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Abstract

In this paper, the effects of an oscillating freestream on the unsteady acrodynamic lift of an airfoil is examined. First, existing
theories are investigated and their simplifications and limitations are idenlified. Then, the theories are compared to show the
differences between them for different conditions: first, for constant angle of attack, second, for in-phase pilch motion, and third,
for 90° out-of-phase pitch with respect Lo velocity oscillalions. In addition, the exact theory (exising only for constant angle of
attack and pitch about midchord) is extended to pitch (including higher harmonics) about an arbitrary axis and plunge motion
{also including higher harmonics). The results are also compared to a finite difference scheme of the arbitrary motion theory. It
was found, that the arbitrary motion theory is best suited for calculaling the unsteady aerodynamic lift even in an oscillating
freestream. The results of the exact theory are finally validated using an Euler code for very low Mach numbers.

Nomenclature
a pitch axis location wrt. midchord, pos. aft o, & angle of attack, nondimensional angle of
attack
< airfoil chord A nondimensional amplitude of velocity os-
cillation
C(kv) = F{kv)+ Theodorsen function P air density
G {kv) '
s hie nondimensional amplitude of plunge dis- &(s) Wagner function
placement
i imaginary unit ) P = wyt = noadimensional time
kys
Jn(nA) Bessel function wy lrequency of velocity oscillation
kv = wut/(2V5) reduced frequency of velocity oscillations Indices:
L,Cy lift, li{t coefficient 1% velocity
Re Reynolds number 0 mean or reference value
8 _ nondimensional distance travelled by the ¢, ne circulatory, non circulatory
" airfell
t time 5,C sine-, cosine component
Vv velocity qs Guasisteady
w normal velocity 3/4 at 3/4 chord

1 Introduction

A helicopter rotor blade in forward flight encounters a highly unsteady flowfield. To predict the aercelastic behavior of the
rolor, it is necessary to accurately calculate the aerodynamic loads acting on the blades. These consist of both sleady as well as
unsteady components. One source of aerodynamic loads is the varying encoming flow velocity at each blade station. This leads
to a dynamic pressure variation containing steady, 1/rev and 2/rev components, Additional degrees of {reedom result from the
blade moticn in flap, lag and torsion, and the nonuniform inflow. Therefore, a fully unsteady aerodynamic theory must be used
to predict the aerodynamic loads. This has been discussed by various authors, for example by Johnson and Kaza [1, 2]. Both
state that the lift deficiency function must be generalized to account lor the unsteady [reestream eflects. This generalisation
was given by Johnson [3], but in most analysis the Theodorsen lift deficiency function {or constant {reestream flow [4]} is often
used instead. However, the direct application of Theodorsen’s theory to rotorcraft in forward flight is questionable. A theory
including the effect of periodically stretching and compressing the shed wake vorlicity distribution behind the pitching, plunging
and fore-aft moving airfoil should be used in order to include the effects of varying freestream on the unsieady aerodynamic
forces and moments. In this paper, a review on modelling the varying freestream effects will be given, and an exact theory for
an airfoil with pitching, plunging and fore-aft motion will be presented. The limitations and assumptions of existing theories
will be clearly shown. The objective is first to find an answer to whether or not it is necessary to model the effects of unsteady
freestream fluctuations in a rotor loads or aeroelastic analysis in forward flight. The second objective is to show whether or not
it is possible Lo simulate the atiaclhed flow behavior using an arbitrary motion theory, comprizing of Dulamel’s inlegral and
indicial [unction approximation {Wagner function) for step changes in angle of attack, pitch rate and plunge velocity.

[ is necessary to differentiate belween two kinds of velocily changes that a rotor blade encounters in forward flight. First
there will be a fore-aft (lead-lag) motion of the rotor blade, and second, an oscillating [reestream velocity {gust problem} resulting
from the superposition of the rotational velocity and the forward speed of the helicopter, see Fig. 1. The first case (lead-lag)
leads to a unilorm velocity distribution across the airfei] chord, while the second case (gust) produces a velocity gradient across
the chord. For small reduced frequencies both cases may be handled the same way since the gradients in the second case are
small. Hlowever, this is only an approzimation and is not valid for large large reduced frequencies. This is because a lead-lag
motion will resuit in very large noncirculatory forces, while in an oscillating freestream the noncirculatory Hft will reduce Lo
zero again since several modes along the chord cancel each other (as is the case in a vertical gust Nield). For the form of the wake
behind the airfoil, however, there is wo difference between cither case because the positioning and wvelocily of vorticily in the
shed wake relative Lo the airfoil reriains the same. A radial station of a helicopter blade, tn reality, enconnters both phenomena
and the velocity changes due to forward Mlight are physically a gust problem and shonid be treated as such.

Analytical approaches to the problem of an escillating airfoil i a varying lrecstream velocity have been perlormed by several
authors in the past. Fundamental closed form solutions for an oscillating airfoil in a steady [reestreamn were given by Theodorsen
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in 1935 [4], and in 1940 in operational form by Sears [5]. Probably the first attempt to derive a closed form solution for the case
of unsteady freestream velocity variations was given by Isaacs in 1945, but then only for the case of constant angle of attack [6}.
In 1946, Isaacs included a periodic change in angle of attack in order to fulfill the needs of helicopter aerodynamicists [7]. His
solution, however, was confined to a pitch axis at half chord, and therefore it was not very appropriate for helicopter calculations
since nearly all helicopter blades have a feathering axis at the quarter chord.

{n 1946 Greenberg (8] published his extension of Theedorsen’s theory. Even today, his results are thought to be the most
reliable for application to rotorcraft aeroelastic problems. However, Greenberg made a high frequency assumption about the shed
wake behind the airfoil to obtain a sojution in terms of the Theodorsen function only. The effect and nature of this assumption
was never clarified.

In 1977 a new theory directly related to rotorcralt was developed by Kottapalli [9]. In 1979 [10] and again in 1985 [11]
additional results were published. This theory was developed by applying only small lead-lag oscillation amplitudes with respect
to the mean velocity. Consequently, Kottapalii limits the validity of his approach to the case of blade flutter-in hover. Therefore,
the results seem to be of limited help for helicopter applications in forward flight, since the assumption of small flow oscillation
amplitudes holds only for very small advance ratios.

Johnson published some discussion regarding the problem of a varying velocity in (3]. Using the same assumptions made by
Isaacs [6, 7], Johnsen basically followed Isaacs’ theory and gave expressions for lift and moment of an airfoil having plonge as
well as pitch motion about an arbitrary pitch axis. The final result is given in Jorm of integrals without giving the appropriate
solution of these in terms of Bessel functions. The effect of varying velocity is described by Johnson as: “On the advancing side,
the increased velocity lowers the reduced frequency and hence the lift deficiency function i3 nearer unity, On the relreating side
there is the greatest accumulation of shed vorticity in the wake near the trailing edge, and thus the greatest reduction tn lift. In
summary ... all these effects basically produce 1/rev variations of the loads.” Johnson’s conciusion is that the approximation
using the Theodorsen function with the local reduced frequency will work for flow oscillation amplitudes of up to 70% of the
mean velocity. For small flow oscillation amplitudes, the Theodorsen function calculated using the mean velocity will be accurate
exough, which effectively means neglecting the unsteady freestream fluctuations. However, this statement seems to be based
only on one presented result, and it is doubtful whether it holds for other mean reduced freuencies and higher harmonics of the
blade response.

