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Abstract 

In this paper, the effect.s of an oscillating frecstrcfl.m on the unsteady aerodynamic lift of an airfoil is examined. First, existing 
theories are investigated and their simplifications a.nd limitations arc identified. Then, the theories are compared to show the 
differences between them for diffete1\L conditions: first, for constant angle of attack, second, for in-phase pitch motion, and third, 
for 90° out-of-phase pitch with respect to velocity oRcillations. In addition, the exact theory (exisiug only for constant angle of 
attack and pitch about midchord) is extended to pitch (including higher harmonics) about an arbitrary ax.is and plunge motion 
(also including higher harmonics). The results are also compared to a finite difference scheme of the arbitrary motion theory. It 
was found, that the arbitrary motion theory is best suited for calculating the unsteady aerodynamic lift even in an oscillating 
freestream. The results of the exact theory are finally validated using an Euler code for very low Mach numbers. 

Nomenclature 

c 

C(kv) = F(kv )+ 
iG(kv) 
hts, Tttc 

Jn(nA) 
kv = wvt/(2Vo) 
L,CL 
Re 
s 

t 
v 
w 

pitch axis location wrt. midchord, pas. aft a, a 

airfoil chord >. 

Theodorsen function p 

nondimensional amplitude of plunge dis- ~{.s) 

placement 

angle of attack, nondimensional angle of 
attack 
nondimensional amplitude of velocity os­
ciUation 
air density 

Wagner function 

imaginary unit 1/J = wvt = nondimensional time 
kvs 

Bessel function 
reduced frequency of velocity oscillations 
lift, lift coefficient 
Reynolds number 
nondimensional distance travelled by the 
airfoil 
time 
velocity 
normal velocity 

wv 
Indices: 
v 
0 
c, nc 

s,c 
qs 

3/4 

frequency of velocity oscillation 

velocity 
mean or reference value 
circulatory, non circulatory 

sine-, cosine component 
quasisteady 
at 3/4 chord 

1 Introduction 

A helicopter rotor blade in forward flight encounters a highly unsteady fiowfield. To predict the aeroclastic behavior of the 
rotor, i.t is necessary to accurately calculate the aerodynamic loads acting on the blades. These consist of both steady as well as 
unsteady components. One source of aerodynamic loads is the varying oncoming flow velocity at each blade station. This leads 
to a dynamic pressure variation containing steady, 1/rev and 2/rev components. Additional degrees of freedom result from the 
blade motion in flap, lag and torsion, and the nonuniform inflow. Therefore, a fully unsteady aerodynamic theory must be used 
to predict the aerodynamic loads. This has been discussed by various authors, for example by Johnson and Kaza [1, 2]. Both 
state that the lift deficiency function must be generalized to account for the unsteady freestream effects. This generalisation 
was given by Johnson [3], but in most analysis the Theodorsen lift deficiency function for constant freestream flow [4} is often 
used instead. However, the direct application of Theodorsen's theory to rotorcraft in forward flight is questionable. A theory 
including the effect of periodically stretching and compressing the shed wake vorticity distribution behind the pitching, plunging 
and fore-aft moving airfoil should be used in order to include the effects of varying freestream on the unsteady aerodynamic 
forces and moments. In this paper, a review on modelling the varying freestream effects will be given, and an exact theory for 
an airfoil with pitching, plunging and fore-aft motion wiU be presented. The limitations and assumptions of existing theories 
will be clearly shown. The objective is first to find an answer to whether or not it is necessary to model the effects of unsteady 
freestream fluctuations in a rotor loads or aeroelastic analysis in forward flight. The second objective is to :show whether or not 
it is possible to simulate the attached flow behavior using an arbitrary motion theory, comprizing of Duhumel's integral and 
indicia! funct-ion approximation (\'\'agner function) for step changes in angle of attack, pitch rate and plunge velocity. 

It is necessary to differentiate between two kinds of velocity changes that a rotor blade encounters in forward Hight. First 
there will be a fore-aft (lead-lag) motion of the rotor blade, and second, an oscillating freestrearn velocity (gust problem) resulting 
from t.he superposition of the rotational velocity and the forward speed of the helicopter, see Fig. 1. The first case (lead-lag) 
leads to a uniform velocity distribution across the airfoil chord, while the second case (gust) produces a velocity gradient across 
the chord. For small reduced freq11encics both ca.<>cs may be handled the same way since the gradients in the second case arc 
small. However, this is only an OfJJ)!'OXimotion and is not valid for large large reduced frequencies. This is because a lead-lag 
motion will result in very large noncirculn.t.ory forces, while in an oscillating frecstream the noncircub.tory lift will reduce to 
zero again since severitl modes. itlong the chord cancel each other (a.s is the ca.sc in a vertical gust field). For the form of t.he wake 
br:hind the airfoil, however, there is llo difference bct.wccn cit.hcr ca.c;c because t.hc positioning and velocity of vorticity in Lhc 
shed w<tk(; rd;tt.iv(~ to the airfoil rernains the same. A radill.! st.at.ion of ;t helicopter blade, itt reality, encounter!> both phcnornc:na 
and the velocity changes due to forwll.nl flight. arc physica!ly a gust. probk:n1 ll.nd !'hotdd be treated as Sllch. 

Anll.lyticaJ approaches \.o the problem of an oscillating airfoil iu ot varying frccstream vdocit.y have been perforrnc:d by sc:ver.LI 
aathors i11 the past .. Fund;unr:nt.al dosed form solutions for an oscil!at.ing airfoil in a steady freest.rcilrn were given by Thcodorscn 
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in 1935 [4], and in 1940 in operational form by Sears [5]. Probably the first attempt to derive a dosed form solution for the case 
of unsteady freestream velocity variations was given by Isaacs in 1945, but then only for the case of constant angle of attack [6}. 
In 1946, Isaacs included a periodic change in angle of attack in order to fulfill the needs of helicopter aerodynamicists [7). His 
solution, however, was confined to a pitch axis at half chord, and therefore it was not very appropriate for helicopter calculations 
since nearly all helicopter blades have a feathering axis at the quarter chord. 

In 1946 Greenberg (8] published his extension of Theodorsen)s theory. Even today, his results are thought. to be the most 
reliable for application to rotorcraft aeroelastic problems. However, Greenberg made a high frequency assumption about the shed 
wake behind the airfoil to obtain a solution ill terms of the Theodorsen function only. The effect and nature of this assumption 
was never clarified. 

