would be a limit of 
constant control position, eventually 
becoming unstable. Certainly, for this model 
there appears to be no possibility of 
significantly modifying the oscillatory 
behaviour. 
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Figure 5  Migration of eigenvalues with 
waypoint interval (wp). 
 
The method of integration therefore 
satisfactorily solves the problem of 
tractability and retains the features of 
constrained dynamics.  It does, 
unfortunately, introduce a new problem. 
 
Waypoint Instability. 
The method can suffer from what appears to 
be a weak numerical instability [4] with an 
oscillation of increasing amplitude and 
period twice the waypoint interval 
superimposed on the responses.  This 
phenomenon is illustrated in Fig. 6 for the 
waypoint method applied to the Lynx model 
of Fig.1 carrying out a 30m pop-up over a 
distance of 500m at a forward speed of 80kt. 
The integration time step is 0.04 sec and the 
waypoint interval is 0.16 sec  
 

 
 
Figure 6.  Responses in pop-up manoeuvre 
using waypoint method. 
 
Again, the origin of this behaviour is simply 
illustrated.  The VSH can be imbued with 
simple yaw dynamics of the form 

 
Γ=r&  

 
r=ψ&  

 
where Γ is a normalised controlling torque.  
At the end of the interval [0,t] we have 
 

Γ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
2/1

01
2

0

0

t
tr

t
r

ψψ
 

 
Following the earlier procedure, the heading 
is set to zero at the beginning and end of the 
waypoint interval the yaw rate satisfies 
 

0rr −=  
 
That is, the yaw rate changes sign at each 
way point resulting in marginal stability.  In 
practice, the aerodynamic and other effects 
can make a practical simulation either 
slightly unstable or stable.  Table 3 shows 
the eigenvalues of the transition matrix of 
the UH60 model for a waypoint step of 
approximately one rotor revolution. The 
values indexed 2,3 and 4,5 correspond to 
the oscillations of the constrained system 
and feature in Fig. 3 above. The eigenvalue 
with index 1 corresponds to the waypoint 
instability. In this case its magnitude is 
greater than one so it is unstable.   
 
Table 3.  Eigenvalues of transition matrix 
(one rotor rev) 
 
index eigenvalue (discrete system) 
1 -1.0259 
2,3 0.8187 ± 0.5064i 
4,5 0.3296 ± 0.8426i 
6-9 0.0 
 
The responses from a simulation of the 
waypoint method for the UH60 for the same 
conditions are shown in Figure 4 and the 
initial state is proportional to the 
corresponding eigenvector. The constrained 
variables are the inertial velocities and the 
heading angle These do, indeed, come to 
zero at the waypoints but there are 
increasing excursions in between.  If the 
responses were only plotted at the way 
points the instability would not be observed 
in the constrained variables but the other 
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states would display an alternating sign and 
increasing magnitude. 
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Figure 7. Detailed responses for integration 
method 
 
This behaviour does not feature in the pure 
inverse method because of the 
differentiations present in its formulation so 
that it is the second derivative of ψ that is 
prescribed.  Similarly Rutherford [6] notes 
that the integration method does not display 
the waypoint instability when accelerations 
are specified at the waypoints. This 
observation reinforces the analysis above. 
 
In view of the vehicle’s independent control 
of roll angle it is interesting to examine the 
eigenvalues of a tilt rotor vehicle. Table 4 
shows the eigenvalues of a waypoint 
transition matrix for a 6 DOF linearisation of 
a generic tilt rotor model configured to 
resemble a raw XV15.  The way point 
interval corresponds to a single rotor 
revolution. 
 
Table 4.  Eigenvalues of waypoint instability 
for tilt rotor. 
 
index eigenvalue (discrete 

system) 
1,2 0.9261± 0.3197i 
3 -1.0955 
4 -1.0764 
5-9 0.0 
 
 
The eigenvalues with indices 1 and 2 are a 
complex pair corresponding to the 
constrained oscillations. Since their 

magnitude exceeds unity the mode is 
unstable.  The eigenvalues with indices 3 
and 4 are both waypoint related since they 
are characteristically close to -1 in value. 
There are two such eigenvalues because for 
the tilt rotor configuration the additional 
constraint on the roll angle acts in the same 
way as that on the heading angle.  Neither 
has a natural direct aerodynamic restoring 
force. 
 