Other authors refer to different problems with time varying velocities, especially accelerated motions, but not to harmonically
varying freestreams. Some of them are to be found in [12, 13, 14, 15].

Most of the experimental work done in this area of research is the measurement of the aerodynamic coeflicients in a wind
tunnel. A number of experiments with airfoils oscillating in a constant freestream velocity have been conducted, for example
[18, 19]. Only few experiments have been done in an oscillating freestream velocity environment, which is of interest heze.

Probably the first experiments on this problem were done by Fejer, Saxena and Morkovin in 1976 [20, 21]). The parameters
achieved were X = 0,18, k = 0.18 and 0.9, e = 2.5 x 10° and a trip was mounted to force the boundary layer to be turbulent,
Here and in later tests [22, 23] it has beer found that in periodically changing flows, dynamic stall of airfoils can assume a variety
of forms depending on the frequency and amplitude of the osciliations. The airfoil coefficients do not behave in a quasisteady
manner, and it was concluded that for the case of helicopter dynamic stall the freestream flow fluctuations must be taken into
account and cannot be neglected.

Parallel to the analytical work of Kottapalli at Georgia Institute of Technology, some experiments were also conducted by
Pierce, Kunz and Malone [24] in 1976. A = 0.177 and Re = 2.02 x 10° could be achieved. The pitch frequency was sel 1o 6
times of the flow oscillation frequency in order to have one airfoil oscillation during the more or less linear regime of accelerating
flow, and one in the appropriate regime of decelerating flow. Steady tests showed thin airfoll stall characteristics on the airfoil.
Dynamic tests showed a large effect of flow oscillations on the dynamic stall behavior.

At about the same time, the French team of Maresca, Favier and Rebont started a series of experiments with ar atrloil
undergoing fore-aft motions, plunge metions and pitch motions in a steady stream [25, 26, 27). They achieved high values of
X, but the mean velocity of the fiow was very small Re = 2.5 x 10°. In 1982 the same aunthers presented some additional
measurements of combined motion for oscillations below the static stall angle, as well as for those going beyond stail, and
compared the results for lift, drag and moment with the appropriate plunge oscillations in a constant {reestream flow {28]. The
hysteresis loops were found to be entirely different. Moreover, at Re = 1,44 x 10° one must be careful to assume the flow below
the static stall angle as attached since the airfoil is very likely to experience thin airfoil stall. Additional measurements were
conducted and presented in 1988 {291 It was shown that the phase of the flow velocity and the angle of attack oscillations is
an imporiant parameter and changes the lift hysteresis behavior in a significant manner. The data presented in 1992 [30] also
refer to rather low Reynolds numbers.

As a result of the foregoing, it can be stated that there is only limited airfoil data for freestream fluctuations avallable Lo
compare with theory, and the data already published are mostly confined to the dynamic stall phenomenon, not to the case of
attached flow. In case of the tests having angles of attack smaller than the static stall angle, the flow will also not be attaclhed
because of the small Reynolds numbers, leading to thin airfoil stall characteristics with separation regimes begiuning at very
small angles of attack. Thercfore it will be very dilficult, if not impossible, to compare the theories with exisitng experimenta)
data.

Until now, there is no other theory available for this problem. Also, comparisons between the various theorics are very

scarse. This gap has been closed in recent rescarch by the suthor {16, 17] showing in detail the results and dillercuces of the
varions theories for dillerent conditions. Also. the assumptions and simplilications made by the various anthers are clarihed.
fnaddition, the resndts are conrpared with those of a finte difference seheme of the arbiteary motion theory, Tu this paper the
main results rone 116] are presented.
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2 Theories for Unsteady Freestream

The values of normalised velocity amplitudes, A = AV/(§2R), as well as the range of reduced frequencies at which helicopter
blade sections are operating are of significant interest. In forward flight, A can take any value from zero to unity or even more in
regions of reversed flow. The reduced frequency here is defined by the mean section normal velocity in hover, 2r. Taking a typical
value of Rfe = 20, the distribution of reduced frequencies depends or the geometry only: kv = {wv¢)/(2V} = 0.025/(rf R). So
the reduced frequencies at a typical rotor blade section range from 0.025 at the tip, to 0.125 at the root. The reduced {frequencies
are not very high, since only the 1/rev motion was taken into account, but high enough to justify the need of an unsteady
aerodynamic theory in rotor calculations. When considering lead-lag motion of the higher modes the rotor blade, the reduced
frequencies are considerably higher but the amplitudes will be much smaller. Thus, an analytic theory cannot be simplified for
small values of A or small kv. In this study, the following types of motion have been investigated:

VY = V(1 + Asinwvi)
alt) = og{d + E1ssinwyi+ &g coswyvt) = apflg + Cayn
(1) = gcm (ﬁ;ssinwvt+}_1;c coswvt) {1)

In the following sections, Theodorsen’s theory is combined with an unsteady freestream, and Greenberg’s, Kottapaili’s and
Isaacs’ theory are given in terms of Fourier series for easy application and comparison. For convenience, all results will be
written in nondimensional form by dividing by the lift at the reference angle of attack oo and the mean velocity V5, 1. e. by Le.

Lo = g%’c@,o Cro = 2rao (2)
It must be kept in mind, that all the theoretical approaches above were formulated with certain assumptions. In summary,
these are:
1. Two-dimensional flow (i.e., no spanwise effects or curved wake forms included)
2. Incompressible flow (i.e., infinite speed of sound)
3. Small disturbances (i.e., thin airfoil, small angles, small frequencies)
4. No friction forces (i.e., infinite Reynolds number = nonviscous flow}
5. Planar, infinite wake (i.e., no distortion, no diffusion)
6. Constant freestream velocity across the chord (i. e., only lead-lag motion considered)

Therefore, the results can be valid only in the incompressible attached flow regime. Especially the last item of the list is
interesting since all authors claimed to handle the unsteady freestream effect yet in reality they provided a sclution for the
lead-lag problem with some additional simplifications {except Isaacs [6, 7] with an exact solution for lead-lag effects).