In 1977 a new theory directly related to rotorcraft was developed by Kottapalli [9]. In 1979 [10] and again in 1985 [11] 
additional results were published. This theory was developed by applying only small lead-lag oscillation amplitudes with respect 
to the mean velocity. Consequently, Kottapalli limits the validity of his approach to the case of blade flutter-in hover. Therefore, 
the results seem to be of limited help for helicopter applications in forward flight, since the assumption of small Row oscillation 
amplitudes holds only for very small advance ratios. 

Johnson published some discussion regarding the problem of a varying velocity in [3]. Using the same assumptions made by 
Isaacs [6, 7), Johnson basically followed Isaacs) theory and gave expressions for lift and moment of an airfoil having plunge as 
well as pitch motion about an arbitrary pitch axis. The final result is given in form of integrals Mthout giving the appropriate 
solution of these in terms of Bessel functions. The effect of varying velocity is described by Johnson as: "On the adiJancing side, 
the increased velocity lowers the reduced frequency and hence the lift deficiency junction is nearer unity. On the retreating side 
there is the greatest accumulation of shed vorticity in the wake near the trailing edge, and thus the greatest reduction in lift. In 
summary ... all these effects basicalJy produce 1/rev variations of the loads." Johnson's conclusion is that the approximation 
llsing the Theodorsen function with the local reduced frequency will work for flow oscillation amplitudes of up to 70% of the 
mean velocity. For small flow oscillation amplitudes, the Theodorsen function calculated using the mean velocity will be accurate 
enough) which effectively means neglecting the unsteady freestream fluctuations. However, this statement seems to be based 
only on one presented result, and it is doubtful whether it holds for other mean reduced freuencies and higher harmonics of the 
blade response. 

Other authors refer to different problems with time varying velocities, especially accelerated motions, but not to harmonically 
varying freestreams. Some of them are to be found in [12, 13, 14, 15]. 

Most of the experimental work done in this area of research is the measurement of the aerodynamic coefficients in a wind 
tunnel. A number of experiments with airfoils oscillating in a constant freestream velocity have been conducted, for example 
[18, 19]. Only few experiments have been done in an oscillating freestream velocity environment, which is of interest here. 

Probably the first experiments on this problem were done by Fejer, Saxena and Morkovin in 1976 f20, 21). The parameters 
achieved were>..:::::: 0.18, k == 0.18 and 0.9, Re == 2.5 X lOr, and a trip was mounted to force the boundary layer to be turbulent. 
Here and in later tests [22, 23} it has been found that in periodically changing flows, dynamic stall of airfoils can assume a variety 
of forms depending on the frequency and amplitude of the oscillations. The airfoil coefficients do not behave in a quasisteady 
manner, and it was conduded that for the case of helicopter dynamic stall the freestream flow fluctuations must be taken into 
account and cannot be neglected. 

Parallel to the analytical work of Kottapalli at Georgia Institute of Technology, some experiments were also conducted by 
Pierce, Kunz and Malone [24) in 1976. >.. = 0.177 and Re :::::: 2.02 x 10~ could be achieved. The pitch frequency was set to G 
times of the flow oscillation frequency in order to have one airfoil oscillation dnring the more or less linear regime of accelerating 
flow, and one in the appropriate regime of decelerating flow. Steady tests showed thin airfoil stall characteristics Oll the airfoil. 
Dynamic tests showed a large effect of flow oscillations on the dynamic stall behavior. 

At about the same time, the French team of Maresca, Favier and Rebont started a series of experiments wit}z an airfoil 
undergoing fore-aft motions, plunge motions and pit<:h motions in a steady stream [25, 26, 27]. They achieved high values of 
>..,but the mean velocity of the fiow was very small Re = 2.5 x lOr,. In 1982 the same authors presented sotne additional 
measurements of combined motion for oscillations below the static stall angle, as well as for those going beyond stall, and 
compared the results for lift, drag and moment with the appropriate plunge oscillations in a constant freestream flow [28]. The 
hysteresis loops were found to be entirely different. Moreover, at Re == 1.44 x 105 one must be careful to assume the flow below 
the static stall angle as attached since the airfoil is very likely to experience thin airfoil stall. Additional measurement.s were 
conducted and presented in 1988 [29]. It was shown that the phase of the flow velocity and the angle of attack oscillations is 
an important parameter and changes the lift hysteresis behavior in a significant manner. The data presented in 1!)92 [30} also 
refer t.o rather low Reynolds numbers. 

As a result of the foregoiug, it can be state:<~ that there is only limited airfoil data for freest.ream fluctuat.ions available to 
compare with theory, and the data. already published are mostly confined to t.he dyuamic stall pheuomenon, uot. to the c<l.se ol 
attached flow. In ca.se of the tests having angles of at\.;J.ck smaller than the static stall angle, the flow will also not he attach<~d 
because of the small Reynolds numbers, leading to thin airfoil Stittl characteristics with separation regimes lwgiuulng at very 
small angles of <lttack. Thcrdore it wiH be very diHicu!t, if not impossible, to compare the theories with exisit.ng experiment;d 
(h\.a. 

Until now, there is no other theory <tv;tilab\e for this problem. Also. comJMrisons betweeu the v<trious theories are very 
scarsc. This gap has hccn dosed in reccr1t n::-;car(h by the autlwr [1(.), !7J :-;ho11·ing in !lcti>il !.he rc:->IJl!s and 1lifrcrcrrces of th(: 

vario1rs t.h(!Orit'S for difr(.l'('l\1. conditions. :\bo. 1hv <tssu111ptions a11d simplificatior1s made by tlw v;ni1liiS ;ult.her.~ arc ('\<tri!il'd. 
lrr addition, 1-hc rcsn!C:-; an: conrpared IVillt l.ho .... <' of ;1 linik dilkrcnC\' sdwnH· of t.hc arhit.rary ll\Ot.ioll theory. IH 1.!11~ p;1pcr tlr(· 
mai11 rc~nlts frorn [Hi] arc prcscli!(·d 
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2 Theories for Unsteady Freest ream 

