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ABSTRACT

A formuiation for the free wake analysis of helicopter
rotors in incompressibls potentiesl flows is presented here, The
formulation encompasses both the theory and its aumerical
implementation, For the case of a single-blade rotor in hover,
the formulation is validated by numerical results which are in
good agreement with the generalized wake of Landgrebe and
computational results of Rao and Schatzle. These resnlts
indicate that the formaulation does not reguire any empirical
assumption (such as the rate of contraction of the radius of the
wake) in order to avoid numerical instabilities. To our
knowledge, the resualts presented here are the first ones ever
obtained not requiring any sd-hoc assumptions to aveid such
problems. Extension of the theory to compressible flows is also
outlined.
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1, Introdugtion

A new methodology for the generation of the wake geometry
for the computational aerodynamic analysis of a helicopter rotor
is presented in this paper (details of this work are given in
Ref. 1), The availebility of such a methodology would enhance
considerably the present computational capability im this area,
which is needed for imstance for: (1) performance and structural
anslysis, (2) evalwation of generalized forces for flutter
analysis, and (3) evaluation of the outer potential velocity
field for the boundary—layer and separated-flow analysis.

In the classical rotor-wake formulation, the wake is
described as a spiral (helicoidal) surface which is obtained from
the assumption of uniform vertical flow., This method is not
sufficiently accurate for the aerodynamic analysis of helicopter
rotors. This yields the need for the development of a
methodology for fully—automatic or semi-antomatic wake
generstion. The fully rutomated wake generation {(commonly
roferred to as 'free wake' analysis) is obtained stesp—by-step by
calculating from the location of a vortex point at a given time
step the location st the next timestep: the drawback with this
approach is that the free—wake analysis is quite expensive in
terms of computer time., On the other hand, & semi-automatic wake
generation (¢commonly referred to as 'genmeralized wake') may be
obtained by expressing the analytical description of the wake
goomoetry in terms of few parameters which are evalunated by
fitting experimental results. The goneralized-wake amalysis is
accurate and not more expensive than the classical-wake analysis,
but currently requires the use of expensive wind tunnel
experiments for the goneration of the generalize~wake model. The
objective of work presented here is the devolopment of an
accurate and general method for free-wake potential aercdynamic
analysis which can be nsed (instead of the more expensive
exporimental approach) to generats the generalized-wake model for
use in a prescribed-wake analysis,

An excellent review or aerodynamic technology for advanced
rotorcraft was presented by Landgrebe, Moffitt, and Clark”,
Additional reviews are presentad in Refs. 3~7. Therefore only
works which are particularly relevant to the objective and the
motivation of the proposed work are included in this brief
revisaw, which is not to be considered, by any means, complete.
Three itoms which are relevant to this report and which nead =
discussion deeper than the ones presented in Refs, 2 to 7 are
advanced computational methods (lifting-surface and panel
methods), wake roll-up and compressibility., These items arse
briefly examined in the following.

Consider first advanced computational methods., Lifting—
surface theories are presented in Refs, 6 to 7. A third 1ifting-—
surface method was developed by Suciu, Preuss and Morino' for
windmill rotors and yields results which are in excellent
agreement with those of Rao and Schatzle’, Next consider panel
methods, a new methodolegy recently introduced inm aircraft
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asrodynamice, This methodology (also called boundary-element
method) consists of the finite—element sclution {over the actual
surface of the body) of integral equations for potenmtial
aserodynamics, Typically, the surface of the aircraft is covered
with source—panels {(doublet—, vortex—, and pressure-panels are
also used on the surface of the body and of its wake). The
intensity of the sourco distribution is obtained by satisfying
the boundary conditions on the surface of the body. An early
work on thc flow field aroond three-dimensiomal bodies by Hess
and Smith® uses comstant strength source—eléements to solve the
problem of steady subsonic flow around monlifting bodies. This
mothod has been extended to lifting bodies by including doublet,
vortex, and lifting-surface panels (see, e.g., Ref. 10). Work in
panel method for unsteady flow around complex configurations
include extensions of the doublet—Iattice method (Ref, 11) and
the work of Morino and his collaborators (Refs, 12-14)., This
methodology has been extended to helicopter aerodynam:cs. For
instance, the work by Dvorask, Maskow and Woodward® presents a
method for calculating the complete pressure distribution on a
helicopter fuselage. Applications of panel methods to helicopter
aerodynamics are siso presented by Soohoo, Morino, Noll, and Ham
{(Refs, 16 and 17), The zbove remarks indicate that panel~
aerodynamics methods are becoming avsilable for the analysis of
the complete configuration. The availability of such methods
{and corresponding computer programs) enhances coansiderably the
present computational capabjlity for an accurate svaluation of
pressure and flow fields.