2.1 Theodorsen’s Theory and Unsteady Freestream

To apply Theodorsen’s result to unsteady freestream, it is necessary to include the freestream variations into the noncirculatory
and circulatory parts. This may be referred to as the direct effect of velocity changes on the lift development; the additional
phase lags and amplifications due to the wake are not included. The Theodorsen function is defined by C{k) = F(k)} + iG (k).
This leads to the following result for the lift in the form of a Fourier series

Ling k N 7 ~ N i . .
7 = TV {[A&o+ms+kv(aalc ——h;c)] coswyt 4+ Adic cos 2wyl + [—a;c+kv(a&15—h15)] Sanvt-i—Adflss;anwvt}
-0
L. i b A i - A2 i .
T, = & YA {hs+ Plhvians — Glhviaie] + 4§ fic + e [Flkv)aie + Glkv)ds) p coswyt (3)
3N - A
+ {‘ZAGO + hs+ e [F{kv)dis — G(kv)&lc]} sinwyt — 2 [Ado + fis + Flkv)as — Glkv)aiclcos 2wyt

A . 22
+- [fic + F(kv)érc + Glkv)&; 5] sin 2wyt - vy {{F(kv)arc + G(kv)@i1s) cos 3wyt + [F{kv}is — G{ky)aic)sin 3wyi)}

with the coefficients

. _ 1—2aN + . . 1—2ay | .
His = Flkv) {mg—kv (( )mc+h1c)]~—6(kv) {OIC-{"CV (( (;“") Chs-{-lus)]
. ~ 1—2ay _ 5 s _ I —2ay | -
fic = Flky) [alc+kv ((——,;-“) ﬂ13+h-:s)] + Glkv) 815 — kv ((—_—2——_) G+ ])-IC)] {4)
The apprapriate lift coefficients are evaluated simply by the following fermula
Cuy o 1 .
Cio Lo {14 Asinwy l)? 5)
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From these equations, the quasisteady theory result follows as a special case. This assumes very small frequencies, and therefore
the noncirculatory part becomes zero while the Theodorsen function takes the values F{kv) =1 and G(kv} = ¢. Therefore

? k 1-2 ; A? 1-2ay _ i
MLE? = &g (1 +%) + A [&15— TV (( 2 a) &ic +hnc)] + [&10 (1-{- T) + kv (( 2 a) 013+ft1s)] coswyit

32 1—2ay _ - i
+ |2A&0 4+ s | 1+ _fim - kv (( 3 ) tye + }HC) sinwyi
— - Az
—% {Aao + 2835 — kv ((1 23) (s 3 ¥e: +h;c)] cos 2wyl — —&1¢ cos 3wyt
- _ b ]
+% [ 2ayc 4+ kv ((1 zza)é;s-}-hlg)}sin%)vt-— w&—mssm&uvt

. (6)

Even from this simple result, it can be seen that the lift response includes a 3/rev component because of the multiplication of
the trigonometric functions. When the compression and stretching of the shed wake is taken into account, then the vorticity
in the shed wake does not have a sinuscidal form but more of a kind of Fourier series of harmonics. The conclusion is that
there will also be a series of harmonics in the lift and moment response that is not predicted by quasisteady assumptions.
Additionally, if the airfoil is set at a constant angle of attack and has no pitch or plunge motion, both Theodorsen’s theory and
quasisteady theory lead to the same circulatory lift since no lift deficiency function is in effect. Thus, the use of quasisteady
theory or Theodorsen’s theory in an unsteady freestream velocity is questionable, in general.

Despite this, the quasisteady theory is a reasonable simplification for small reduced frequencies, but it is unclear whether
this statement holds also for large flow oscillation amplitudes A, even when the reduced frequency is small. This will be clarified
using results from more complete theories,

2.2 Isaacs’ Theory

This theary assumes a 1/rev variation in angle of attack about midchord with the same frequency as in the freestream variations.
Again, the result can again be expressed in the form of a Fourier series.

% = %‘i {(X&o + d1g) coswyt — Gro sinwvt + A{@1¢ cos 2wyl + &5 5in Lovt)]
2 k o ,
.L—‘ = &o 1+§— +)\(6z1s——v-&1c) (1+)«sinwvt)+Z(Imcosmwvt—{-imsinmwvt) {7}
Lo 2 4 —
with the coefficients
[=0)
b+ iy = =225 5 (Falnym(3) = Jncom (@] Gl (23) + Jnorm(mA)) ®)
il
Here u y
Pa+iGn = [P(nkv) + iGlnky) 22052 (9)
with
g o Dera{md) = Jaa(nd) (mn s~ ﬂam} _ e
2 2 ni
g, = o) Y 516 + J“&"A) [m1c(- 2 - Baus (20)

Setting &15 == & ¢ = 0 and & = 1 one obtains the expression for constant angle of attack. A cleser examination of Isaacs’
result (Eq. 8) indicates certain limitations in its application since there are two nested summations involved.

1. The first sum {over m) represents the harmonic content of the lift response. If the interest is mainly in the rotor per-

formance, one can neglect the higher harmonics and will obtain sufficiently accurate results with the first few harmonics
alone,

2. The second sum (over n} has to be calculated for every item in the first sum. Since here Bessel functions of the first kind and
n-th integer order are involved, as well as the computation of the Theodorsen funciion, this part requires considerable
computational time when it is necessary to calculate higher harmonics. One must keep in mind that the Theodorsen
function also consists of Bessel functions of the first and second kind. This series, therefore, has to be terminated afier
computing a sufficient number of elements in order to minimize computational {ime,

For the special case (thought to Le typical for helicoplers in 1945) of constant angle of altack, a reduced {requency kv =
0.0424 and a freestream osciliation amplitude of A = 0.4, Isaacs gave a numerical example for the total lift ratio L/ Ly and
compared it to the quasisteady theory leading to the result: "...s0 that for this case the effects hevein considered ' are nol large,”

This issue often comes to mind when it comes to justifying the flow oscillation effect. Since it is based only on this special
case of moderate flow amplitude (nowadays helicopters encounter much greater values of A, even larger than unity} it is not to

be taken as the general case. Only a systematic study with a variety of parametric variations including all reduced frequencies of

Ynsteady freestream effects are meant here
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interest, as well as all flow oscillation amplitudes, will be able to justify the necessity of including these effects. The quasisteady
formuulation yields for a = 0 (rotation about nidchord)

Lege 3 z? ) k 22 kv _
L'Dq' = &9 (1 B —?—,*) +/\ (ms - TV&IC) -+ l:ﬁqc (1 + _4— -+ “"2":'&13 coswyl

ax : A k
+ [2)\&0 + dng (1 + —> - 1‘_‘.’..&1(;} sinwyt — 5 (,\&g + 2815 - Tvc'nc) cos 2wyl
A
*3

4 2 2

. 2 .
(26{10 + k—zv—&ls) sin 2wyt — T(&lc cos 3wyl 4 @) 5 sindwytl) an

Comparing the two expressions {Lthe quasisteady result Eq. 11 and the unsteady result Eq. 7), one can see that the mean values
are the same in both cases. The dynamic part, however, is different since it includes the lift deficiency function for dynamic
pitch in oscillating flow. This consists of the Theodorsen function for the pitch oscillation as well as of Bessel functions for the
unsteady velocity effect.