The values of normalised velocity amplitudes,).= AVj(OR), as well as the range of reduced frequencies at which helicopter 
blade sections are operating are of significant interest. In forward flight, A can take any value from zero to unity or even more in 
regions of reversed flow. The reduced frequency here is defined by the mean section normal velocity in hover, flr. Taking a typical 
value of Rfc = 20, the distribution of reduced frequencies depends on the geometry only: kv = (wvc)f(2V) = 0.025/(r/R). So 
the reduced frequencies at a typical rotor blade section range from 0.025 at the tip, to 0.125 at the root. The reduced frequencies 
are not very high, since only the 1/rev motion was taken into account, but high enough to justify the need of an unsteady 
aerodynamic theory in rotor calculations. When considering lead-lag motion of the higher modes the rotor blade, the reduced 
frequencies are considerably higher but the amplitudes will be much smaller. Thus, an analytic theory cannot be simplified for 
small values of>. or small kv. In this study, the following types of motion have been investigated: 

V(t) = 110(1 + ,\sinwvt) 

a(t) = eto(&o+&lssinwvt+&lccoswvt)=eto&o+ndyn 

h(t) = ~ao(Tt1ssinwvt+h1ccoswvt) (1) 

In the following sections, Theodorsen's theory is combined with an unsteady freestream, and Greenberg's, KottapallPs and 
Isaacs' theory are given in terms of Fourier series for easy application and comparison. For convenience, all results will be 
written in nondimensional form by dividing by the lift at the reference angle of attack a 0 and the mean velocity Vo, i.e. by L 0 • 

(2) 

It must be kept in mind, that all the theoretical approaches above were formulated with certain assumptions. In summary, 
these are: 

1. Two-dimensional flow (i.e., no span wise effects or curved wake forms included) 

2. Incompressible flow (i.e., infinite speed of sound) 

3. Small disturbances (i.e., thin airfoil, small angles, small frequencies) 

4. No friction forces (i.e., infinite Reynolds number= nonviscous flow) 

5. Planar, infinite wake (i.e., no distortion, no diffusion) 

6. Constant freestream velocity across the chord (i.e., only lead-lag motion considered) 

Therefore, the results can be valid only in the incompressible attached flow regime. Especially the last item of the list is 
interesting since all authors claimed to handle the unsteady freestream effect yet in reality they provided a solution for the 
lead-lag problem with some additional simplifications (except Isaacs [6, 7] with an exact solution for lead-lag effects). 

2.1 Theodorsen's Theory and Unsteady Freestream 
To apply Theodorsen's result to unsteady freestream, it is necessary to include the freestrea.m variations into the noncirculatory 
and circulatory parts. This may be referred to as the direct effect of velocity changes on the lift developmellt; the additional 
phase lags and amplifications due to the wake are not included. The Theodorsen function is defined by C(k) = F(k) + iG(k). 
This leads to the following result for the lift in the form of a Fourier series 

= k; { [>.&o + &1s + kv(a&1c - h1c )1 coswvt + >.&1c cos 2wvt + [ -&1c + kv(a&1s- h,s)] sin wvt + A&1s sin Zwv t} 

( 
,\') ,\ { A' } &o 1 + 2 + 2 [J,s + F(kv )&ts- G(kv )&,c)+ ftc+ 

4 
[F(kv)&1c + G(kv )&1s] coswvt 

+ { 2A&o + fts + 
3~

2 

[F(kv )&ts- G(kv )&tc]} sin wvt- ~ [A&o + ft s + P(kv )&ts - G(kv )&tc] cos 2wvt 

= (3) 

,\ ~ 
+2 [ftc + P(kv )&t c + G(kv )&ts] sin 2wvt- 4 {[F(kv )&t c + G(kv )&ts] cos 3wvt + [F(kv )&ts- G(kv )&1c] sin 3wvt) 

with the cocfficlents 

The appropriate lift coefficients are evaluated simply by the followinR formula 

('!.(/) 

c,,o 

81-3 

( 1) 



from these equations, the quasisteady theory result follows as a special case. This assumes very small frequencies, and therefore 
the noncirculatory part becomes zero while the Theodorsen function takes the values F(kv) = 1 and G(kv) = 0. Therefore 

Lc,q~ r:;= 

(6) 
Even from this simple result, it can be seen that the lift response includes a 3/rev component because of the multiplication of 
the trigonometric functions. When the compression and stretching of the shed wake is taken into account, then the vorticity 
in the shed wake does not have a sinusoidal form but more of a kind of Fourier series of harmonics. The conclusion is that 
there will also be a series of harmonics in the lift and moment response that is not predicted by quasisteady assumptions. 
Additionally, if the airfoil is set at a constant angle of attack and has no pitch or plunge motion, both Theodorsen's theory and 
quasisteady theory lead to the same circulatory lift since no lift deficiency function is in effect. Thus, the use of quasisteady 
theory or Theodorsen's theory in an unsteady freestream velocity is questionable, in general. 

Despite this, the quasisteady theory is a reasonable simplification for small reduced frequencies, but it is unclear whether 
this statement holds also for large flow oscillation amplitudes>., even when the reduced frequency is smalL This will be clarified 
using results from more complete theories. 

2.2 Isaacs' Theory 
This theory assumes a lfrev variation in angle of attack about midchord with the same frequency as in the freestream variations. 
Again, the result can again be expressed in the form of a Fourier series. 

with the coefficients 

Here 

with 

= k; [(>.&0 + &1s) cos wvt- &1c sinwvt + ).( &1c cos2wvt + &1ssin 2wvt)J 

= (ao (1 + ~') +A ( & 1s- k: ii1c) 1 (1 + Asinwv!) +~(1m cosmwvt+ I;, sin mwvt) 

00 

lm + il;, =-2m"' {Fn[Jn+m(n,\)- ln-m(n-1)] + iGn[Jn+m(nA) + ln-m(nA)]} ,m L.. 

1!~ = 

Fn + iGn = [F(nkv) + iG(nkv )]fin+ ifl~ 
n' 

ln+I(n>.)-Jn-I(n>.)(,- _ kv_) 2Jn(n-1)_ 
2 

AO'Q-d'lS-20'1C - n,\ O'tS 

ln+1 (n>.)- ln-I(nA) _ + ln(nA) [- (! '') kv- l 
O<JC --- O'tC - _..... - -O'tS 

n A 2 

(7) 

(8) 

(9) 

( 1 0) 

Setting &15 = & 1c = 0 and &o = 1 one obtains the expression for constant angle of attack. A closer examlnation of Isaacs' 
result (Eq. 8) indicates certain limitations in its application since there are two nested summations involved. 

