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Abstract

Future rotorcraft will incorporate dynamically morphing airfoils, through the use of trailing edge
flaps, dynamic camber, dynamic droop, or other methods. In addition, helicopter rotor blades frequently
encounter dynamic stall conditions during flight. Currently, dynamic stall is treated using empirical
models based on static data for fixed geometry airfoils. Therefore, a unified airloads model is needed
that incorporates morphing geometry—as well as dynamic stall—in a state-space framework. This paper
presents a unified model that allows the user to compute airloads for an airfoil undergoing arbitrary
morphing, using a single set of static data. The linear airloads are calculated using the Peters state-space
airloads theory. Then dynamic stall correction is added by adapting the ONERA stall model, applied to
the generalized loads. The theory is correlated with wind tunnel testing of a NACA 0012 airfoil with a
trailing edge flap, undergoing combined pitch and flap motions. The data include unstalled, moderately
stalled, and heavily stalled cases at various phase angles. The theory shows good correlation over a wide
range of conditions and correctly captures the character of the lift and moment curves in the dynamic
stall regime. The paper also gives a method for computing section characteristics for a morphing airfoil.

∗Presented at the 34th European Rotorcraft Forum, Sept. 16-19, 2008, Liverpool, UK.
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Nomenclature

a number of semi-chords the center of rotation is aft of the mid-chord
b blade semi-chord, m
bn induced flow expansion coefficients
C(k) Theodorsen function
CL lift coefficient
∆CL static loss of lift
∆Cn static loss of nth generalized load
CM moment coefficient about the center of rotation
d number of semi-chords the flap hinge is aft of the mid-chord
f reversed-flow parameter
h(x, t) generalized airfoil motion, positive down, m
k reduced frequency of oscillation, ωb/u0

L lift per unit span, N/m
Ln generalized loads per unit span, N/m
m camber in NACA xxxx airfoil, percent chord
m 0.01m
M number of states in airloads theory
N number of inflow states
p location of maximum camber for NACA four-digit airfoils, tenths chord
p 0.1p
∆P pressure drop across airfoil, N/m2

t time, sec
Tn Chebychev polynomials of the first kind
u0 velocity component in the x direction, m/s
v total induced velocity, m/s
v0 velocity component in the y direction, m/s
v1 veloctiy gradient, m/s
v induced flow due to bound circulation, m/s
wn components of total velocity field, m/s
x Cartesian coordinate
y Cartesian coordinate
α airfoil angle of attack, rad
α0L angle of zero lift, rad
αshift horizontal shift in stall angle, rad
β trailing edge flap deflection, rad
Γ total bound circulation, m2/s
Γn loss in circulation due to dynamic stall of nth generalized load, m2/s
γ circulation per unit length, m/s
γb bound circulation, m/s
γn components of velocity due to bound circulation, m/s
γw wake circulation, m/s
θ effective angle of atttack, rad
λ induced flow from trailed circulation, m/s
ξ dummy variable of integration
ρ density of air, kg/m3

τ non-dimensional time u0t/b

2



τn expansion coefficients for ∆P/2, m2/s2

ϕ Glauert variable, rad
ϕm Glauert variable at the flap hinge location d, rad
φ phase lag between pitch and flap motion, deg
ω frequency, rad/s
( ˙ ) ∂( )/∂t
( ∗ ) ∂( )/∂τ

1 Introduction

Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the
applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of
the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft will
employ dynamically morphing airfoils (trailing edge flaps, dynamic camber, dynamic droop, etc.) to improve
efficiency and lift, while reducing noise. Dynamic stall remains a largely unresolved problem in aerodynamics,
and is typically handled by semi-empirical models, based on wind tunnel results. An approach developed
by ONERA and extended by Peters and Rudy describes dynamic stall behavior with a set of ordinary
differential equations. This paper will demonstrate that this stall model may be integrated with a state-
space airloads theory, providing a unified model to handle unsteady airloads for morphing airfoils in dynamic
stall. Experimental correlations to combined pitch-flap oscillation test data are presented, which support
the validity of this approach.

2 A Unified Airloads Model

A unified airloads model must allow for arbitrary airfoil motion, unsteady free-stream, morphing airfoil shape,
and dynamic stall. There are three key elements of the unified model: the Peters state-space airloads theory,
the 2D dynamic inflow model, and the modified ONERA dynamic stall model. This section summarizes the
derivation and development of each of these components of the theory.