It is interesting whether or not the well known result from Theodorsen for pure angle of attack oscillations about the
midchord axis in 2 steady freestream can be extracted by setting A = 0. From the behavior of the Bessel functions, the sum
over all m reduces to only the first element, and the same is in effect for the sum over n. Then it can easily be seen that it is
identical to Theodorsen’s result, as required. Therefore, Isaacs’ theory of combined periodic flow and angle of attack oscillations
with arbitrary phase angle between both of these motions can be considered as the best available theory for attached flow.
However, when it comes to practical application, the amount of computational effort involved with the repeated evaluation of
Bessel functions places limitations on this theory.

2.3 Generalisation of Isaacs’ Theory

Since Isaacs’ derivation [7] was made for a fixed pitch axis at midchord, the results are not very useful because in helicopter
applications the pitch axis is usually at the quarter chord. Thus, a more general formulation is required where the position of
the pitch axis, a, is a varable parameter. Additionally, Isaacs’ theory does not include the effect of plunge motion, &(t), although
this degree of freedom is very important in helicopter aerodynamics. The recent research by the author {16} includes all degrees
of freedom in two dimensions: pitch motion {including higher harmonics) about an arbitrary location of pitch axis on the chord,
fore-aft motion (1/rev) with velocity amplitudes smaller than the velocity of the freestream itsell, plunge motion (including
higher harmonics). This extension of Isaacs’ theory has not been presented previously, and therefore it is given here for the first
time. The complete derivation is very lengthy and is not shown here, but is included in [16}.
For the special case of harmonically varying fore-aft motion, angle of attack and plunge motion like

V{t) = V(14 Asinwvi) [X] < 1
o
oft) = oo dp+ Z Gngsilnwyl + dpe cOSRWYL
nal
fu)
R(t) = ao%Z(ﬁnssin nwyvt + hnc cos nwit) (1)
n=1

the integral equation can be solved and one gets the following result for the Hft

ne k .o - - ¥ A - . 7 A .y
[}} = —Zi { [/\r_m + &5 + kviedie — hic) — E&gc] cos i — [mc -~ kv{adis — his)+ —2—0‘25} sin )
0
[==] B A ) i
“i“Zn[ Gns + nhkv(a@nc — hne) + 5 (O’(nﬂnc - Q’(n+l)0)] cos ny
n=2
o0 ) ) - A _ i )
+ Zn[-—cxnc + nkyvl(adns — hng) + = (0("_1)5 - a(nﬂ)s)} sin ny
n=2 2
Le A2 kv ((1—2 . Y . = ,
?;0- = {(14-";;) o -!—)\{C'i’ls-—"% (( 5 )d‘lc+mc) w;(\gcJ}{l+,\smm+ Z(!,,,cc)s‘nz.'e,[>+1,,,3'111‘:71@){13}

mm=1

with ¥ = wyt. The coefficients Ly, I, are built up in the same way as in Eq. 8 and Eq. 9, but the values of /M, and fI}, include
the position of axis of rotation «, as well as the amplitude of plunge motion fi,e and hys. and those of piteh in duc, Fns. In
the case of pure 1/rev and steady components, the coefficients H,, and K}, can be writlen in a form very similar Lo Isaacs.

— E S ) R “
iy = DanlA om0k ((L_;f;) e .'uc')] ELICZ P
2 2 nA
' e A = - ‘ i1l A 2 — -
o= henrfed) : Sama{nA) i_(;\'; ) [m,,-(z AN = ((i—Tﬁ)mg " h.‘\-)] (34)
Tr -

This may be used to show the elffect of another piteh axis location or plange motion on the ilL development. The il formulation
may he nsed for caleulating the nwnsteady airleads of higher harmomic motion in a 1/rev varying lreestream.
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2.4 Greenberg’s Theory

Greenberg extended Theodossen’s theory of harmonic aitfoil motion in a constant freestream flow to the case of an additional
periodically varying freestream flow conditions [8]. However, he also defines the freestream velocity to be constant over the
chord, and this implies an unsteady fore-aft motion of the airfoil and not a varying freestream, see [8]. Additionally, Greenberg
applies a high frequency assumption to the wake integrals in order to obtain pure periodic wake forms and thus simplifying the
derivation. This assumption was never clarified; in the next section it will be shown to be a small A approximation for parts of
the derivation. With the coefficients fi5 and fic as defined before, and

fas = F(2kv)ays — G(2kv)&c frc = F{2kv)aic + G(2kv)ass (15)

the result of Greenberg, written in terms of a Fourier sexies, is

-tinc - %":. [A&o +a g + kviadic ~ E;c)] coswyl 4 Adip cos 2wyt + [-—-51(; +kv(ads — l_u_g)] sinwy 4 Ad s sin 2wvt}
o
Le A2 A ) ) »?
. = & 1+ ?F(kv) + -2-[f1s+a1s]+ A&oG(kv)+ fic +—4~fzc coswyt {16)
a

2 22 . A
+ | A&l + F(kv)] + fis + %—fzs + wz—fns] sinwyt - 3 [AdoF{kv) + fis + fas]cos2wyi

2

. A
+% [AaeG(kv )+ fic + fac]sin 2wyt —

T (fzc cos 3wy i frssin 3wvi)

2.5 Kottapalli’s Theory

Kottapalli [9) also assumed the instantaneous velocity distribution along the chord as constant. The additional restriction of
small oscillation amplitudes of this lead-lag motion omits all terms of higher order in A and limits the applicability of this theory
to the case of a hovering rotor, or one at low advance ratios in forward flight. Since the noncirculatory part is the same as in
Isaacs’ or Greenberg’s result, it is not considered here, The result in form of a Fourijer series is

= & + A [&,s - %‘i ((1 _22“) dac + 7110)] + A& Glkv) + ficlcoswt + [Ado{1 + F(Rhv}) + fis]sinwt (17)

- [%/ fac + f;s] cos 2wl — A {%fas - f:c] sin 2wt

.{:’ﬁ.
Lo
with the coefficients fis, fic like defined before and
F(2kv) ((
F(2kv) ((
Immediately one can see that Kottapalli’s derivation includes only two harmonics in contrast to three harmonics even in

quasisteady theory. Here, the assumption of small flow oscillation amplitudes is responsible since all terms of higher order in A
are missing and the 3/rev was multiplied by A% in the quasisteady, Theodorsen’s and Greenberg’s theories.

1—2a 1-2a

il

fas
fac

)als+ﬁls) ——G(.?kv)( c“nc+7uc)

1~ 2a 1~2a

il

)&1c+1‘-11c) +G(2kv)( &15+£ls) (18)

2.6 Arbitrary Motion Theory in an Unsteady Freestream {(AMT)

After investigating the various thin airfoil theories that are all set up for harmonic motion of the airfoil or the freestream, it is
of utmost interest, whether or not the theory of arbitrary motion will lead to the same results as the exact theory in the case of
an unsteady freestream. This method is based on the superposition principle and the use of Duhamel’s integral in combination
with the indicial response of lift {or moment) due to a sudden change in any of the degrees of freedom. This method has been
described several times, for example in [31, 32, 33].