1. The first sum (over m) represents the harmonic content of the lift response. If the interest is mainly in the rotor per­
formance, one can neglect the higher harmonics and will obtain sufficiently accurate results with the first few harmonics 
alone. 

2. The second sum (over n) has to be calculated for every item in the first sum. Since here Bessel functions of the first kind and 
n-th integer order ate involved, a.s well as the computation of the Theodorsen function, this part requires considerable 
computational time when it is necessary to calculate higher harmonics. One must keep in mind that the Theodorsen 
function also consists of Bessel functions of the first and second kind. This series, therefore, has to be terminated after 
computing a sufficient number of elements in order to minimize computational time. 

For the special case (thought to be typical for helicopters in 1915) of constaut angle of attack, a r<:duccd frequency kv = 
0.0121 and a. freest.ream oscillation amplitude of>.. = 0.1, Isaacs gave i\. numerical excunple for the total lift ratio Lj /, 0 and 
compared it to the qllasiste;Hly theory leading t.o the result: " ... so that jot· this cast~ the effects hc1·ciu cor~.~idcrcd 1 m·e no/ large." 

This is.sue oft.en comes t.o mind when it. conH!s t.o ju!;tifying t.he !!ow oscillitt.ion effect. Since it. is ha~cd only on this special 
c:csc of moderate flow amplitude (now;ula.ys helicopt-ers enconntcr mnch greater values of>.., even Luger than unity) it is uot t.o 
be t.;tken as the general case. Only a syst.emat.ic study with a variety of pnramctric v<niat.ions including all reduced frcquel\cics of 

1 Unsteady frecs~rc<J.!Tl df<~cts are meant here 
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interest, as well as all flow oscillation amplitudes, will be able to justify the necessity of including these effects. The quasisteady 
formulation yields for a= 0 (rotation about midchord) 

Lc,q~ 

Lo 

(11) 

Comparing the two expressions (the quasisteady result Eq. 11 and the unsteady result Eq. 7)> one can see t!_lat the mean values 
are the same in both cases. The dynamic part, however, is different since it includes the lift deficiency function for dynamic 
pitch in oscillating flow. This consists of the Theodorsen function for the pitch oscillation as well as of Bessel functions for the 
unsteady velocity effect. 

It is interesting whether or not the well known result from Theodorsen for pure angle of attack oscillations about the 
midchord axis in a steady freestream can be extracted by setting >. = 0. From the behavior of the Bessel functions, the sum 
over all m reduces to only the first element> and the same is in effect for the sum over n. Then it can easily be seen that it is 
identical to Theodorsen's result, as required. Therefore, Isaacs' theory of combined periodic flow and angle of attack oscillations 
with arbitrary phase angle between both of t}Jese motions can be considered as the best available theory for attached flow. 
However, when it comes to practical application, the amount of computational effort involved with the repeated evaluation of 
Bessel functions places limitations on this theory. 

2.3 Generalisation of Isaacs' Theory 

Since Isaacs' derivation [7] was made for a fixed pitch axis at midchord, the results are not very useful because in helicopter 
applications the pitch axis is usually at the quarter chord. Thus, a more general formulation is required where the position of 
the pitch axis, a, is a varable parameter. Additionally, Isaacs' theory does not include the effect of plunge motion, h(t), although 
this degree of freedom is very important in helicopter aerodynamics. The recent research by the author (16] includes all degrees 
of freedom in two dimensions: pitch motion (including higher harmonics} about an arbitrary location of pitch axis on the chord, 
forewaft motion (1/rev) with velocity amplitudes smaller than the velocity of the freestream itself, plunge motion (including 
higher harmonics). This extension of Isaacs' theory has not been presented previously, and therefore it is given here for the first 
time. The complete derivation is very lengthy and is not shown here, but is included in [16]. 

For the special case of harmonically varying forewaft motion, angle of attack and plunge motion like 

V(t) = Vo(l + >.sinwvt) [>.[ < I 

= 
h(t) = ao~ I:(hnssin nwvt + hnc cosnwvt) 

n=l 

the integral equation can be solved and one gets the following result for t.he lift 

Ln, 
Lo 

kv 
2 

{ [>.&o + & 1s + kv(a&1c- ft1c)- ~<he J cos·I/J- [ale- kv(a&1s- ft1s) + ~&2s] sin "1/J 

+ f n [ &ns + nkv(aii-nc- h~c) + ~ (&(n-l)C- &{ntl)C)] cos n"I/J 
n=2 

+ t, n [ -&nc + nkv(a&ns- ),nS) + ~ (&(n->)S- i>(n+')S) l sin n1>} 

(12) 

{( -'') [ kv((l-2")· ~) >. l} = , 1+ 
2 

&o+>. &,.s-~z ---:r- d-1c+h,c -'Tti2c (J+>.sin·~r)+LUmcosm.1J•+l,sin·rn"J,bl1.1) 
m=l 

with ¥• = '.J.Jvt. The coefficients l,, l~, are built up in the same way a..-> in Eq. 8 and £q. 9, hut the values of If, n.nd 11~ include 
the position of axis of rotation a., as well a_..:; !.he amplitmle of plunge motion i~ .. c and h,1s. and those of pit.ch in ?i·,.c, 0-nS· In 
the ca~e of pure 1jrcv and steady compoHent.s, the coefficients lin and H;, Citll be written in a form very similar to Isaacs. 

J,.+,(n>.)-ln->(n>.) ['- _ .. k ((1-·2a) .. 1- )] 2Jn(n>.)~ 
/\O'o~n·l-.,- V --··~ l1'Jr~+IIC - O"J.:: 

2 ... "2 n>. · 

If:, ./,. . .,(n\)-J,._,(a,\) ./,.(a\)[_ , ((1-l")· _ )] 
~~----,-_ --~--·-lrt~.: + -~- n 1,_·(1 --,\)- );\" ~- n~. .. ,. + h 1_..,. I 1·1) 