2.1 Peters State-Space Airloads Theory

The derivation of the Peters State-Space Airloads theory from first principles is presented, following the
procedure of Ref. 1. Consider a thin airfoil of arbitrary shape moving through a mass of still air, as shown
in Fig. 1. The coordinate system is centered at the mid-chord, so that −b ≤ x ≤ +b. The coordinate
system is moving with some arbitrary motion, described by horizontal velocity u0, vertical velocity v0, and
velocity gradient v1. The deformations of the airfoil within the reference frame are considered small, such
that h << b, ∂h/∂x << 1, and ∂h/∂t << u0. Furthermore, the trailing vorticity is assumed to be shed along
the x-axis. The frame is allowed to have arbitrarily large motion.

As is the case for classical thin airfoil theory, the system is constrained by the non-penetration boundary
condition at the airfoil surface. The non-penetration boundary condition can be expressed as:

w = v + λ = u0
∂h

∂x
+
∂h

∂t
+ v0 + v1

x

b
(1)

The first two terms on the right-hand side of Eq. 1 are the result of the shape of the airfoil mean-line. It
is apparent that the theory captures both static and dynamic shape changes, making the theory applicable
to dynamically morphing airfoils. From the Biot-Savart law, v may be expressed in terms of the bound
circulation per unit length γb over the interval −b ≤ x ≤ +b, corresponding to the airfoil:

v = − 1
2π

∫ +b

−b

γb(ξ, t)
x− ξ

dξ (2)
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Similarly, the induced flow from trailed circulation may be expressed in terms of the wake vorticity:

λ = − 1
2π

∫ ∞
+b

γw(ξ, t)
x− ξ

dξ (3)

The vorticity equation gives the loading due to the circulation as:

∆P = ρu0γb + ρ

∫ x

−b

∂γb
∂t

dξ (−b ≤ x ≤ +b) (4)

The spatial gradient of the induced flow due to shed wake is related to the temporal gradient of the induced
flow by the relation:

∂λ

∂t
+ u0

∂λ

∂x
=

1
2π

dΓ/dt
b− x

(5)

Equations (1-5) define the airloads theory, which must be expressed in terms of the generalized loads, frame
motions, and blade deformations. To do this, all of the variables are expressed as expansions with respect
to the Glauert variable, ϕ. The change of variable is given by:

x = b Cos ϕ (−b ≤ x ≤ +b, 0 ≤ ϕ ≤ π) (6)

After substitution, the expansions are as follows:

γb = 2

[
+γs

Sin ϕ
− γ0 Cos ϕ

Sin ϕ
+
∞∑
n=1

γn Sin(nϕ)

]
(7)

∆P = 2ρ

[
+τs

Sin ϕ
− τ0 Cos ϕ

Sin ϕ
+
∞∑
n=1

τn Sin(nϕ)

]
(8)

Similarly, the blade deformation and induced flow may be expressed in terms of the Glauert variable.

λ =
∞∑
n=0

λn Cos (nϕ) (9)

h(x) =
∞∑
n=0

hn Cos (nϕ) (10)

The Cos(nϕ) terms in Eqs. (9) and (10) are equivalent to the Chebychev polynomials, Tn(x/b). These
mode shapes are quite intuitive, as illustrated in Fig. 2. The first three modes correspond to plunge, pitch
and camber respectively. One can simplify the pressure expression in Eq. 8, by means of the Kutta condition:

τs = fτ0 (11)

The reversed-flow parameter f is needed to enforce the condition that ∆P = 0 at the trailing edge. When
the flow reverses, the leading and trailing edges are interchanged, so the sign of f must also change. In
general, there are various choices of f in accounting for reversed flow. For instance, if f ≡ Sgn(u0), the
loads will change sign instantaneously (full reversed flow). For a smoother transition to the reversed flow
region, one could define f ≡ Cos α (soft reversed flow). Such an assumption must be made for helicopters
in forward flight, where reversed flow exists. However, since the current research deals with steady 2D flow,
there is no reversed flow, and the value of f will typically be unity.

The airloads can be expressed in terms both of the airfoil motions wn and of the uniform component of
induced flow, λ0, by expansion of the vorticity equation, Eq. (4):

u0(w0 − λ0) = τ0

b(ẇ0 − 1/2ẇ2) + u0w1 = τ1 (12)
b

2n
(ẇn−1 − ẇn+1) + u0wn = τn n > 2
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Equation (12) is expressed in terms of the Glauert loadings. In order to find the generalized loadings, we
express wn in terms of the frame motions (u0, v0, and v1) and the blade deformation h(x, t) as follows:

w0 = v0 + ḣ0 + u0

∞∑
n=1,3,5

nhn/b

w1 = v1 + ḣ1 + 2u0

∞∑
n=2,4,6

nhn/b (13)

wm = ḣm + 2u0

∞∑
n=m+1,m+3

nhn/b m ≥ 2

The generalized loads are determined by substitution into the following relation:

Ln =
∫ +b

−b
∆P Cos(nϕ) dx = −

∫ π

0

b∆P Cos(nϕ) Sin ϕ dϕ (14)