In incompressible flow the circulatory lift is determined from the normal velocity at 3/4 chord of the airfoil, while the
noncirculatory lift is the result of the instanianeous local accelerations, Thus, the total lift is

2 ¢, . ¢ duy
L= mpS [B(1) + V(0)a(t) + V(De(t) — aSa(0)] + 2xpv(6) [e«a/«tnm(snf i;dgﬁil¢,{s_a)da (19)
- - Q

where ¢{s) is Wagner’s deficiency function for the lift [34], s the distance travelled by the airfoil (in half chords) and wyy4(¢) the
instantaneous value of normal velocities at the three quarter chord point. The normal velocity depends on the angle of attack
aft}, the flap or plunge metion AL}, the position of the pitch axis ac/2, and the time-dependent velocity V(1) This velocity
may originate from freestream variations or lead-lag motion of the airfoil or a combination of both. Hewever, it is assumed here
1o depend on time only, so the velocity distribution along the clord is the same everywhere. This is done in order to compare
results of arbitrary molion theory with those of the other teories discussed w0 far. Thus, the normal velocity at the three
quarter cliord is
¢ - 2a

waa (1) = V{a(l) + fa[t) + (m—q—) a(t) {(20)

There are two approaches that can be taken, Firet, for a given forcing function one can analytically integrate to oblain a closed
form solution; second, one can let Lhe type of motion be prescibed and apply a finite difference method. Here only the sccond
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approach is used; results obtained with the first approach are given in [16]. Duhamel’s integral yields for the circulatory part of
the lift

L.= ngv(t)c [w3;4(0)¢(s) +] f-?a?l%(-ﬂﬂs - a)do‘] = 2x§V(t)c Watgeff (21)
a
and the normal velocity at 3/4 chord is written as
: 1-2 .
wys(t) = V(t)e(d) + hit) + 5 ( - “) (1) (22)
Now the derivative dwjys(o)/do is
dwapa(e)  dV(e) de(o)  dh(o) < (1 - Za) défe) i

do do a(e) + V(o) i T T3 2 do (23)

The method of finite differences introduces the calculation at different time steps with a stepwidth being rather simall relative to
the highest frequency encountered. Therefore, normally about 45 to 60 steps.are made within one cycle. However, this implies
the use of some mechanism to describe the state between the time steps, and this is usually done by a zero order hold. By this a
finite difference approximation can be made for the integrals, when using one of the common exponential series approximations
for the Wagner function.

N
Bs) =14y Age™ (24)
k=1
Ther, for the sample with index n being the current sample, the expression in the brackets in Eq. 21 for the effective normal
velocity at 3/4 chord becomes wayss,cpy = Wsja,n-

n 4 N
Wija,n = Z {V“Am + @AV +§ (1 ;23) Ade +NL:} - ZZX,?;): (25)
1=0

j=1 k=2

Herein, the X are called deficiency functions and contain the information of the time history of the different degrees of freedom.
They are {33]

xU) - X(JE Lz _i_AkA(J')ebkﬁa/? 2%
n,k n—-1,k

and can be combined in order to reduce the computational effort. The values Ax and by are those of the usual approximation
to the Wagner function; for example Jones approximation [35]. i a higher order approximation is used, such as that of [36, 37),
than additional deficiency functions are added, as indicated by the upper limit . This is not usually desirable, since more terms
lead to additional computational effort without leading to any significant gains in the accuracy of the results. One has to note
that 4N deficiency functions have to be computed {(or N, if all /_‘.("7) are put together), and therefore for practical applications
one must keep N as small as possible. The values denoted by ALY are the differential changes of the four derivatives in the
current sample [33), i.e.,

AD = Vo han A® = AVa, A = < (1 . “) Dé, A% = Ak, (27)

and the increment in the distance travelled by the airfoll Asis

YN
As= 3/ V(t) dt = (_—MV" +CV"“) At (28)
¢ 1

The total response of lift due to arbiirary motion of the airfoil can be calculated by updating the deficiency functions at each
sample.
L.:,n. — Y_vlwi‘-,’i,n (29)
.- Le W Voo
When this approach is applied to a constant {reestream, Theodorsen’s result can be reproduced to an accuracy depending on
the coefficients of the indicial function ¢. In this case A = 0 and As = (2V/e)At = A/ kv with ¥ = wyvt = kv 5 being the rotor
azimuth.

This approach now can be applied to any type of airfoil motion, for example harmonic motion. This will now be the subject
of later investigation. In all the cases presented, the number of steps in one cycle was set to 64. This is somewhat high, and
therefore is on the conservative side. So here space steps are used instead of timne steps, and therefore ne difficulties oceur when

it comes to high frequencies where a time spacing leads to fewer steps within one cycle than at lower frequencies. It must he
" noted, that compressibility effects can also be implemented as was shown by [33, 38].

3 Results and Discussion

3.1 Lift Transfer Function for Constant Angle of Attack

The equaticns presented previonsly are not very helpfud for a physical understanding of the problem, stnee there will be a
response with a whole range of frequencies to the tnput of only one frequency in V{2}. Since the HiL is proportional to the square
of the velocity, the input consists of steady, 1frev and 2frer parts, and the output will mainly consist o these harmonics,
including some phase lag effects. The circalatory it coefficient, based on the instantancons dynamic prossure, is far from
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uniform, as predicted by quasisteady theory, and this is shown in Fig. 2 for a reduced frequency of ky = 0.2 with A = 0,...,0.8
in steps of 0.2. The resnlts of Isaacs theory were caleulated by including terms up to the 20tk harmonic, and for each harmonic
up to the 25tk order in the reduced frequency and in the f{reestream oscillation amplitude A. It is required to include as many
terms as necessary 1o show the correct solution. The higher order terms become smaller and approach zero because of the factor
r? in the denominator of Eq. 8, and because of the behavior of the Bessel functions {or large arguments. For larger values of A,
even more terms must be used to obtain a converged solution.

These results show the typical effects of unsteady aerodynamics atready known from constant {reestream theory. First, there
is a phase lag resulting in a lag in the lift buildup with respect to the change in velocity. Second, there is an effect on the
dreulatory lift amplitude resulting in 2 smaller value of maximum lift {where the velocity is at maximum) and more Jift in the
regime where the velocity is a minimum, Both quasisteady and Theodorsen’s theory give the same result for a constant angle
of attack and lead to a lift coefficient ratio of 1 independent of A or kv. A step in the right direction is given by Greenberg’s
theory, but here the lift in the area of high velocity is significantly underpredicted (C'rc has to be multiplied-with V? 1o compute
the lift., Vinaz is at ¥ == 90° so small differences in Cp. lead to large differences in the lift here). In the area of smallest velocity,
the lift calculated by Greenberg’s theory is smaller than that obtained by Isaacs. This means that the wake effects are not well
represented in this theory. The results of Kottapalii’s theory, derived for small values of X, show acceptable agreement only for
small X as expected. Here X = 0.2 seems to be a limit for application. Special attention has to be given to the AMT results:
they are so close to the exact solution of Isaacs that there are negligible differences. The only difference depends on the quality
of approximation to the Wagner function; here the coefficients given by Jones {35] were used. Thus, the AMT is not only a very
fast algorithm, but alse the most accurate way to predict the unsteady aerodynamic coefficients at constant angle of attack.