Tlri:' lll<t_\' b(' 11:-;cd to show the c!fl'ct of nnot.hcr pit.ch ;txis location or phnq.:,e ruotion on t.h1~ lift. devdopnH·nt .. 'l'h<' full formulation 
mot.\' he used !"or calcHht.in!!, t.h(~ unst.e;tdy airload . .; of higher hannouic rnotiou in <t ljrev varyiug !"rcc~1.rcilm. 
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2.4 Greenberg's Theory 
Greenberg extended Theodorsen's theory of harmonic airfoil motion in a constant freestream flow to the case of an additional 
periodically varying freestream flow conditions [8]. However, he also defines the freestream velocity to be constant over the 
chord, and this implies an unsteady fore-aft motion of the airfoil and not a varying freestream, see [8}. Additionally, Greenberg 
applies a high frequency assumption to the wake integrals in order to obtain pure periodic wake forms and thus simplifying the 
derivation. This assumption was never clarified; in the next section it will be shown to be a small >. approximation for parts of 
the derivation. With the coefficients Its and he as defined before, and 

hs = F(2kv)&,s- G(2kv)&,e he= F(Zkv )&1e + G(Zkv )&,s (15) 

the result of Greenberg, written in terms of a Foutier series, is 

k; { (A&o + & 1 s + kv(a.ihc- h1c )] coswvt + Aihc cos 2wvt + [-ale+ kv(a&1s - h1s)) sinwvt + A&1s sin 2wvt} 
Ln, 
To = 

L, 
Lo = I >.' ) ). - [ - >.' l Ero J+:rF(kv) +-z[hs+<>,s]+ >-<>oG(kv)+hc+4he coswvt 

>.' >.' ). 
+ >.&o[l -t F(kv )] + J,s + 4 hs + T"lS] sin wvt- 2 [>.&oF(kv) + hs + J,s] cos 2wvt 

+~ [>.&oG( kv) + he + he] sin 2wvt- >.' (he cos 3wv t + hs sin 3wv t) 
2 4 

(16) 

2.5 Kottapalli's Theory 
Kottapalli [9] also assumed the instantaneous velocity distribution along the chord as constant. The additional restriction of 
small oscillation amplitudes of this lead-lag motion omits aU terms of higher order in A and limits the applicability of this theory 
to the case of a hovering rotor, or one at low advance :ratios in forward flight. Since the noncirculatory part is the same as in 
Isaacs' or Greenberg's result, it is not considered here. The result in form of a Fourier series is 

&0 +>. [<> 1s- k; (C ~Za) &,c+h,e)] +[>.&oG(kv)+J,e]coswt+[-"<>o(l+F(kv))+f,s]sinwt 

-A [k; he+ hs] cos2wt- A ['t; hs- f1e] sin 2wt 
with the coefficients / 1s, he like defined b~fore and 

(( 1-Za) - ) (1-2a , ) hs = F(2kv) -
2
- &,s+h1s -G(2kv) -

2
-&JC+hJe 

he= F(2kv) (C~2") &1e+h1e) +G(2kv) C ~ 2"& 1 s+ii 1 s) 

(17) 

( 18) 

Immediately one can see that Kottapalli's derivation includes only two harmonics in contrast to three harmonics even in 
quasisteady theory. Here, tl1e assumption of small flow oscillation amplitudes is responsible since all terms of higher order in ). 
are missing and the 3frev was multiplied by ).2 in the quasisteady, Theodorsen's and Greenberg's theories. 

2.6 Arbitrary Motion Theory in an Unsteady Freestream (AMT) 

After investigating the various thin airfoil theories that are all set up for harmonic motion of the airfoil or the freestream, it is 
of utmost interest, whether or not the theory of arbitrary motion will lead to the same results as the exact theory in the case of 
an unsteady freestream. This method is based on the superposition principle and the use of DuhamePs integral in combination 
with the indicial response of lift (or moment) due to a sudden change in any of the degrees of freedom. This method has been 
described several times, for example in [31, 32, 33]. 

In incompressible flow the circulatory lift is determined from the normal velocity at 3/4 chord of the airfoil, while the 
noncirculatory lift is the result of the instantaneous local accelerations. Thus, the total lift is 

c' [·· . . c.. ] c [ 1' dw:.f;(<T) ] L = r.p"1 h(t) + V(t)a(t) + V(t)a(t)- a2a(t) + 2r.pV(t)'l w3 1.(0)¢(s) + 
0 

da ·¢•(s- a)da (19) 

where ¢(s) is Wagner's deficiency function for the lift [34], s the distance travclJcd by the airfoil (in half chords) and w 311 (t) the 
instantaneous value of normal velocities at the three quarter chord point. The norma! velocity depends Oil the angle of attack 
o:(t), the flap or plunge motion h(t), the position of the pitch axis acj'2, illtd the timc-dcpc:ndcnt. velocity V(t). This velocity 
may originate from freest ream variations or lead-lag motion of the airfoil or a combinatioH of both. However, it is il.<;sumecl here 
to depend on time only, so the velocity distribution along the chord is the same everywhere. This is done in order to compare 
rc~ult-s of arhit.rary mot.ion thc:ory with t.ho~e of t.h~ other t.\woril':-' di:-:.n!S:-'I'd :-'() rM. Thus, dte llOr!llil./ \'{'1ocit.y <Lt./.}!(: tl!r<":e 
quarter chord is 

t•2(J) 

Thc~re are t.wo approaches that C<tn be taken. First, for a r;ive11 forcinF, (unctioll one can analytically intcgr<lte to obt.ain it do:;ed 
form solution: ~econd, one can kt t.he type of 1J1otio11 be prt:sci bed a11d apply a finite difference Hlclhod. \I ere oul.v tltc second 



approach is used; results obtained with the first approach are given in [16}. Duhamel's integral yields for the circulatory part of 
the lift 

(21) 

and the normal velocity at 3/4 chord is written as 

· c (I - 2a) w314 (t) = V(t)e>(t) + h(t) + 2 - 2- &(t) (22) 

Now the derivative dw3 14 (tY)jdq is 

dw314 (o-) = dV(o-) <>(<7) + V(o-) de>(<7) + dh(<7) + ~ (I- 2a) d&(o-) 
dO" do- d<r d<r 2 2 d<r 

(23) 

The method of finite differences introduces the <;alculation at different time steps with a stepwidth being rather small telative to 
the highest frequency encountered. Therefore, normally about 45 to 60 steps.a.re made within one cycle. However, this implies 
the use of some m~chanism to describe the state between the time steps, and this is usually done by a zero order hold. By this a 
finite difference approximation can be made for the integrals, when using one of the common exponential series approximations 
for the Wagner function. 