Next consider the issue of wake dynamigs. Am excellent
roview of the problem of the wake roll—-up is given in Ref, 2
(where additional works not included hers are extensively
reviewed). The essance of the state of the art in this ares is
briefly summarized here. The various aercdynamic analysis of the
rotor fall into one of the three following types :

A, Classical wake, i.o., a wake goometry described by
a helicoidal spiral with pass obtained from

naiform flow assumption.

B. Genornlized wake, i.o., a wake goometry cbtained
by interpolating experimental data in terms of few
parcameters.,

C. Free wake, i.e., a wake geometry obtained
computationally as an integrel part of the
sclation. :

Analytical models for predicting the geometry of the rotor
wake wore developed from experimental data by Landgxebe » Crews,
Hohonemser and Ormistoni’ and Kocurek’ Landgrebe’s model wzs
used by Rao and Schatzle” in their lifting-sutface theory, and
shows that a considerable improvement in the comparison with
experimental results of Ref, 21 can be made simply by using a
generalized wake geometry instead of the classical wake geometry.
Automatie generation of the wake is considered for instance by
Scully 23, Summa® and Poursdier and Horowitz''. All these works



indicate that the algorithms used are unstable unlass special
constraints (smch ns specified contraction ratio) are introduced.
Another important issue is the one of simplified algorithms which
can be unsed for instance for modeling the far wake: seversal
models are available for the hover case (see o.g., Ref. 24-26),
However none of these models is applicable to the case of
arbitrary motion conmsidered in this work.

Next consider the issue of compressibility. The importance
of compressibility was clearly demonstrated by Friedman and Yuan?
for the problem of aeroelastic stability (i.e., flutter and
divergence) of rotor blades. As mentioned above, compressibility
effects are included in the lifting—line theory by Johansson® in
the lifting—surface method by Rzo and Schatzle' and in the work
by Morino and Soohoo A gsneral spproach is the finite-—
difference solution g% the differential equation used by

Caradonns and Phillippe™ ",

The work presented here includes the development of =
formulation for the time—dependent frse—wake aerodynamic analysis
of helicopters in hover and forward flight and the validation of
the formulation, The formulation is very gemeral: the main
restriction is the assumption of potential aerodynamics. This
implies in particular that viscous (attached sad separated) flows
are not inciaded hore, For the sake of clarity, compressible
flows are dealt with in Appendix A, Additional theoretical
results dealing with the issues of wake generation, uniqueness of
solation, Kutta condition, Joukowski hypothesis and trailing edge
condition are available in Ref, 1. The validation of the
formulation includes time-domain free-wake analysis and is
limited to & single—-bladed rotor in hover, However, ths
formulation and the numerical algorithm used in the computer
program are time accurate (i.e., they yield a steady state
solution via an acourate time—domain analysis) and therefore are
in theory applicable to time dependent flows, in particular
forward flight (of course, validation for this applicetion would
be required), The computer algorithm is general in that only the
geometry and the motion of the surface of the rotor are nceded as
input.