3.2 Lift Transfer Function for Sinusoidal Pitch Oscillations

The angle of attack is assumed to consist only of its sinusoidal part, say & = d1¢ = 0 and &5 = 1. The lift response is shown
in the time domain in Fig. 3. Two interesting observations can be made:

1. At the maximum velocity (¥ = 90°), the unsteady lift for large freestream amplitudes is between the results obtained
with quasisteady and with Theodorsen’s theory, with a small phase lag. The lift amplitude reduction is 1ot as large as
Theodorsen’s theory would predict.

2. At the minimum velocity (¥ = 270°), the unsteady lift for high freestream amplitudes is closer to zero as in the quasisteady
case or in Theodorsen’s theory. This can be seen very clearly in the lift coefficient, for example at A = 0.8.

The reason for this surprising behavior is due to the effect of stretching and compressing the shed wake vorticity, respectively.
The stretching leads to a smaller effective reduced frequency, while the compression leads to larger effective reduced frequencies
with a more significant reduction of circulatory lift. This observation is in agreement with Johnson’s results [3].

It is interesting to note that in the region of high velocity the lift is significantly underpredicted by Greenberg’s theory.
This means that the effective reduced frequency is too high here, leading to a lift deficiency that is also too large. In the
region of lowest velocity, the additional loss in lift is not completely predicted by Greenberg’s theory, so here the effective
reduced frequency is too small, leading to more lift than predicted by the exact theory of Isaacs, Over all, it can he seen that
the mean lift will be underpredicted with increasing A so that the statement made by Greenberg of “good agreement with
Isaacs’ theory” in i8] is not necessarily correct. While in Isaacs’® theory the constant part of the lift is directly proportional
to A&is, in Greenberg’s formulation the constant part of the lift depends on the Theodorsen function and is proportional to
0.52815{1 + F(kv} — 0.5kvG{kv}], see Eq. 16. Therelore, the final value for high reduced frequencies is only 0.75 of that of
Isaacs’ theory.

Much better agreement than at constant angle of attack is found between Kottapalli’s and Isaacs’ theory in the range of flow
oscillation amplitudes up to A = 0.2. It can be seen that the additienal lift loss in the low velocity region is overpredicted by
Kettapalli’s theory, but the lift in the high velocity region is underpredicted with increasing b. The mean value, however, is the
same as for Isaacs’ theory, since it is proportional to A&;s and does not depend on the reduced frequency (unlike Greenberg’s
result). From these results, again, the observation can be made that Kottapalli’s theory is useful only for small values of A.

The AMT represents the unsteady iift behavior in an almost perfect manner. The behavior of the lift coefficient in the region
of smallest velocity is correct in the trend, but not completely correct in magnitude. Especially for larger values of A the mean
5ift is slightly smaller than that of Isaacs. This is likely due to the Jones’ approximation to the Wagner function,

3.3 Lift Transfer Function for Cosine Pitch Oscillations

Now dGg = d1g = 0 and dng = I so the pitch variation is 909 out of phase with the freestream variation. From the time domain
response, shown in Fig. 4, the lollowing can be observed:

1. As for sinuseidal motion, the unsteady lift respouse of Isaacs theory is heiween the quasisteady result than the result
obtained with Theodorsen's theory. This is because the streiching of the shed wake vorticity leads to a smaller ellective
reduced frequency, where the velocity is a maximun,

[n the region with fowest velocity, a lift avershoot occurs. This is in contrast to the sinusoidal pitch motion where the lifL
deficiency finction shows a reduction in Il

s evident, thal the combination of Theodorsen™s theory with an unsteady freestream cannot be wsed o predice che fift,
coctlicient. However, since the total velocity i smalt here, the dillerence m 1 s nol very significaul.

Frony Greenberg™s result it can be seen that the overall agrecisent with Isaacs™ theory s good for this casel and the fift
overshoot i the decelerating fow reglon is also predicted in the corveat trend, but not in magnitnde

The diflerences between Kottapalli's and Isaacs” theory are small wp 1o values of A = 0.2 For higher amplitades, the 11t s

increasingly underpredicted o the region of ligh velocity while 3 s overpredicted o the snaller volocity romion
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No significant differences can be seen in the lift development between the results obtained by AMT and Isaacs. Thus, for all
three cases of constant, in-phase and out-of-phase pitch oscillations, AMT is the best available theory to represent the results
of the exact theory in an easy manner.

3.4 AMT - Reduced Algorithm

Often, instead of using the full algorithm with all deficiency functions, only a reduced algorithim is used, viewing the changes in
freestream velocity as quasisteady and thus neglecting the deficiency terms related to V. It was shown in {16] that this reduced
algorithm leads to acceptable resuits in the lift, but not in the hift coefficient. Additionally, using an analyiic derivation of Eq. 19
and replacing the upper limit of the integral, s = 3 — (A/kv)coskv 3, by its mean value, 3, it has beer shown to identically
reproduce Greenberg’s results. Thus, the high frequency assumption for the wake integrals in Greenberg’s theory really means a
small A approximation for parts of the wake. This is generally not applicabie in rotorcraft calculation in forward flight.

3.5 Comparison with Euler Results

A comparison of the results obtained with Isaacs theory and with an Euler code developped at DLR for constant angle of atfack
at a reduced frequency of kv = 0.2 is shown in Fig. 5. Since the Buler code cannot compute the incompressible case, the mean
Mach number has been set to 0.1 with variations of up to 80%. Excellent agreement is found and the very small differences
between these two results can be neglected. It must be noted, that the computing time of the Luler code is several orders in
magnitude larger than that of the analytical expression of Isaacs and again this approach is much more computational intensive
than the formulation via AMT. Therefore, AMT is the most reliable and the fastest way to calculate the unsteady aerodynamic
coefficients in unsteady freestream flow environment.