N 

¢(s) =I+ I:;A.e'•' (24) 
k=l 

Then, for the sample with index n being the current sample, the expression in the brackets in Eq. 21 for the effective normal 
velocity at 3/4 chord becomes W3/4.,<~'f f = WJf4.,n· 

n 4 N 

W3f4,n =I:: [\f;i'.et; + e>;i'.\f; + ~ c ~ 2") b.(>; +i'.h;]- I:: I:: X~~k (25) 

i=O j=l k=2 

Herein, the X are called deficiency functions and contain the information of the time history of the different degrees of freedom. 
They are [33] 

Xul - xUl '•"'' +A AUl '•"'''' (26) n,k - n-l,ke kU e 

and can be combined in order to reduce the computational effort. The values Ak and bk are those of the usual approximation 
to the Wagner functionj for example Jones approximation [35]. If a higher order approximation is used, such as that of (36, 37], 
than additional deficiency functions are added, as indicated by the upper limit N. This is not usually desirable, since more terms 
lead to additional computational effort without leading to any significant gains in the accuracy of the results. One has to note 
that 4N deficiency functions have to be computed (or N, if all b.(J) are put together), and therefore for practical applications 
one must keep N as small as possible. The values denoted by b,.(J) are the differential changes of the four derivatives in the 
current sample [33), i.e., 

b.{J) =: ~ (1- 2a) D.& 
2 2 n 

£::..( 4
) = .6.i~n (27) 

and the increment in the distance travelled by the airfoil 6.s is 

2 !'+"'' i>s=- V(t)dt= 
c ' 

(28) 

The total response of lift due to arbitrary motion of the airfoil can be calculated by updating the deficiency functions at each 
sample. 

(29) 

When this approach is applied to a constant freestream, Theodorsen's result can be reproduced to an accuracy depending on 
the coefficients of the indicia} function¢. In this case A= 0 and 6.s = (2Vfc)6.t = !J.'ljJ/kv with 1/J = wvt = kvS being the rotor 
azimuth. 

This approach now can be applied to any type of airfoil motion, for example harmonic motion. This will now be the subject 
of later investigation. In all the cases presented, the number of steps in one cycle was set to 64. This is somewhat high, and 
therefore is on the conservative side. So here space steps are used instead of time steps, and therefore no difficulties occur when 
it comes to high frequencies where a time spacing leads to fewer ste~>s within one cycle than at lower frequencies. It must be 

noted, that compressibility effects can also he implemented as was shown by [3J, 38). 

3 Results and Discussion 

3.1 Lift Transfer Function for Constant Angle of Attack 

The cqH<~t.ions presented prcvions!y are not. ver.v helpful for a pllysical undcr:-;t.andir1g of Urc prohlcrn, .-;inn: there wi/1 be a 

response wit-h a whole ra.nge of fre<tuencics to the input of only one frequency i11 V(l.). Since lhc lift. is proport.ion;d t.o the :'quare 

of the velocity, t.hc input. consis\$ of ~t.eady, 1/rn• and 2/ret' p;nts, ctnd the oqt.put. will mainly consist of these har111011ics, 

inc\Hdiug, SOllie phase lag dfect.s. The cirndat.ory lift. cod!icicllt. h<t.:;cd 011 the inst.anl<tll(~OIIS dyn;unic p!TssuJT, is LH fnHII 

81-7 



uniform, as predicted by quasisteady theory, and this is shown in Fig. 2 for a reduced frequency of kv == 0.2 with,\= 0, ... , 0.8 
in steps of 0.2. TJ1e results of Isaacs theory were calculated by including terms up to the 20t.lt harmonic, and for each harmonic 
up to the 25th order in the reduced frequency and in the freestream oscillation amplitude A. It i$ required to include as many 
terms as necessary to show the corrf'ct solution. The higher order terms become smaller and approach zero because of the factor 
n 2 in the denominator of Eq. 8, and because of the behavior of the Bessel functions for large arguments. For larger values of)., 

even more terms must be used to obtain a converged solution. 
These results show the typical effects of unsteady aerodynamics already known from constant freest ream theory. First, there 

is a phase lag resulting in a lag in the lift buildup with respect to the change in velocity. Second, there is an effect on the 
circulatory lift amplitude resulting in a smaller value of maximum lift (where the velocity is at maximum) and more lift in the 
regime where the velocity is a minimum. Both quasisteady and Theodorsen 1s theory give the same result for a constant angle 
of attack and lead to a lift coefficient ratio of 1 independent of A or kv. A step in the right direction is given by Greenberg's 
theory, but here the lift in the area of high velocity is significantly underpredicted (CLc has to be muHiplied-wlth V2 to compute 
the lift. Vmaz is at W = 90° so small differences in CLc lead to large differences in the lift here). In the area of smallest velocity, 
the lift calculated by Greenberg's theory is smaller than that obtained by Isaacs. This means that the wake effects are not well 
represented in this theory. The results of Kottapalli's theory, derived for small values of>.., show acceptable agreement only for 
small .\ as expected. Here A = 0.2 seems to be a limit for application. Special att~ntion has to be given to the AMT results: 
they are so close to the exact solution of Isaacs that there are negligible differences. The only difference depends on the quality 
of approximation to the Wagner function; here the coefficients given by Jones [35] were used. Thus, the AMT is not only a very 
fast algorithm, but also the most accurate way to predict the unsteady aerodynamic coefficients at constant angle of attack. 

3.2 Lift Transfer Function for Sinusoidal Pitch Oscillations 
The angle of attack is assumed to consist only of its sinusoidal patt, say &o == & 1c = 0 and 0!1 s ~ 1. The lift response is shown 
in the time domain in Fig. 3. Two interesting observations can be made: 

1. At the maximum velocity (W = 90°), the unsteady lift for large freestream amplitudes is between the results obtained 
with quasisteady and with Theodorsen 1s theory1 with a small phase lag. The lift amplitude reduction is not as large as 
Theodorsen 1s theory would predict. 

2. At the minimum velocity (W = 270°), the unsteady lift for high freestream amplitudes is closer to zero as in the quasisteady 
case or in Theodorsen 1s theory. This can be seen very clearly in the lift coefficient, for example at A~ 0.8. 

The reason for this surprising behavior is due to the effect of stretching and compressing the shed wake vorticity, respectively. 
The stretching leads to a smaUer effective reduced frequency, while the compression leads to larger effective reduced frequencies 
with a more significant reduction of circulatory lift. This observation is in agreement with Johnson's results [3]. 