Despite its high frequency, the waypoint 
instability is related to the rigid body 
dynamics.  A full, 30 state, time dependent 
linearisation displays the same characteristic 
behaviour, as shown in Fig 8 which shows 
the responses with an initial state composed 
of a combination of the two waypoint 
eigenvectors. 
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Figure 8.  Responses of a tilt rotor vehicle 
illustrating waypointing instability. 
 
Further analysis reveals that the precise 
values of the waypoint-related eigenvalues 
are dependent on the numerical method 
used to perform the simulation. This is due 
to the high frequency of this mode which is 
sufficient to influence significantly the 
truncation error terms. 
 
This instability then, is a genuine problem of 
the waypoint method.  That is, the waypoint 
instability is an artefact of the waypoint 
method.  Fortunately, it is easily solved.  If 
two waypoint steps are performed and then 
an intermediate value calculated via a 
weighted average then the oscillation is 
eliminated. The simple yaw dynamics 
analysed above for the VSH become: 
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This procedure should be incorporated 
formally in the normal integration method. It 
involves two steps of the usual scheme to 
make a single averaged step so twice as 
much effort is involved but it completely 
eliminates the waypoint instability, while 
retaining the characteristics of the other 
dynamics.  Table 5 shows the discrete 
eigenvalues for the averaged method and 
should be compared with Table 4.  The 
eigenvalues with indices 1 and 2 are virtually 
preserved, those with indices 3 and 4 are 
virtually eliminated as required since they 
related to the waypoint mode.  The 
remainder become 0.25, replacing 0.0 which 
simply represents the fact that departure 
from reference values are not eliminated in a 
single step but rapidly decay. 
 
Table 5.  Eigenvalues of the averaged 
system. 
 
index eigenvalue (discrete 

averaged system) 
1,2 0.9019 ± 0.3079i 
3 0.0023   
4 0.0015 
5-9 0.2500 
 
 If a fourth order integration scheme is used 
for the integration then the simple three-
point averaging above reduces the order for 
the combined scheme. Other averaging 
schemes may be developed to give higher 
order but naturally the computational effort is 
increased. 
 
Two time-scale method 
The two time-scale method developed by 
Avanzini [5] exploits the fact that the 
rotational dynamics of the vehicle are much 
faster than the translational dynamics so 
that during a realistic manoeuvre the latter 
may be considered in equilibrium with the 
angular velocity zero.  The lateral dynamics 
are solved with the attitude angles acting as 
pseudo controls and from knowledge of the 
attitude angles the angular velocity can be 

determined to provide, finally, the rotational 
control actions.   
 
The procedure is again easily demonstrated 
using the VSH which has its lateral 
dynamics expressed in earth coordinates - 
an essential prerequisite.   Firstly, the pitch 
rate q is set to zero which, from  
 

β
yyI

mglq −=&  

 
implies that the control β is also zero. Using 
the suffix s to denote ‘slow’ quantities 
 

)( θβ −= gU&  
 
becomes 
 

ss gU θ−=&  
 
so that knowledge of the longitudinal 
acceleration provide the angle of pitch θs. 
From  
 

ss q=θ&  
and 

β
yy

s I
mglq −=& , 

 
the control is finally calculated as 
 

g
U

mgl
I

mgl
I syy

s
yy &&&

&& =−= θβ  

 
 
This applied to the simulation model to 
calculate the final vehicle responses. 
 

⎟
⎠

⎞
⎜
⎝

⎛ += ss
yy U

I
mglU

dt
d

mgl
I

U &&&  

 
It is clear that the longitudinal velocity 
calculated in this manner can vary from the 
desired Us .  In fact, the right hand side has 
a zero at the frequency of the zero 
dynamics, so that the component of the 
manoeuvre velocity at that frequency is 
ignored by the two time-scale method.  Fig. 
9 shows the velocity profile of a triple jink 
manoeuvre for a UH60 type of vehicle.  This 
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is the same manoeuvre as in Fig.3 but here 
there is an absence of oscillatory behaviour 
in the control activity. 
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Figure 9. Control actions for triple jink 
manoeuvre (two time-scale method) 
 