The final result for the generalized loads is:

L0 = −2πρbfu0(w0 − λ0)− πρbu0w1 − πρb2(ẇ0 − 1/2ẇ2)

L1 = πρbu0(w0 − λ0)− 1/2πρbu0w2 − 1/8πρb2(ẇ1 − ẇ3)

L2 = 1/2πρbu0(w1 − w3) + 1/2πρb2(ẇ0 − 1/2ẇ2)− 1/12πρb2(ẇ2 − ẇ4) (15)

Ln = 1/2πρbu0(wn−1 − wn+1) +
1

4(n− 1)
πρb2(ẇn−2 − ẇn)

− 1
4(n+ 1)

πρb2(ẇn − ẇn+2) n ≥ 3

Similarly, the total bound circulation is found to be:

Γ = 2πb [f(w0 − λ0) + 1/2w1 − 1/2λ1] (16)

Equations (15-16) form the basis of the airloads theory. They can be written more compactly in matrix form
as follows:

1
2πρ

Ln = −b2 M
(
ḧn + v̇n

)
− bu0 C

(
ḣn + vn − λ0

)
− u0

2 K hn

− bG (u̇0 hn − u0 vn + u0 λ0) (17)
1

2π
Γ = b1T (C−G)

(
ḣn + vn − λ1

)
+ u0 1T K hn (18)

The definitions of the various matrices and vectors is given in the appendix.

2.2 2D Dynamic Inflow Model

As described above, the state-space airloads theory requires some knowledge of the induced flow, λ. This
is completely uncoupled from the airloads equations, so any suitable inflow model could be used. For a
helicopter in forward flight, the Peters-He 3D Dynamic Inflow model could be used (Ref. 2). However, for
consideration of airloads in two dimensions, a two-dimensional dynamic inflow model is used. Reference 3
utilizes a potential function expansion of the induced wake velocity, expressed in functional form. Application
of the non-penetration boundary condition gives the resulting differential equation for the generalized inflow
states:

bλ̇0 − b/2 λ̇2 + u0λ1 = 2Γ̇

(b/2n)(λ̇n−1 − λ̇n+1) + u0λn = (2/n)Γ̇ n = 2, 3, 4, . . . (19)
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This provides a differential equation for all of the generalized inflow components λ1, λ2, . . .; however, one
additional equation is needed in order to close the loop. The only component of inflow needed in the airloads
calculation is λ0, which must be defined in terms of the other components. Reference 3 shows that λ0 may
be approximated by the relation

λ0 ≈
1
2

N∑
n=1

bn λn (20)

Substituting this relation into the error functional, Peters, et al, show that the error in λn is given by

error =
∫ 1

0

[
1−

∑
bne
−nη

]2 1
Sinh η

dη (21)

From Eq. (21), the quantity in brackets must vanish at η = 0 in order to cancel the singularity. This leads to
the constraint that

∑
bn = 1. While there are several possible choices for defining the bn which satisfy these

constraints, the augmented least squares approach is shown to produce the best approximation to classical
aerodynamic theories, given by Eq. (22).

bn = (−1)n−1 (N + n)!
(N − n)!

1
(n!)2

n = 1, 2, . . . , N − 1

bN = (−1)(N+1) (22)

Equations (19, 20 and 22) define the inflow model used in the current airloads theory, however they need
to be put into matrix form for implementation. The matrix form of Eq. (19) is given by:

bA λ̇+ u0 λ = c(ẇ0 + 1/2 ẇ1)b (23)

where the matrices and vectors are defined in the appendix. By using Eq. (13), the velocity vector w may
be expanded in terms of the blade motions and free stream velocities, resulting in the expression:

λ̇ = A−1
{

c
[
eT
(
v̇n + ḧn

)
+
u0

b
fT ḣn

]
− u0

b
λ
}

(24)

2.3 ONERA Dynamic Stall Model

In the early 1980’s, the French aerospace research institute ONERA sought to develop a differential equation
model of dynamic stall. This was motivated largely by rotorcraft in forward flight, where there is always a
portion of the rotor on the retreating side that undergoes dynamic stall. As the rotor rotates around the
azimuth, the blade section oscillates in and out of the stall regime, resulting in hysteresis of the lift and
moment curves.

Figure 3 illustrates the phenomenon of stall in the static lift curve. Up to the static stall angle αss, the
airfoil behaves according to linear, thin-airfoil theory. Beyond that point, the airfoil begins to stall, and there
is a discrepancy between the projection of the linear lift and the actual lift. That difference is the static loss
of lift, denoted ∆CL. The static loss of lift acts as the forcing function to drive the differential equation for
dynamic stall. Similarly, a static loss ∆Cq may be defined for any of the airloads Cq of interest.