It is interesting to note that in the region of high velocity the lift is significantly underpredicted by Greenberg's theory. 
This means that the effective reduced frequency is too high here, leading to a lift deficiency that is also too large. In the 
region of lowest velocity, the additional loss in lift is not completely predicted by Greenberg 1s theory, so here tl1e effective 
reduced frequency is too small, leading to more lift than predicted by the exact theory of Isaacs. Over all, it can he seen that 
the mean lift will be underpredicted with increasing A so that the statement made by Greenberg of "good agreement with 
Isaacs' theory" in [8) is not necessarily correct. While in lsaacs 1 theory the constant part of the lift is directly proportional 
to ).& 15, in Greenberg's formulation the constant part of the lift depends on the Theodorsen function and is proportional to 
0.5.\ihs[l + F(kv)- O.SkvG(kv )], see Eq. 16. Therefore, the final value for high reduced frequencies is only 0.75 of that of 
Isaacs 1 theory. 

Much better agreement than at constant angle of at.tack is found between Kottapalli 1s and Isaacs' theory iu the range of flow 
os<:illation amplitudes up to ). = 0.2. It can be seen that the additional Lift loss in the low velocity region is overprcdicted by 
Kc.ttapalli 1s theory, but the lift in the high velocity region is underpredicted with increasing).. The mean value, however, is the 
same as for Isaacs1 theory, since it is proportional to A& 1s and does not depend on the reduced frequency (unlike Greenberg's 
result). From these results, again, the observation can be made that Kottapalli's theory is useful only for small values of A. 

The AMT represents the unsteady lift behavior in an almost perfect. manner. The behavior of the lift coefficient in t-he region 
of smallest velocity is correct in the trend> but not completely correct in magnitude. Especially for larger values of A the mean 
Jjft is slightly smaller than that of Isaacs. This is likely due to the Jones' approximation to the Wagner function. 

3.3 £ift Transfer Function for Cosine Pitch Oscillations 

Now &0 = &15 = 0 and Chc = 1 ~o the pitch variatioH is 90<> out of pha...c:e with the frccstrcam variation. From the time Joma.in 
rc;;ponsc, shown in Fig. 4, the following can he obserwd: 

l. As for sinllsoida\ motion, the unst.e<~.dy lift response of Isaacs t.heory is hctw<~cn the qu<t.<;ist.eadr result. t.ha11 t.he result 
obtained with Th<~odorsen's theory. This if' because the stretching of the shed wake vorticity leads to it Sllltdler clrective 
redun~d frequency, where the velocity is a !llilXimulll. 

'2. ftt t.he r<·!.!,ion with lowc:;;t velocity, il lift. o1•er..-hoot occur:--. Tbls is iJJ con\.r(l__-;\. to t.ht~ sinusoidal pitch moti()n wht•n• 1 he lift 

ddicit'ltc.v funct-ion shows <t reduction in lift. 

lt. i~ evide111, t.h;ll. tht· conllllllitl.ioll of 'l'ht•otlor~t·n·~ tlwoty wit.h <til unstt·ady frccst.rcam cannot. !w ust·tl to pr(·dict til(' lift. 
cocllicicnt. llowcvcr. since the \.otal \'clocit..y is sn1all hnc, tlw dilkr{'ncc in lift is not. n·ry si)!,ni!\c:wt.. 

From Cr('cuhcq_!,'s result it. cou1 \w seen th:tt t.ll\· O\Tr<ll\ agrt:t:ll\(·111 with ]s;ucs' t.hcory is good for this C\,..('. otnd tht: lift 
overshoot iu tl!e dco:kr;d.ing !low region is abo pr('dirt~·d in !.h(· corr('c1. !.rt'lld. but not in lllilf!,l!i!.utk. 

Tht• dilft:rcnccs lwt.wt:CI\ 1\:ot.lapa!li';-. and b:ucs' 1h('ory ;ut· ~m:dlllp 1() \·;dues or,\::;.~ 0.'2. l·'or hi).!,llcr amplit.Htks. llw lifl. is 
incn·asill.l:,i.v lllldr_:rprcdictt·d i11 I he r·c.~ion of lu.~~h ITI<h'ily w)u),, il is oq·rprcdict<"d i11 til<' ,..JJI;tlkr \'1•loci1v r•,·:~iutl 
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No significant differences can be seen in the lift development between the results obtained by AMT and Isaacs. Thus, for all 
three cases of constant, in-phase and out-of-phase pitch oscillations, AMT is the best available theory to represent the results 
of the exact theory in an easy manner. 

3.4 AMT - Reduced Algorithm 

Often, instead of using the full algorithm with all deficiency functions, only a reduced algorithm is used, viewing the changes in 
freestream velocity as quasisteady and thus neglecting the deficiency terms related to V. It was shown in (16] that this reduced 
algorithm leads to acceptable results in the lift, but not in the lift coefficient. Additionally, using an analytic derivation of Eq. 19 
and replacing the upper limit of the integral, s = S ~ (A/kv)coskvS, by its mean value, S, it has been shown to identically 
reproduce Greenberg's results. Thus, the high frequency assumption for the wake integrals in Greenberg's theory really means a 
small.\ approximation for parts of the wake. This is generally not applicable in rotorcraft calculation in forward flight. 

3.5 Comparison with Euler Results 

A comparison of the results obtained with Isaacs theory and with an Euler code developped at DLR for constant angle of attack 
at a reduced frequency of kv = 0.2 is shown in Fig. 5. Since the Euler code cannot compute the incompressible case, the mean 
Mach number has been set to 0.1 with variations of up to 80%. Excellent agreement is found and the ver.y small differences 
between these two results can be neglected. It must be noted, that the computing time of the Euler code is several orders in 
magnitude larger than that of the analytical expression of Isaacs and again this approach is much more computational intensive 
than the formulation via AMT. Therefore, AMT is the most reliable and the fastest way to calculate the unsteady aerodynamic 
coefficients in unsteady freestream flow environment. 