For this relatively gentle manoeuvre the 
specified trajectory is flown accurately, as 
shown by the lateral velocities in Fig 10. 
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Figure 10. Lateral velocities for triple jink 
manoeuvre (two time-scale method) 
 
When the time interval of the manoeuvre is 
reduced form 35 sec to 5 sec the required 
trajectory is beginning to be followed less 
well, as shown in Fig. 11, due to the input 
characteristics discussed above.  
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Figure 11. Lateral velocities for fast triple jink 
manoeuvre (two time-scale method 
 
 
The aggressiveness of the manoeuvre has 
been selected to illustrate the departure 
form the required flight path that can result 
from the two time-scale method.  This 
reflects the trade-off in the two time-scale 
method.  The conventional zero dynamics 
are entirely eliminated by using the attitude 
angles as pseudo controls but at the cost of 
poor representation of aggressive 
manoeuvres.  The zero on the input simply 
ignores that component of the manoeuvre - 
but ‘pure’ inverse simulation must achieve 
the manoeuvre precisely and so increases 
its control activity to counteract the 
attenuating effect of the input dynamics.  
This trade-off is for the simulation engineer 
to assess in each particular situation. 
 
A final comment on the two time-scale 
approach is that it does require some 
manipulation of the simulation model in 
order to implement it.  It does not appear to 
be as complex a requirement as is required 
for the pure inverse method but it is a factor 
to be taken into account. For example it is 
necessary to formulate the translational 
dynamics in Earth-referenced velocities 
because the body referenced quantities vary 
with the speed of the rotational dynamics.  
Some computational time may be saved by 
this method because the translational 
dynamics, being slower, can be solved 
accurately on a coarser time grid 
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Nonlinear Dynamic Inversion. 
A method of control law design pioneered by 
Smith [8], initially for fixed wing aircraft, is 
the technique of Nonlinear Dynamic 
Inversion (NDI). Its application to rotorcraft 
has recently been described by Howitt [13] 
and, following this author, the method is 
introduced by considering the instantaneous 
pitching dynamics of a fixed wing aircraft.  
 

yxzxxzzyy TMprIrpIIqI ++Λ+−+−= ηη)()( 22&

 
 
In this equation, q is the pitch rate, η is the 
control surface deflection, T

&

y  is the moment 
from the power plant and Λ represents 
grouped aerodynamic terms.  The remainder 
of the quantities are the standard inertial 
terms.  If, at this instant, there is a 
demanded pitch rate  which requires a 
control deflection 

dq&

dη then, accordingly, 
 
 

ydxzxxzzdyy TMprIrpIIqI ++Λ+−+−= ηη)()( 22&

. 
 
 
Subtraction eliminates the nonlinear terms 
(the heart of the technique) and leads to a 
relationship between the error in the current 
pitch rate and the required correction to the 
control. 
 

η
ηη

M
I

qq yy
dd )()( && −=− . 

 
This correction, in the control context , may 
be applied, for example, through the series 
actuator of the automatic flight control 
system.  The occurrence of η linearly in the 
pitch rate equation is important in this 
development and will need to be considered 
when the application to the general case is 
discussed but first NDI is applied to the 
VSH. 
 
In this case the demanded horizontal 
acceleration is given by: 
 

)( θβ −= dd gU& , 
 

where dβ is the required control input. 
Subtracting the instantaneous acceleration 
gives the control correction required. 
 

gUUdd /)()( && −=− ββ . 
 
In order to implement this control, the VSH 
needs to be equipped with an actuator, 
assumed to be of time constant τ. 
 

)( dβββτ −=& . 
When combined with the VSH equations 
above, the modes have eigenvalues which 
satisfy 
 

01 23 =++
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For fast actuation this gives eigenvalues  

τ/1− , and yyImgli /±  approximately 
which represent the actuation and 
constrained dynamics respectively. 
 
The output equation for the general case is 
not linear in the controls and it is necessary 
to consider the approximate form 
 

)(),( 00 uu
u
huxhy −

∂
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where is a reference control position - 
typically for a reference trim state.  The 
required reference output 

0u

refy is obtained 
from the control where: refu

)(),( 00 uu
u
huxhy refref −

∂
∂

+= . 