It is still not possible to analyze dynamic stall fully in a purely theoretical way, accounting for all of the
physics. However, Ref. 4 notes that physical systems may be modeled as transfer functions, with inputs
and outputs. These transfer functions and their associated differential equations may be written down based
upon experimental observation, even if the underlying physics are not completely defined. It is along this
line that the ONERA dynamic stall was developed, and extensive experimental correlations were done by
Refs. 4, 5, 6 and others. ONERA noted that, in the linear regime (below αss), the behavior of the airloads
is well described by a first-order transfer function. In the stalled regime, the airloads have a time delay
and overshoot due to the passing of shed vorticity. In order to allow for this phenomenon, a second-order
transfer function is used. Thus the form of the original ONERA model is given by Eqs. (25) - (27), where
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the parameters λ, a, s, δ, η, ω, and e are determined by parameter identification. Implicit in the ONERA
derivation is a steady free-stream velocity.

CL = CL1 + CL2 (25)
∗
CL1 + λCL1 = λaθ + (λs+ δ)

∗
θ + s

∗∗
θ (26)

∗∗
CL2 + η

∗
CL2 + ω2CL2 = −ω2

[
∆CL + e

∂∆CL
∂θ

∗
θ

]
(27)

Equation (26) in the ONERA model is for calculating the linear airloads, and Eq. (27) is for calculating
the decrement in the airloads due to dynamic stall. The results are combined by superposition to determine
the total airloads. ONERA found that correlation could be improved by introducing a pure time delay for
the onset of stall, following the work of Beddoes (Ref. 7). However, this pure time delay introduces new
non-linearities into the system, as well as an infinite number of states.

References 8 and 9 note that the model may be written equivalently in terms of lift coefficient, circulation
per unit length, or normalized lift per unit length, Eqs. (26), (28) and (29).

∗
Γ1 + λΓ1 = λaUθ + (λs+ δ)U

∗
θ + sU

∗∗
θ (28)

∗
L1 + λL1 = λaU2θ + (λs+ δ)U2

∗
θ + sU2

∗∗
θ (29)

For a steady free-stream, these three forms are exactly equivalent, so all three may be considered the original

ONERA model. If an unsteady free-stream is considered, the three forms are not the same, due to
∗
U terms

that arise from the transformation of one form to the other. Using the flap response of a simplified rotor,
Peters and Rudy showed that the original ONERA formulation, using lift coefficient, has an instability that
can occur at large angles of attack. They determined that the formulation of the model that is best behaved
and agrees most closely with experimental data is Eq. (28), in terms of circulation. This is intuitive, as
dynamic stall is the result of lost circulation as vortices are shed at the leading edge. In addition, they showed
that angle of attack due to plunge must be treated independently from that due to pitch. Third, they showed
that apparent mass lift should not be treated by the same transfer function that is used for circulatory lift.
The modifications extend the model into the rotorcraft regime, allowing unsteady free-stream, large angles
of attack, and plunge. The model also recovers both Greenberg and Theodorsen theories as special cases.
ONERA adopted the changes proposed by Peters and Rudy (Ref. 6).

The final form of the modified ONERA model given by Ref. 8 for a rotating system, divided into x and
y components, and neglecting higher order terms, is

k
+

Γ1 + λΓ1 = λaUy + δb
+
ε (30)

k
2
++

Γ 2 + kη
+

Γ2 + ω2Γ2 = −ω2

[
Ux∆CL + ek

(
+

Ux∆CL +
∂∆CL
∂θ

+

Uy

)]
(31)

where
+

( ) implies differentiation with respect to nondimensional time based on the average u0, k is b/r and
ε is the rotation of the airfoil with respect to the air mass.

In general, these differential equations may have non-constant coefficients. The variables that lead to
non-linearities must be included in the coefficients. Thus an assumption is made that the coefficients change
sufficiently slowly to allow the system to be linearized for small perturbations about a mean angle of attack.
By observing the local behavior of the system through a range of mean angles, the behavior of the coefficients
may be determined by a curve fit. A limitation of this approach is that the passage of a shed vortex occurs
rapidly, testing the limits of this assumption. Nonetheless, experience has shown that good results can be
acheived with the model if the stall parameters are identified carefully (Ref. 6).
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2.4 The Unified Model

To illustrate how the theories above are integrated into a unified model, consider the case of an airfoil with
a trailing-edge flap. A flap deflection results in an effective change in airfoil shape. In theory, to apply the
ONERA dynamic stall model, static data must be known for each combination of flap deflection and angle
of attack, or alternatively each combination of the generalized velocities w0, w1, . . .. Recall that the Peters
state-space airloads model is hierarchical, expanded in terms of Chebyschev polynomials. Just enough states
are added to be able to capture the physical behavior. We propose that dynamic stall may be handled in
the same way.