4 Summary and Conclusions

In this study five theories handling the effect of unsteady freestream have been analysed. These are: Iszacs’ theory, Greenberg’s
theory, Theodorsen’s theory combined with unsteady freestream, Kottapalli’s theory and the arbitrary motion theory (AMT).
It was found, that ol of these theories handle the case of a fore-aft moving airfoil instead of an unsteady {reestream. This latter
case should be more correcly viewed as a system of horizontally propagating gusts. A helicopter rotor blade section in forward
flight encounters both unsteady freestream (the superposistion of rotation and forward flight velocity components) and fore-aft
motion (through lead-lag). It was found, that in the range of reduced frequencies encountered by a helicopter blade the results
will be very similar. Thus, the interpretation of unsteady freestream as an equivalent to fore-ait motion can be viewed as a good
approximation in the helicopter case. All of the theories cited above lead to the same noncirculatory expressions, and all of
them reduce to Theodorsen’s theory when the freestream oscillation amplitude becomes zero. The general effect of an oscillating
freestream is a “stretching and compressing” of the shed wake vorticity behind the airfoil. From the analysis and comparisons
in this paper the following conclusions can be made:

1) Isaacs’ theory is the only theory that gives an analytic solution without additional simplifications, and therefore can be
considered as the only “exact theory”. The lift for oscillating freestream flow conditions is represented as an infinite Fourier
series. The induced phase lags and amplifications depend on the type of motion of the airfoil. Therefore, at constant angle of
attack there is a significant lift coefficient overshoot, where the velocity is smallest, but in case of sinusoidally varying angle
of attack {in-phase motion) an additional lift deficiency occurs. A cosine motion (90° out-of-phase) also leads to lift coefficient
overshoots, but they are not as significant as in the case of constant angle of attack.

2) Greenberg’s theory is similar to Theodorsen’s theory, but includes the unsteady freestrearn as additional degree of freedom
and the result for the lift contains up to three harmonics. To obtain a simple closed {orm solution, an additional simplification
to the form of the wake was made. That was that an infinite frequency assumption makes the wake vorticity sinusoidal again.
It was shown with an analytical derivation via arbitrary motion theory, that this is equivalent to neglecting the flow oscillation
amplitude for the induced velocities. Therefore Greenberg’s high frequency assumption pliysically is an assumption of quasisteady
convection velocity for the shed wake. This makes Greenberg’s theory questionable for high {reestream oscillation amplitudes,
and 1t was found that the differences with the exact theory of Isaacs are significant above A & 0.4, For constant or oscillating
angle of attack the basic behavior was correctly represented, but the magnitudes and phase angles were not well represented in
the importani constant and 1/rev parts of lift response.

3) Kottapalli’s theory uses an assumption for small freestream amplitudes and thus reduces this theory for the cases of
acroelastic investigations in hover, or very small forward flight conditions. The agreement with lsaacs’ theory for that range
of freestream oscillations was found to be shghtly better than that of Greenberg’s results. Because of the assumption made in
Kottapalli’s theory, only up 1o the second harmonics describe the lift response.

1) Theodorsen’s theory combined with an ansteady freestream essentially can be viewed as quasisteady changes in velocity
and the Theodorsen function is only applied to angle of attack and plunge motion. The characteristic il coefficient overshoots
cannol be predicted hy this method. 1L was proved that with an analytical derivation via arbitrary motion theory from the
reduced algorithm (omitting the deficiency fanctions for the changes in velocily), that this is equivalent to neglecting the fow
ascitlation amplitnde for the induced velocities.

5% Arbitrary motion theory (AMT): the linite difference approach wsing the superposition prinaple and Dubamcl's integral
teads neardy exatly to the same results as for Isaacs” theory, when the angle of attack is constant or oscillating 0% out-ol-phase.
For sinusoidal angle of attack motion (in-phase) there are tncreaxing differences with increasing reduced frequencies lor the
constant and 1/rev-part ol the lift response. [n the range of reduced frequencies enconntered by a rotor blade, this scerms ot to
be a severe limitation. ln all cases the dvnamic lift response is represented correctly, depending on the approximation uscd lor
the Wagner Donction. This s prool that the arbitravy motion theory can acenrately calentate the Bt even e unsteady Treestrenm

81-9



conditions. The often used “reduced algorithm”, considering the freestream variations as quasisieady, leads to good results for
the 1ift, but the characteristic overshoots in the lift coefficient related to the compression of the shed wake vorticity (at the
retreating side of the rotor), are not represented.

The conclusion is, that when the lift coeflicient is the subject of investigation, Isaacs’ theory or the arbitrary motion theory
with all the appropriate deficiency functions are necessary to calculate the cotrect lift coeflicient overshoots or deficiencies. If the
lift itself is the subject, then for small freestream amplitudes all theories are useful, for medium amplitudes Isaacs, Greenberg’s
and AMT are valid, and for high oscillation amplitudes Isaacs’ or arbitrary motion theory with all deficiency {unctions are
necessary to accurately calculate the lift response.

As an additional contribution to the analytical side of the problem, Isaacs’ theory (that was derived for 1/rev oscillations
in angle of attack only about midchord) has been generalized to the case of an infinite Fourier series in angle of attack about
an arbitrary axis, including also an infinite Fourier series for plunge motion. As a recommendation for future research, this
derivation can be used for a general unsteady aerodynamic theory, featuring infinite Fourier series in all types of motion (also
fore-aft motion) and with different fundamental frequencies for pitch, plunge and freestream oscillations.

References
1] Johnson, W., “Application of Unsteady Airfoil Theory to Rotary Wings,” Journal of dircraft, Vol. 17, No. 4, pp. 285-286,
1980

[2} Kaza, K. R. V., “Application of Unsteady Airfoil Theory to Rotary Wings,” Journal of Aircraft, Vol. 18, No. 7; pp. 604-605,
1981

(3] Johnson, W., Helicopter Theory, Princeton University Press, 1980
(4] Theodorsen, T., “General Theory of Aerodynamic Instability and the Mechanism of Flutter,” NACA Rep. No. 496, 1935

[5] Sears, W. R., “Operational Methods in the Theory of Airfoil in Non-Uniform Motion,” Journal of the Franklin Institute,
Vol. 230, No. 1, pp. $5-111, 1%40

{6] Isaacs, R., “Airfoil Theory for Flows of Variable Velocity,” Journal of the Aeronautical Sciences, Vol. 12, Ne. 1, pp. 113-117,
1945

(7] Isaacs, R., “Airfoil Theory for Rotary Wing Aircraft,” Journal of the Aeronautical Sciences, Vol. 13, No. 4, pp. 218-220,
1946

{8] Greenberg, J. M., “Airfoil in Sinusoidal Moticn in a Pulsating Stream,” NACA TN No. 1326, 1946

{91 Kottapalli, S. B. R., Drag on an Oscillating Airfoil in a Fluctuating Free Stream, Ph.D. Thesis, Georgia Institute of
Technology, 1977

{10] Kottapalli, 5. B. R., Pierce, G. A, “Drag on an Oscillating Airfoil in a Fluctuating Free Stream,” Transactions of the
ASME, Jounal of Fluids Engineering, Vol. 101, No. 3, pp. 391-399, 1979

{11] Kottapalli, 5. B. R., “Unsteady Aerodynamics of Oscillating Airfoils with Inplane Motions,” Journal of the American
Helicopter Society, Vol. 30, No. 1, pp. 62-63, 1985

[12] Ashley, H., Dugundji, J., Neilson, D. O., “Two Methods for Predicting Air Loads on a Wing in Accelerated Motion,”
Journal of the Aeronautical Sciences, Vol. 19, No, 8, pp. 543-552, 1952