Subtracting again gives a relationship 
between the control vector and the error in 
the output. 

)()()( uuDuu
u
hyy refrefref −=−

∂
∂

=− , 

from which the update to the controls may 
be derived in terms of the error in the output 
and the inverse of the Jacobian control 
matrix D (in the terminology of Bradley [13]) 
at the reference state 
 

)()( 1 yyDuu refref −=− − . 
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Finally, this update is applied via a pseudo 
actuator with time constant .τ  
 

)(1 yyDu ref −= −&τ  
 
Figure 12 shows the responses of an NDI 
based inverse simulation of a tilt-rotor XV15 
type vehicle carrying out a longitudinal 
accel-decel manoeuvre from trim speed of 
30 m/s and an actuation time constant of 
0.01 sec.  There is clearly adequate tracking 
of the reference velocities in this case and 
the characteristic oscillations of the 
constrained dynamics may be observed on 
the longitudinal stick response.  The 
eigenvalues of the modes of the combined 
system at the initial trim state are compared 
in Table 6. (Those not shown are 
numerically zero.) The eigenvalues 
associated with the constrained pitching 
oscillation are in close agreement and, for 
the NDI, those associated with the five 
control actuators are close to 100, 
corresponding to the selected time constant.  
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Figure 10. Responses of an NDI-based 
inverse simulation for a tilt rotor type aircraft. 
 

 
Table 6. Eigenvalue comparisons for NDI 
controlled inverse simulation. 
 
Inverse model NDI-based inverse 

model 
Constrained mode 
eigenvalues 

Constrained mode 
eigenvalues 

-0.294±3.80i -0.225 ±3.78i 
 Actuator mode 

eigenvalues 
 -100.1±0.1i                  
 -100.8     
 -101.1 
 -100.5 
 
 
The issues with the use of NDI are the 
validity of the linearisation D and the choice 
of the value for the time constant, .τ   The 
latter can determined by trial and error if 
necessary using the need to be well 
separated from the time constants of the 
body dynamics.  If a more precise indication 
is required then the eigenvalues of the 
combined system may be inspected along 
the lines of Table 10.  The ‘non-ideal’ pilot 
discussed by Thomson [15] is related to this 
issue. The use of the Jacobian to update the 
control inputs provides a type of dynamic 
Newton iteration and, if necessary, it can be 
updated during the simulation, although in 
the authors’ limited experimentation with this 
type of inverse simulation this strategy has 
not been needed.   
 
In summary, the NDI approach is a 
convenient way to implement inverse 
simulation particularly when many simulation 
environments possess options to generate 
the required linearisation. The method may 
sacrifice the precise accuracy of the zero 
dynamics and the flight path. Additionally, it 
adds to the dimensionality of the problem by 
incorporating addition control dynamics. 
 
Conclusions 
This paper has discussed the features and 
problems of several approaches to 
helicopter inverse simulation.  Features are 
properties that are genuine characteristics of 
the inverse approach and as such may be 
regarded as not requiring cures. Problems 
are undesirable artefacts, usually side 
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effects of a particular formulation and do 
require attention. 
 

• For a state of the art simulation 
model the pure (differentiation) 
method is very difficult to implement. 
The two time-scale method also 
needs a significant amount of 
algebraic manipulation. Alternatives 
such as the waypoint (integration) 
method or the NDI approach offer a 
much simpler task.  

• The constrained oscillations of the 
zero dynamics are a genuine 
feature of all approaches except the 
two time-scale method. The 
question to be resolved in a 
particular investigation is whether or 
not these dynamics are pertinent to 
it. 

• All of the methods discussed, with 
the exception of the two time-scale 
method follow the flight path 
references accurately, if not with the 
precision of pure inverse simulation.  
The method of integration sacrifices 
accuracy in between waypoints in 
order to facilitate implementation, 
and the NDI approach builds in a lag 
on the correct control action for the 
same reason.  Technically, the 
parameters of the method can be 
adjusted to follow the references as 
closely as is required. 

• The waypoint instability of the 
integration method is simply a 
nuisance and best eliminated by 
incorporating averaging in the 
simulation. It is not sufficient, for a 
fully nonlinear model, to average 
after the event. 
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