2, Y¥ake Dynamics in Incompressible Potentjal Filows

In this paper we assume that the frame of referesnce is
connected with the undisturbed air, Wo assume the fluid to be
inviscid and incompressible. Hence the motion is governed by
the Evler equations and continuity equation for incompressible
fluid, These equations form a system of four partial
differontial equations for four unknowns Var Yy &z, and p.

Since the frame of reference has been assumed to be
connected with the undisturbed air, the boundary condition at
infinity may be written as p = p_, and v = 0 for P at infinity.
On the body (rotor in our case) it is assumed that the surface of
the body is impermeable. This implies



(¥ - ?b).azo (for P on oy) 2,1

where il is the normal to oy at P. The boundary condition on the
wake are discussed later in this section after introducing the
concept of potential wake.

The basis of the discussion on the wake dynamics is the well
known Kelvin's theorem which states that the circulation I' over a
material contour (i.e., 8 contour which is made up of material
particles) remains constant in time, This theorem is an
immediate consequence of the definition of I', of Euler equations
and of the fact that the denszity is comstant (or, in general,
that the fluid is barotropic). Next assume that the flow field is
irrotational at time 0. Then according to Stokes theorem T is
initially equal to zero for any path connected with a surface ¢
fully inside the fluid volume. Hence, for all these paths, T
remsins jdentically equal to zero. This implies that curl ¥ = 0
for almost all the fluid points at all times: the only points to
be oxcluded are those material points which come in contact with
the solid boundaries (since for these points, Kelvin's theorem
does not apply). In order to simplify the discussion of this
issune, let us focus on the case of an isolated blade with a sherp
trailing edge and consider only those flows such that the fluid
leaves the surface of the blade at the trailing edge. We call
these flows attached flows. Hence the points which come in
contact with the rotor are only those emansting from the trailing
edge and thereofore form a surface: such a surface is called
wake.

Next consider a well known theorsm from vector field theory
which states that if a vector field ¥ is irrotational then there
exists a function, ¢ , called velocity potential such that v =
grad¢. Hence cur results may be rasteted as follows: for an
inviscid incompressible fluid, a flow field which is attached and
initially irrotational is potential 2t all times and st all
points except those of the wake. If the flow is potential, the
Euler equations may be integreted to yield Bermoulli’s theorem

-a-fd-}-lrld i’+2--]-'- : 22
at | 2 B¢ p  pr®
Using, Eq. 2.2 the continuity equation may be rewritten as
V¢ =0 2.3

where V* is the Laplacian operator. Similarly, the boundary
condition at infinity is ¢= 0, whereas that on the body becomes

Y= 3P /8n = V.5 2.4
In order to complete the problem, we need s boundary
condition on the wake, This condition may be obtained from the

principles of comservatior of mass and momentum across a surface
of discontinumity, which, for incompressible flows, yield Ap = O
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“and v, = v, where p is the pressure and Vg = ¥.n is the normal

component of the velocity ¥, whereas Vg is the velocity of the
surface (by definition, in direction of the normal 3). Next
combine Bernounlli’s theorem Eq, 2.4 with the wake condition, Ap =
0. This yields (ses Ref. 1 for details) D'A.,P /Dt = 0 where

% o .= 3 ., 3 ) s
Dt Ft T wesERde Tt vw Tt Y m .
with
- 1.
v' -T(v: + v,) 2.6

is the materisl time derivative for 2 function defined only over
the wake surface. The wake condition may be integrated to yield

A¢g = constant ' 2.7

following a point Py, which has velocity ¥, siven by Eq. 2.6. The
above equations, with the addition of Joukowski’s hypothesis (see
Section 4 of Ref. 1), may be nsed to obtain the solution for ¢.
Once ¢ is known, the perturbation velocity may be svalmated using
Eq. 2.3 and 2.4. Then the pressure may be evalunszted using
Bernoulli’s theorem, Eq. 2.2.