{13} Drischler, J. A., Diederich, F. W., “Lift and Moment Responses 10 Penetration of Sharp-Edged Travelling Gusts, with
Application to Penetration of Weak Blast Waves,” NACA TN No. 3956, 1957

[14] Strand, T., “Angle of Attack Increase of an Airfoil in Decejerating Flow,” Journal of Aircrafi, Veol. 9, No. 7, pp. 506-507,
1972

(15} Ando, S., Ichikawa, A., “Effect of Forward Acceleration on Aerodynamic Characteristics of Wings,” AIAA Journdal, Vol. 17,
No. 6, pp. 653-655, 1979

[16] van der Wall, B., “The Influence of Variable Flow Velocily on Unsteady Airfoil Behavior,” UM-AREQ 91.46, M.S. Thesis,
University of Maryland, College Park, 1991

[17] van der Wall, B., “The Influence of Variable Ilow Velocity on Unsteady Airfoil Behavier,” DLR IB 111-92/12, 1092

[18] Liva, J., Davenport, . J., Gray, L., Walton, 1. C., “Two-Dimensional Tests of Airfoils Oscillating Near Stall,” US-
AAVLABS TR-68-13, 1988

119] Dadone, L. U., “Two-Dimensional Wind Tunne! Test of an Oscillating Rotor Airfoil.” NASA CR 2914 and 2915, 1977

{20} Saxena, L. 8, Fejer, A A, Morkovin, M. V., “Features of Unsleady Flow over Airfoils,” AGARD-CP-227: Procesdings of
the AGARD-FDFP Meeting of Unsteady Aerodynamics, Qtiawa, Ontario, Canada, 1977

£21] Fejer, AL AL, “Visual Study of Oscillating Flow over a Stationary Airfoil,” In: Trurbulence in Juternal Flows: Torbomaclinery
and other Engincering Applications, Procecdings of He SQUID Workshop, Washington, 13, C. GSAL 1077

{22} Fejer, AL AL Hajek, 0 *A New Approach to Rotor Blade Suldl Anadyses,™ 4t Ewropean Rotoreraft aud Powercd Lt
Atreraft Forum, Stresa, Haly, 1078

[23) Saxena, L. S, Fejer. AL AL Morkovin, M. V., *Bifects of Periodic Changes i Pree Stream Velocity on Flows over Airfoils
near Stall” In: Nonsteady Fluid Dynamics: Proceedings of the Wanter Annual Uveling, San Francisco, Califarnia, USA.

1378

81-10



[24] Pierce, G. A., Kunz, D. L., Malone, J. B, “The Effect of Varying Freestream Velocity on Airfoil Dynamic Stall Charac-
teristics,” 32nd Annual Forum of the American Helicopter Society, Washington, D. C., USA, 1976, also: Journal of the
American Helicopter Society, Vol. 23, No. 2, pp. 27-33, 1978

[25] Maresca, C. A., Favier, D. J., Rebont, J. M., *Unsteady Aerodynamics of an Aerofoil at H:gh Angle of Incidence Performing
Various Lmear Oscillations in a Uniform Stream,” 5th European Rotorcraft and Powered Lift Aircraft Forum, Amsterdam,
Netherlands, 1979, also: Journal of the American Helicopter Society, Vol. 26, No. 2, pp. 40-45, 1981

[26] Maresca, C. A., Favier, D. ., Rebont, J. M., “Experiments on an Aercfoil at High Angle of Incidenrce in Longitudiral
Oscillations,” Journal of Fluid Mechanics, Vol. 92, No. 4, pp. 671-690, 1979

{27) Maresca, C. A, Favier, D. 1, Rebont, . M., “Large-Amplitude Fluctuations of Velocity and Iacidence on an Oscillating
Airfeil,” AIAA Journel, Vol. 17, No. 11, pp. 1265-1267, 1979

[28]) Maresca, C. A., Favier, D. J,, Rebont, J. M., “Dynamic Stali due to Fluctuations of Velocity and Incideﬁce,” ATAA Journal,
Vol. 20, No. 7, pp. 865-871, 1982

[29] Favier, D. J., Agnes, A., Barbi, C., Maresca, C. A., “Combined Translation/Pitch Motion: A New Airfoil Dynamic Stall
Simulation,” Journal of direraft, Vol. 25, No. 9, pp. 805-814, 1988

{30] Favier, D. ], Belleudy, J., Maresca, C. A., “Influence of Coupling Incidence and Velocity Variations on the Airfoil Dynamic
Stall,” 48th Annual Forum of the American Helicopter Society, Washington, D.C., 1992

{31] Beddoes, T. S., “Practical Computation of Unsteady Lift,” 5th European Rotorcraft an Powered Lift Aircraft Forum,
Aix-en-Provence, France, 1982

[32] Beddoes, T. 3., “Representation of Airfoil Behaviour,” Vertica, Vol. 7, No. 2, pp. 183-167, 1983

331 Leishman, J. G., Beddoes, T. S., “A Generalised Model for Alrfeil Unsteady Aerodynamic Behaviour and Dynamic Stall
Using the Indicial Method,” 42nd Annual Forum of the American Helicopter Society, Washington, D. C., 1986

[34] Wagner, H., “Uber die Entstehung des dynamischen Auftriebs von Tragfliigeln,” Zeitschrift fiir angewandte Mathematik
und Mechanik, Band 5, pp. 17-35, 1925

[35] Jones, R. T., “The Unsteady Lift of a2 Wing of Finite Aspect Ratio,” NACA Rep. 681, 1940

[36] Peterson, L. D., Crawley, E. F., “Improved Exponential Time Series Approximation of Unsteady Aeredynamic Operators,”
Journal of Aireraft, Vol. 25, No. 2, pp. 121-127, 1988

[37] Eversmann, W. Tewari, A., “Modified Exponential Series Approximation for the Theodorsen Function,” Journal of Aircraft,
Vol. 28, No. 9, pp. 553-557, 1991

[38} Leishman, J. G., “Validation of Approximate Indicial Aerodynamic Functions for Two-Dimensional Subsonic Flow,” Journal
of Aircraft, Vob. 25, No. 10, 1988 ‘

Legend to Fig. 2~

V = Vo(14Asin wyt)

AN=200, 02 04 006, 08
Fig. 240 o = ap = const
Fig. 3: a0 = asin wyt

Fig. 4 a0 = a.c08 wyt
ky = 0.20

lsaacs R
Quasisteady I
Greenberg

Theodorsen

Kollapall

AT (fin. diff )

81-11



__b — T Wi — f(xs]t)

V() = Vo (14 A sin [oy(t=to)+ky(sg=x)])

Figure U Plow envirenmest of an airfoil in an ansteady freestrean. Upper parl: lead-lag type of motion; lower
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part: unsteady [reestream as a gust problem. fight side: resulling normal veloeity distributions.
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Circulatory lift coefficient
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Figure 3: Unsteady circulatory lift development for in-phase oscillating angle of attack in an oscllating flow.
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