Published data on cambered NACA xx12 airfoils provide a static stall database in terms of w0, w1, and
w2. It is assumed that data collected at low Mach number may be scaled up to higher Mach numbers, as
demonstrated by Ref. 10. Further it is assumed that each generalized load has the identical stall parameters
(ω, η, and e), as these should be a general property of the flow. Note that this assumption is not required.
A more refined model could be be obtained by identifying stall parameters for each individual load, but that
will be left to future researchers. The main goal of this research is to show that, to first order, one can
determine any airload on any type of morphing airfoil by using a single set of static stall data and a single
set of stall parameters for a given airfoil family.

The linear airloads are calculated by the Peters state-space airloads theory with dynamic inflow, Eqs.
(17) and (23). Then, the total load including dynamic stall is calculated by Eqs. (32) and (33).

b2

u0
2

Γ̈n + η
b

u0
Γ̇n + ω2Γn = −bu0ω

2

[
∆Cn + e

∂∆Cn
∂θ

θ̇
b

u0

]
(32)

Ln = Ln(linear) + ρu0Γn (33)

Finally, the lift and moment coefficients are calculated from the generalized loads. The result is a hierarchical
unsteady airloads theory for morphing airfoils in dynamic stall.

3 Static Airfoil Section Characteristics

The dynamic stall model is forced by the static stall, which is a function of airfoil shape. For fixed airfoils,
section characteristics may be obtained from published airfoil tables, wind tunnel testing, boundary layer
analysis codes, etc. However, morphing airfoils have static section characteristics that change as the airfoil
shape changes. There are currently no tables available for morphing airfoils, and only limited wind tunnel
test data exist. Reference 11 uses a table lookup with data generated by the XFOIL boundary-layer analysis
software. The current research will use a different approach, generalizing published airfoil tables to estimate
the static section characteristics of an arbitrary airfoil shape based on the first three generalized velocity
components.

A static stall data base is built from published data on eighteen NACA four-digit airfoils (Ref. 12). The
data were collected in the NACA variable-density wind tunnel under uniform flow conditions, with 12%
thickness and camber ranging from 0 to 6%. The point of maximum camber ranges from 0.2 to 0.7 chord.
NACA four-digit airfoils are denoted NACAmpxy. The first digit represents the percent camber, the second
digit is the chordwise position of the maximum ordinate, and the last two digits are the maximum airfoil
thickness.

To quantify the effect of airfoil camber, consider an airfoil in a steady horizontal free stream. The
non-penetration boundary condition is given by:

w = u0 ∂h/∂x+ ∂h/∂t+ v0 + v1 x/b (34)

For static 2D testing, the only non-zero velocity component is given by the spatial gradient term u0 ∂h/∂x.
This represents the portion of the velocity due to the camber of the airfoil. If the spatial gradient is zero,
one recovers the flat-plate airfoil results. The first three velocity components may be written explicitly by a
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Glauert expansion, as given by Eq. (36-38), where q = b(2p− 1).

w = u0 ∂h/∂x =
∞∑
n=0

wnCos nϕ (35)

w0 =
4qmu0

(b2 − q2)2

[
4
π

(
b2
√

1− q2

b2
+ bqArcSin

q

b

)
−
(
b2 + q2

)]
(36)

w1 =
4bmu0

(b2 − q2)2

[(
b2 + q2

)
− 4
π

(
bqArcSin

q

b
+ q2

√
1− q2

b2

)]
(37)

w2 =
32mu0

3πb4
q

b2 − q2

√
1− q2

b2
(38)

A summary of the data set used is shown in Fig. 4. It is apparent from the figures that all of the airfoils
show the same general trends in the behavior of CL and CM during stall, however the angle at which stall
occurs varies as a function of camber. Furthermore, the curves are shifted due to the fact that cambered
airfoils produce lift even at zero angle of attack. Clearly some consolidation of the curves is necessary in
order to produce a parametric representation of the lift and moment curves. The theoretical angle of zero
lift is calculated by finding the point at which w0 + 1

2 w1 = 0. Table 1. shows the computed angles of zero
lift, along with a comparison to the observed results from the published data for the eighteen airfoils being
considered. The predicted and actual angles agree relatively well, but begin to show less agreement at higher
values of camber.