The 1integral equation used in this work is a particular
case of that introduced by Morino®?® for the general case of
potential compressible flows for bodies having arbitrary shapes
and motions. The integral equation is based on the classical
Greon's function method: using Eq. 2.3, one obtains

1 3.1 a 1
4nE(Pa)p(Pe) = - @ [-.}1; - ‘j;,";(;” da +@ Ap—(-) do 2.8

é, in r

where t=|P-P,], o, is the (closed) surfasce of the rotor blade and
g, is the (open) surface of the wake of the rotor blade.
Furthermore, Ay=¢; — (P,, whereas i is the normal on the side 1
of the wake, Note that A on o_ i3 svaluated from Eq. 2.7.
{Note also that the vortex—layer wake of the rotor is represented
as an equivalent doublet layer. The proof of the equivalence of
doublet layers and vortex layers is givem, for instance, in
Reference 28.) Finally

%

Ey =1 ~ Qy/2n =1 Py outside ay
= 1/2 Py on oy (regular point)
= ( P‘ inside dh 2.9

For P¢ on gy, Eq. 2.8 is an integral equation relating the
unknown values of the velocity potential on the surface of the
rotor, to the values of W {prescribed by the boundary condition
on the surface of the blade) and the values of the potemtial
discontinuity on the wake (knowa from the preceding time



historyl.

Once <, is known, Eq. 2.8 may be used to calculate the
velocity at any point in the fields as ¥4 = grads (s (where grads
indicates differentiation with respect to P,)

- T g , 7 9 T
V= @a:‘f'f;;;a - ff ;;(a-;:)]dc +JI,' Ag -é-;(m:)dv 2.10

3. MNumerical Algorithm

Equation 2.8 may be discretized by dividing the surface of
the rotor into Ny surface panels o: and assuming that ¢ and
ars constant within each paneil. Sinilarly, the wake is divided
into elements o with A¢ constant within each panel. By
imposing the conﬁition that the equation be satisfied at the
centroids P, of the elements oy, ome obtains (note that according
to Eq. 2.9 Py} =1/2, since Py is a regular point of oy)

Ny Ny Ny
:E: (8. = Co.) g, =:E: +:£: F 31
=1 kj kj ‘PJ = Bkj (f"j e knmfn

where p. and t,(;] are the values of (¢ and ¢ on the j—th panmel at

time t, “'wherea
Bg(e) = ]
%

1 do I
2nrc P‘P.
g 1
Cy: = —() d
xj (¢ J-J."j an 2xr c‘PﬂPn

@ 1
F (t)= J]' —— ) dcl
kn U; dn 2nr . P.nPk 3.2

In Eq. 3,1 the wake geometry and the values for Ay are known
from preceeding time steps: in particular they are assumed to be
proscribed at t=0, Therefore, Bq. 3.1 is a system of Ny
algebraic equations with Ny, unknowns ¢, :the values of §; are
known from the boundary conditions. (It may be emphasized that if
the rotor moves with rigid body motion, the coefficients By; and

Ck are time independent. An analytic expression for the
codfficients is given in Ref. 13.)

As mentioned above, the frame of reference is assumed to be
connected with the air, This is particularly convenient to
discuss the wake dynamics. {(The computer program is acturlly
written in a frame of reference conmnected with the rotor.)
Betwoen time t and time t+At, the fluid points which were at the
trailing edge at time t move into 2 new position given by



t+AtL
P (t+At) = Py (t) + ft (P, (t),t) at 3.3

The location of these points may be is obtained by spproximating
the above equation as

