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Abstract 

FLIGHT SATE RECOGNITION WITH NEURAL NETWORKS
A STEP TO AN OVERALL USAGE MONITORING SYSTEM 

by 
E. BRAND and B. KRUMME 

EUROCOPTER DEUTSCHLAND GMBH 
MUNCH EN . GERMANY 

Global practice in helicopter life time calculation is to use measured flight test data and a 
predetermined mission profile which is set up once for each helicopter type to cover all the 
different operator missions. 

In reality. the operators fly unknown profiles and the design profile has to be chosen very 
conservatively. This means that manoeuvres have to be included which are more severe than 
those normally flown by the operator. To establish more realistic mission profiles. neural networks 
were applied to do flight state recognition in the operator's helicopter. A HUMS is sampling and 
calculating the data and delivers it to a ground station which enables the operator to 
calculate individual life times for each helicopter and each component in service. 

Several selected input values (usually used values in common helicopter) have been 
investigated to get the correlation to the flight profile. In addition. different types of neural 
networks were considered. 

The paper presents first results showing that the neural network was able to identify steady 
flight states without any problem and gives an outlook on further investigations which are 
necessary for more reliable recognition of transient flight conditions (manoeuvres) and also for 
the record of weight and centre of gravity influencing the structural loads 

1 . lntroduc!jon 

Today all components and systems of a helicopter have fixed life times and fixed TBO's 
(Time Between Overhaul). The time is counted according to the flight-logbook in which the 
pilot is writing the take-off and landing times. This times are summed up and compared with the 
fixed life time of the components. 

The life times are calculated by the manufacturer with flight load data from the 
certification test flights and with a mission profile (distribution of flight states) which was set up 
once to cover all different operators (Fig. l). The result is a list of components with fixed life 
times and TBO's. 
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Fig. 1: Common method of life time calculation 

2. HUMS General 

A HUMS (Health and Usage Monitoring System) can bring a benefit to an operator. The 
distribution of the Direct Operating Costs CDOC) show that there is a large area in which an 
HUMS or a UMS (Usage Monitoring System) will reduce costs and save money. Maintenance 
which can be done later. saves money. A component which has not to be bought . saves 
money. So about 50% of the DOC can positively be influenced by a HUMS (Fig. 2) 

Fuel and Oil (33,2%) 

Components (11 ,3%) 
On-Condition Components (5,8%) 

Engines (33,4%) 

Life limited Components (1,5%) 
Mait1tenance (6,2%) 

Fig. 2: DOC of a Helicopter and the parts of the DOC which can be influenced by HUMS 
(BK 11 7 statistical data 1992) 

When the mission is composed of a high percentage of manoeuvres. the summation of 
flight loads reaches the designed load limit earlier than calculated. So. a HUMS which can 
recognise this. improves safety. When the helicopter is flown very smoothly the life time limit can 
be increased and this is a benefit for the operator (Fig. 3). 
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Fig. 3: Risk and benefit of a calculated life limit 

3. USAGE Monitoring 

3.1 Flight State Recognilion 

As shown in chapter 2 the life time calculation consists of two main parts:The flight load 
data and the mission profile. The flight loads can not be influenced. Each flight load results from 
a specific flight state. The distribution of the flight states and the mission profile influences the 
load collective. Recognising the actual flight states and summarising them to a mission profile 
allows to calculate on indiv'lduallife time (Fig. 4). The question is how to recognise the actual 
flight state. One method is to use a neural network for this task. 
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Fig. 4: Life time calculation with flight state recognition 
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3.2 Usjna Neural Network for Flight State Recognition 

3.2.1 How does a Neural Network work 

The Neural Network software simulates the simplified function of human brain with neurones 
and synapses (Fig.5). The input layer reads the input signals like flight velocity, control angles 
etc. Each neurone of the input layer is connected to each neurone of the next layer. the 
hidden layer. Each connection is done by a simple mathematic calculation. At the end the 
output layer generates a code which represents a specific flight state. 

Output Layer Result: Flight States 

Hidden Layer Calculation 

Input Layer Flight Measurement 
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Fig. 5: The structure of a neural network with neurones and connections between each neurone 

To provide the association between the input data and the flight state. these data are 
presented to the in- and output layers of the neural network. In the so called learning phase 
the neural network changes the values of the connections between the neurones. In this way 
the neural network adapts itself until it is able to associate input values and flight states in the 
right manner. Due to the mathematical model. the neural network used. is called back 
propagation network. After the learning phase, the neural network is tested with different 
data. 