4 Summary and Conclusions 

In this study five theories handling the effect of unsteady freestream have been analysed. These are: Isaacs> theory, Greenberg's 
theory, Theodorsen's theory combined with unsteady freestream 1 Kottapalli's theory and the arbitrary motion theory (AMT). 
It was found, that all of these theories handle the case of a fore-aft moving airfoil instead of an unsteady freestream. This latter 
case should be more correcly viewed as a system of horizontally propagating gusts. A helicopter rotor blade section in forward 
flight encounters both unsteady freestream (the superposistion of rotation and forward flight velocity components) and fore-aft 
motion (through Jead-lag). It was found, that in the range of reduced frequencies encountered by a helicopter blade the results 
will be very similar. Thus, the interpretation of unsteady freestream as an equivalent to fore-aft motion can be viewed as a good 
approximation in the helicopter case. All of the theories cited above lead to the same noncirculatory expressions, and all of 
them reduce to Theodorsen's theory when the freestream oscillation amplitude becomes zero. The general effect of an oscillating 
freestream is a "stretching and compressing" of the shed wake vorticity behind the airfoil. From the analysis and comparisons 
in this paper the following conclusions can be made: 

1) Isaacs• theory is the only theory that gives an analytic solution without additional simplifications, and therefore can be 
considered as the only "exact theory". The lift for oscillating freestream flow conditions is represented as an infinite Fourier 
series. The lnduced phase lags and amplifications depend on the type of motion of the airfoil. Therefore, at constant angle of 
attack there is a significant lift coefficient overshoot, where the velocity is smallest, but in case of sinusoidally varying angle 
of at.tack (in-phase motion) an additional lift deficiency occurs. A cosine motion (90° out-of-phase) also leads to lift coefficient 
overshoots, but they are not as significant as in the case of constant angle of attack. 

2) Green berg's theory is similar to Theodorsen 's theory, but includes the unsteady freest ream as additional degree of freedom 
and the result for the lift contains up to three harmonics. To obtain a simple closed form solution, an additional simplification 
to the form of the wake was made. That was that an infinite frequency assumption makes the wake vorticity sinusoidal again. 
It was shown with an analytical derivation via arbitrary motion theory, that this is equivalent to neglecting the flow oscillation 
amplitude for the induced velocities. Therefore Greenberg's high frequency assumption physically is an assumption of quasisteady 
convection velocity for the shed wake. This makes Greenberg's theory questionable for high freestream oscillation amplitudes, 
and it was found that the differences with the exact theory of Isaacs are significant above),;::::::: 0.4. For constant or oscillating 
angle of attack the basic behavior was correctly represented, but the magnitudes and phase angles were not well represented in 
the important constant and 1/rev parts of lift response. 

3) J<ottapalli's theory uses an assumption for small freestream amplitudes and thus reduces this theory for the cases of 
<H:roe\ast.ic investigations in hover, or very small forward flight conditions. The agreement with Isaacs' theory for that range 
of frecst.rea.m oscillat.ions was found to be ~lightly better t.h;ul !.hat. of Grec:nberg's results. Because of the assumption made in 
hott.apalli's theory, only up t.o the second harmonics describe the lift response. 

-1) Thcodorsen's theory combined with an nnstcndy freest.rcam ('~scnti;\J!y can be viewed a.c; quasist.eady change~ in v('focit.y 
;tn<l the Thcodorsen function is only applied to augle of a.t.tack and plunge motion. The ch(l.ract.eristic lift coel!icient. overshoot.s 
cannot be predicted hy t.his method. It was proved that with ;w an;tlyti<.:a! derivation via arbitrary motion theory from tht: 

reduced algorithm (omitting the deficiency fnnct.ion:-:: for t.he chanP,eS iu v<'locit.y), that this is cquivaknt. t.o ncj!,lcc!.ing t.he !low 
()scill:ttion <tnlplit.ndc for t.hc induced velocities . 

.'i) :\rhit.r<try mot.ion t.h<'ory (Ai\.·lT): the finite difference otppro;tch using the superposition priucip!c <tlld Uuhanwl\ int.cgral 

k:Hls nearly cxatly !.n t.hc sam<' rcsn!b :t:-; for h;a;Jcs' t.h<'or.v. wiH·n t.he ;uq.!;l(! of it!.totck is constant. or oscillat.in!!, 9tl'"' oul.~of-pha.<;c. 

For sinusoidal angle of at.t.<tck motion (in~pha.se) t.!H~re itre illcr<~asin.l!, dilrercnc<:s wit.h increasing, 1cdnccd fn:qncucic::- for the 
consLtnt and 1/re·v··part. of t.hc lift. response. In t.he range of rcducl'd (rcqlll'IH·ics CIICOilllll"l"(:d by a rtlfor bi<Hic, !.his seer II:' uot. to 

ht: ;1 severe limit.;tt.io!l. In all cases the dynamic lift. response is represented correctly, dt:pt:nding on t.he ;q)proxilll;\l.ion used t"or 
thr: \\-.q~IH"l" f1111CI.io11 This i~ proof t.hat \.h<.· itrhitrary 1not.iou th(·1>r_\" (·:u1 :tC<"IIntcly calcnht.r·thc lift ('\"("11 i11 uns!.('<tdy fr\'csl.rc:u11 

81-9 



conditions. The often used ''reduced algorithm", considering the freestream variations as quasisteady, leads to good results for 
the lift, but the characteristic overshoots in the lift coefficient related to the compression of the shed wake vorticity (at the 
retreating side of the rotor), are not represented. 

The conclusion is, that when the lift coefficient is the subject of investigation, Isaacs' theory or the arbitrary motion theory 
with all the appropriate deficiency functions are necessary to calculate the correct lift coefficient overshoots or deftciencies. If the 
lift itself is the subject, then for small freestream amplitudes all theories are useful, for medium amplitudes Isaacs, Greenberg's 
and AMT are valid, and for high oscillation amplitudes Isaacs' or arbitrary motion theory with all deficiency functions are 
necessary to accurately calculate the lift response, 

As an additional contribution to the analytical side of the problem, Isaacs' theory (that was derived for 1/rev oscillations 
in angle of attack only about midchord) has been generalized to the case of an infinite Fourier series in angle of attack about 
an arbitrary axis, including also an infinite Fourier series for plunge motion. As a recommendation for future research, this 
derivation can be used for a general unsteady aerodynamic theory, featuring infinite Fourier series in all types of motion (also 
fore-aft motion) and with different fundamental frequencies for pitch, plunge and freestream oscillations. 
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Figure 1: Flow C!lVirO!JJl)CilL of illl airfoil in (l!l \lll!->Lcady rrec:;LrCillll. Upper parL: lead-lag type of lllOLiou; lower 
pare: unsteady frt;t~slream as <l gust prohknL Hi~h!. :-;ide: rc:-;n!Ling non11al velocity distributions. 
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