Table 1: Angle of zero lift for NACA xx12 airfoils

Airfoil w0 w1 Predicted α0L (◦) Actual α0L (◦)
0012 0.000 0.000 -0.00 -0.0
2212 -0.018 0.098 -1.80 -1.8
2312 -0.010 0.087 -1.92 -1.9
2412 -0.005 0.082 -2.08 -1.8
2512 0.000 0.080 -2.29 -2.1
2612 0.005 0.082 -2.59 -2.3
4212 -0.035 0.196 -3.60 -3.4
4312 -0.020 0.173 -3.84 -3.9
4412 -0.009 0.163 -4.15 -3.9
4512 0.000 0.160 -4.58 -4.2
4612 0.009 0.163 -5.18 -4.6
4712 0.020 0.173 -6.09 -5.0
6212 -0.053 0.294 -5.40 -5.2
6312 -0.030 0.260 -5.75 -5.5
6412 -0.014 0.245 -6.23 -5.7
6512 0.000 0.240 -6.88 -6.2
6612 0.014 0.245 -7.78 -6.6
6712 0.030 0.256 -9.13 -7.0

The data are collapsed by plotting α − α0L on the abscissa, ensuring that each of the lift curves passes
through the origin. The moment curve is also plotted with α − α0L on the abscissa. The moment curve
has a vertical offset as well, denoted CM0, due to the steady moment produced by a cambered airfoil. The
theoretical moment predicted by thin airfoil theory is −π/4(w1 + w2). A fit of the data shows the moment
offset to be −0.615(w1 + w2), approximately 20% less than the theoretical values. The shifted curves are
shown in Fig. 5. The data are now in a form suitable for parameterization. For the purpose of the curve
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fit, it is assumed that stall occurs simultaneously on the lift and moment curves. Comparison of the curves
shows that this approximation is reasonable. Therefore, the section characteristics for a morphing airfoil
based on the NACA xx12 family are determined by a single parameter, αshift. This represents the horizontal
shift of the NACA 0012 curve as a function of w0, w1, and w2, given by Eq. (39).

αshift = −6.018w0 + 0.331w1 + 2.435w2 (39)

Typical results can be computed for a NACA 0012 airfoil with a trailing-edge flap hinged at 0.8 chord.
A positive (flap down) deflection results in an effective increase in camber, increasing the maximum lift. A
negative flap deflection results in a reduction in maximum lift and earlier onset of stall. A ±6◦ flap deflection
results in a range of values for w0 from −0.0314 to +0.0314 and w1 from −0.0550 to +0.0550. These values
are within the range of the data for the cambered airfoils, from which the data was generated.

4 Determination of Stall Parameters

The ONERA dynamic stall model originated from observations of the behavior of the lift and moment
coefficients of an airfoil undergoing small perturbations in angle of attack. References 4 and 6 describe the
development of the model. The model proposes that dynamic stall may be considered a dynamic system,
modeled by a differential equation (or equivalently a transfer function). Even without a complete description
of the physical phenomenon, the behavior may be modeled approximately way by a fit of the transfer function
with appropriate parameters. Petot, et al, performed wind tunnel testing of airfoils at various mean angles
of attack, undergoing 0.5◦ oscillations. A transfer function was fit to the experimental results, linearized
about each mean angle. Finally, the results were synthesized into a non-constant coefficient second order
linear differential equation, Eq. (32).

In Eq. (32), Γn represents the loss in circulation due to dynamic stall. The three parameters that
determine the time delay and overshoot of the system are ω, η, and e. These parameters are not constant,
but rather vary with the angle of attack. Various possibilities exist for the functional form of the parameters;
however the following form was found to be the most convenient by ONERA:

ω = ω0 + ω2 ∆CL2 η = η0 + η2 ∆CL2 e = e0 + e2 ∆CL2 (40)

The advantage of this functional form is that ∆CL is an indicator of stall. Thus, this parameter can
hold true for any combination of airfoil morphing (including camber or trailing-edge flaps). When the airfoil
enters the stall regime, the right hand side of Eq. (32) is a forcing term creating a loss in circulation. The
time delay and overshoot of the response, determined by ω and η, depend on the severity of stall. Once the
angle of attack falls below the stall angle, then ∆CL = 0. Thus, the right-hand side of Eq. (32) vanishes;
and the equation becomes a homogeneous, constant-coefficient linear ODE. The circulation loss decays back
to zero and the airloads return to the linear behavior predicted by thin-airfoil theory.

In the current research, small amplitude oscillation data are not available for deriving the transfer func-
tions with trailing-edge flaps. Instead, the stall parameters are identified using large amplitude stall data
on the NACA 0012 airfoil at reduced frequencies of k = 0.025 and k = 0.10 published by NASA (Ref. 13).
The dynamic stall is computed by solution of Eq. (32). ∆CL is computed by subtracting the actual static
lift curve (shown in the dashed line) from the projected linear lift. This becomes the forcing function for the
differential equation. The solution is time marched for a given set of parameters at each reduced frequency.
The lsqnonlin function in Matlab is used to identify the combination of parameters which minimizes the
combined error at the two reduced frequencies in a least-squares sense. The final results of the parameter
identification are given by Eq. (41).