3.2.2 Flight Stale Recognition with Neural Networks 

Sensors have to be installed in the helicopter, or as far as possible already installed sensors 
can be used. Amplifiers lead the signals to the input layer. An example of a signal combination 
is shown in Fig.6 . The left hand side is an example for a steady flight state, the right hand side 
for a transient flight. These examples demonstrate that a transient flight is more difficult to 
recognise than a steady state. The signals change very quickly as time proceeds and the 
neural network needs a longer time section to recognise the signals in the right way. 
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Fig.6: Example of measurement input signals for steady and transient flight states 

The neural network can be implemented together with amplifiers and a memory in a "black 
box". Additionally the duration time of each flight state is stored (Fig.?). The stored data will be 
transferred to a ground station There individual lifetime. TBO. historical files and trend analysis 
are calculated to support the maintenance services. 
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Fig. 7 Principle structure of a usage monitoring system for flight state recognition 
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3.2.3 Test Results 

The neural network has been tested in a laboratory test with real flight test measurement 
data. The following tables show two recognition matrixes (Fig.8) for steady state flights and for 
transient flights. The test data which were used are different from the learning data. 

Recog t . f t d fl' ht t t m ton ma nx or s eo y 191 sa es 
Descent 13 
Turn right 45° 12 100 
Turn left 45° II 100 
Turn right 30° 10 100 
Turn left 30° 9 100 

Recognised Turn right ]5° 8 100 
Flight States Turn left 15' 7 100 

Level I 00 kts 6 100 
Level 80 kts 5 100 
lever 20 kts 4 100 
Climb 3 100 
HOGE 2 100 
HIGE 100 

100 

2 3 4 5 6 7 8 9 10 II 12 13 

Input Flight States 

Fig. 8a: Test Results for Steady Flight States 

Recognised 

Flight States 

Recog T t . f t m ton ma nx or ransten 
Turn left-right 16 
Turn right-left IS 
Stick inp.left 14 
Stick inp.ri 13 
Stick inp.fwd 12 
Stick inp.aft II 
Pedal inp.left IO 
Pedal inp.ri 9 
Recovering 8 

Recover left 7 
Recover ri 6 

Pull up 5 

Pull up left 4 

Pull up ri 3 

Quick stop 2 

Push over 100 

2 
4 

70 93 

90 100 
30 100 
0 

10 
87 

t fl' ht t t I~ sa es 
13 
77 

100 
100 3 

0 

0 

100 8 

100 
100 16 

29 

82 

8 

2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 

Input Flight States 
The missing flight states in this matrix are associated to steady flight states 
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Fig. 8b: Test Results for Transient Flight States 

On the bottom numbers for the flight states ore shown which were given to the neural 
network. On the left hand side the same numbers are indicated by the nome of the flight state. 
If the flight state is recognised correctly 100% is written in the corresponding box. The 
recognition matrix for the steady flight states shows that all flight states are recognised by 100%. 

For transient flights. the situation is more difficult. The numbers which are not placed in the 
diagonal illustrate that some manoeuvres are very alike due to the combination of the input 
signals. Consequently, they produce similar loads. Regarding the load aspect the number of 
flight states can probably be reduced. This will be a next step in our development. 

3.2.4 System Application 

Concerning hardware the system can be realised very easily. "Black boxes". which ore 
capable of measurement amplifying, calculation and storage already exist on the market. 
Only the software has to be implemented (Fig.9). Data can be transported with a memory 
card to the ground station. There, o program has to calculate all the necessary dolo to support 
the operator in his work (Fig. 10) 

Sensors 

Black Box 
with 
data acquisition, 
neural network 
and storage 

On Boord the Helicopter 

Groundstotion PC 
Data evaluation 

Fig. 9: Example for a system application including the ground station 
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Fig. 10: Functional structure of the ground station software 

4, Safetv Asoects 

The question of safety arises with all HUM systems. What is to do if the system foils? Of course 
con be installed double sensors. double processors. double memories and two independent 
software's, but this will be too expensive for such a system. The flight state recognition is not a 
flight critical system, so the flight task has not to be interrupted when the UMS foils. The system 
con recognise e.g. the sensor which has foiled and the duration of the failure. Afterwards in the 
ground station the gop con be filled with help of the trend analysis. 

5, Conclusion 

Neural networks hove been used for flight state recognition. In a first period, it was possible to 
show that not only steady flight states con be recognised but also transient flights. 

Now the network has to be trained to recognise all flight states which ore necessary for the 
load classification. 

After that, a test period will start with on line data from flight test measurement. 

Finally the network will be implemented into a "block box" and the ground station system has to 
be set up. 
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