ω = 0.2581− 0.0264 ∆CL2

η = 0.3861 + 0.3973 ∆CL2 (41)

e = −0.0294− 0.1607 ∆CL2
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It is then assumed that these same parameters will hold for all generalized loads due to all airfoil deformations.
Figure 6 shows the fit of the published data with the parameters given above (Ref. 13). The airfoil was

oscillated with α = 10◦ + 5◦Sin kτ , at reduced frequencies k = 0.025 and k = 0.10. The correlation to the
experimental dynamic stall data is striking. The model slightly under-predicts the time for the stall vortex
to reattach at lower reduced frequency, but certainly captures the shape and character of the curve quite
well. Very little overshoot is seen at k = 0.025 compared to the static curve; however at k = 0.10, the linear
character of the lift curve is extended by about 3◦, resulting in an increase in CLmax of about 0.2. At the
higher reduced frequency, the vortex has just reattached before beginning another cycle.

5 Combined Pitch-Flap Oscillation

The experimental data to be considered in this paper come from wind tunnel testing of a NACA 0012 airfoil
with combined pitch and flap motion (Ref. 14). The airfoil is pitched about a center of rotation that is 35%
chord from the leading edge, oscillating at a reduced frequency of k = 0.021. Simultaneously, the flap is
oscillated at twice the frequency of the pitch, with reduced frequency k = 0.042. The center of rotation of
the flap is at 80% chord from the leading edge. The experimental CL and CM were measured by pressure
transducers on the airfoil. The equations describing the intended motion of the airfoil are given by

α = α0 + α Sin(kτ) (42)

β = β0 + β Sin(2kτ − φ)

However, due to experimental constraints, the actual α and β are more complicated curves. Through direct
correspondence with the authors, the measured values of α, β, CL, and CM at each time step were obtained.
The values of α and β were used as the input to the thin airfoil theory. They were transformed into the
generalized coordinate system by expansion of the trailing edge flap geometry in a Glauert series (Ref. 1).
The expansion in terms of β is

h0 = (βb/π)[Sin ϕm − ϕmCos ϕm]
h1 = (βb/π)[ϕm − Sin ϕm Cos ϕm] (43)

hn = (βb/π)
{

1
n+ 1

Sin[(n+ 1)ϕm] +
1

n− 1
Sin[(n− 1)ϕm]− 2

n
Cos ϕm Sin(nϕm)

}
The above expansion allows for a matrix transformation between the user variables α and β and the gener-
alized blade deformations hn as follows:

hn = T
{
α
β

}
(44)

where T is defined in the appendix.
Data were recorded for various ranges of α and β and at various phase angles. There are eight cases, as

shown in Table 2. Cases 1-3 never exceed the static stall angle of the airfoil, so there is no dynamic stall
present. Cases 4-6 exceed the stall angle by less than 2◦, so there is only moderate dynamic stall. Cases
7-8 data exceed the stall angle by as much 8◦, illustrating the effects of heavy dynamic stall. The system is
simulated in Matlab by simultaneously time marching Eqs. (17, 24, and 32). Time derivatives are estimated
using a central difference approximation. It is assumed that the w0, w1, and w2 created by the trailing-edge
flap will produce the same static and dynamic-stall airfoil behavior as those same Glauert parameters did
when produced by an NACA camber. This approach generalizes the methodology to arbitrary morphing
dynamics. The results of the simulations are shown in Figs. 8 - 15.

Empirical correction factors fα, fβ , fL, and fM are applied in order to match the static data, and then

11



these identical parameters are used for the unsteady correlation.

hn = T
[
fα 0
0 fβ

]{
α
β

}
(45)

CL = − fL L0

ρ u0
2 b
, CM =

fM L1 + fL L0 ac b

2ρ u0
2 b2

One set of correction factors, fα and fβ , is applied to α and β. A second set of factors, fL and fM , is
introduced as a correction on the output. In addition, the location of the airfoil center of rotation ac is
adjusted, to obtain the proper shape of the CM curve. We have listed five empirical correction factors: fα,
fβ , fL, fM , and ac. Of these, only four are independent. For instance, if fL and fM are doubled while
fα and fβ are halved, the resulting CL and CM will be identical. For simplicity, we have defined fL to be
unity and adjusted the other factors to provide a best fit for the static data. One set of correction factors is
used for the unstalled data (Cases 1-3), and a different set of correction factors is used for the stalled cases
(Cases 4-8), as shown in Table 2. It is not clear why different sets are needed. However, it is encouraging
that all of the stalled data are correlated reasonably well with a single set of correction factors. Also, the
correction factors for the stalled data are closer to unity than the unstalled data. Each plot has a steady
component, a 5 Hz component, and a 10 Hz component. Thus, there are 2x5x5=50 different components to
be correlated; and only one set of four correction factors does well for the stalled data. Similarly, there are
2x3x5=30 different components correlated with one set of correction factors for the unstalled data.

6 Conclusions

A unified airloads model has been presented that includes the effects of morphing airfoil geometry and
dynamic stall. The model is hierarchical, allowing the user to use just enough states to adequately model
the physics, while being able to make computations efficiently in real time. It is remarkable that the theory
gives a first approximation for the airloads for an airfoil undergoing arbitrary pitch and trailing-edge flap
motions with parameters obtained from static data for NACA cambered airfoils and dynamic data from an
NACA 0012. This verifies the soundness of this approach. Good correlation has been demonstrated for the
NACA 0012 airfoil with trailing-edge flap.

Future work will include correlating the theory for other types of morphing airfoils. These may include
concepts such as the variable droop leading edge (VDLE), which has been shown to significantly reduce
dynamic stall due to a reduced angle of incidence at the leading edge, where stall vortices are generated
(Ref. 15).
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Table 2: Empirical correction factors

Case Dynamic stall α β fα fβ fL fM ac

1-3 None −6◦ to 6◦ −5◦ to 6◦ 0.588 1.639 1.000 0.725 -0.304
4-6 Moderate −2◦ to 10◦ −5◦ to 6◦ 0.890 0.842 1.000 0.920 -0.400
7-8 Heavy 5◦ to 16◦ −5◦ to 6◦ 0.890 0.842 1.000 0.920 -0.400
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Appendix

The following matrices and vectors are used in the derivation of the unified model. Note that M refers to
the number of states in the Glauert expansion, resulting in (M + 1) × (M + 1) matrices and (M + 1) × 1
vectors. N refers to the number of inflow states, resulting in N ×N matrices and N × 1 vectors.

1 = {1 0 0 0 · · · }T

b = {b1 b2 b3 · · · bN}T as defined by Eq. (22)

c =
{

2 1 2
3

1
2 · · ·

2
N

}T
d =

{
1
2 0 0 0 · · ·

}T
e =

{
1 1

2 0 0 · · ·
}T

f = {0 1 2 · · · M}T

hn = {h0 h1 h2 · · · hM}T

vn = {v0 v1 0 0 · · · }T

v̇n + ḧn =
{
v̇0 + ḧ0 v̇1 + ḧ1 0 0 · · ·

}T
λ0 = {λ0 0 0 0 · · · }T

λ1 = {λ0 λ1 0 0 · · · }T

A = D + d bT + c dT + 1
2 c bT

C =



1
2 0 − 1

4 0 0 · · ·
0 1

16 0 − 1
16 0 · · ·

− 1
4 0 1

6 0
. . . . . .

0 − 1
16 0

. . . 0
. . .

0 0
. . . 0

. . . . . .
...

...
. . . − 1

8M

. . . M
4(M2−1)


D =



0 − 1
2 0 0 · · · 0

1
4 0 − 1

4 0 · · · 0

0 1
6 0 − 1

6

. . . 0

0 0 1
8

. . . . . . 0
...

...
. . . . . . 0

. . .
0 0 0 0 1

2N 0



G =



0 1
2 0 0 0 · · ·

0 0 1
4 0 0 · · ·

0 − 1
4 0 1

4 0
. . .

0 0 − 1
4 0 1

4

. . .

0 0 0 − 1
4 0

. . .
...

...
...

. . . . . . . . .


H =



0 0 0 0 0 · · ·
0 1/2 0 0 0 · · ·
0 0 2/2 0 0 · · ·
0 0 0 3/2 0 · · ·
0 0 0 0 4/2 · · ·
...

...
...

...
...

. . .


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K =



0 f 2 3f 4 · · ·
0 − 1

2 0 0 0 · · ·
0 0 − 2

2 0 0 · · ·

0 0 0 − 3
2 0

. . .

0 0 0 0
. . . . . .

...
...

...
...

. . . −M2


M =



f 1 0 0 0 · · ·
− 1

2 0 1
2 0 0 · · ·

0 − 1
2 0 1

2 0 · · ·

0 0 − 1
2 0 1

2

. . .

0 0 0 − 1
2 0

. . .
...

...
...

. . . . . . . . .



S =



f 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .



T =


−ba (b/π)[Sin ϕm − ϕmCos ϕm]
b (b/π)[ϕm − Sin ϕm Cos ϕm]
0 (b/π)

{
1

n+1 Sin[(n+ 1)ϕm] + 1
n−1 Sin[(n− 1)ϕm]− 2

n Cos ϕm Sin(nϕm)
}

...
...


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