Py(t+At) = Pi (t) + T, (t) At 3.4

(The details for the calculation of v at the trailing edge are
given in Ref, 1,) Xt should be noted that as mentioned above,
the new locations of the wake points are within a frame of
reference connected with the undisturbed air. Therefore while
the wake points move, the blade also moves into its new position.
Hence, at time t+At, we have a new row of wake elements: the
value of Ay assigned to the elements 6n’i$ the difference of the
values (ovsiuated at time t) of the potential ¢ &t the centers
of the upper and lower blade elements that are in contact with

s'. In sddition, the new location of the existing wake of
afenents is obtained as follows: evaluate the velocity at the
wake points which are not on the trailing edge using Bq, 2.10
which is discretized as

Ny,
GQ-ZS. +ZE Zf 3.5

i ¥i j=1 e ot qn 4

where q spans over all the nodes of tho wake surfnce which are
not on the trailing eodge (the definitions of b and f are

similar to those of Bk;’ ij and Fy,). Thken calcu ate the new
locations as

Pq(t + At) = Pq(t) + vq(t)At 3.6

Now 211 the nodes of the wake surface ares known. Note that if
the numbering of the wake elements is not chamged from time t to
time t+At then, according to Eq. 2.7, A@ is constant in time.
Renco, the new wake geometry and the corresponding values for Ag,
are known at time t+At and the process may be repeated,

The last issue to be discussed is that of the wake
truncation: as the number of time steps grows, the lenmgth of the
wake also grows, This implies that the computer time per time
step also grows, In order to keep computer time within
ressonsble bhounds, it is necessary to obtain & simplified model
for the remote element of the wake. While sophisticated
intermediate—and far—wake models have been introduced for the
hover case (Refs. 24 and 25), these models requirs ad-hoc
assumptions based on empirical data. Since the objective of the
present work is to develop 2 method whkich may be nsed to study
problems for which such data does not exist (such as
maneuvering), it would have been inappropriate to introduce any
of the above far~wake models or, for that matter, any model basad
on experimental data., For this reason in the results presented
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here, the wake is simply truncated after a certain number of
spirals. The implications of this procedure is that the last
few spirels are to be considered as modelling for the far wake
effects, As indicated by the results presented in Section 4, this
is an expensive approach to the problem (the case presented in
Section 4 requires approximately eight hours of CPU time on an
IBM 370/168), There is need to develop a less expensive approach
to the far wake modelling, However, such a model should be based
on first principle rather than empirical data, if the methodology
proposed here is to be nsed independently of the experimental
analysis.

4, Numerical Resunlts

In order to vaiidate the theory presented above, the
nomerical algorithm was implemented in a computer program, The
results obtained with this program and the comparison with
existing data are presented in this section, It is a generally
accepted opinion that the wske roll-up problem is harder to solve
for hover than for forward flight, because the wake spirals are
c¢loser to each other in the hover case. Also the hover case
seems to be the only one for which satisfactory results exist.
Therefore, in order to test our formulation we have started by
studying a hover case. However, in order to validate the time~
domain algorithm, the hover case was studied through a time-
accurate transient response analysis, Theso steady-state results
are the only ones presented here, Wo believe that the validation
of the formulatjon will be satisfactory only if more exteasive
results will confirm the results presented here.

In particular, we chose the case studied by Rao and
Schatzle for several reasons, the most important of which is
that their formulation (lifting surface with prescribed wake) is
based on first principles (no ad-hoc assumption . is used sxcopt
for the wake geometry and zero—thickness blade) and yields
results which are in excellent agreement with the experznontal
ones of Bartsch®?, The problem considered by Rao and Schatzle’
consists in & single blade, with tip radius B = 17.5', cut-out
radiﬁf Teg = 2.33', chord e =1 083'. collective pitch angle 8
10.61° and twist angle 8, = -5°. The angular speed is fl = 355
r.p.m. For all the results, the initial wake geometry is a
classical wake with £ = Az/2nR =yCp/2 where Az is the pitch and
Cp = 0,00185 (this is the value obtzined by Reo and Schatzle).
Afi the results were cbtained using three elements in the chord
directions and seven in the span directions for a total of
twenty—one elements on each side of the blade. A convergence
analysis preseanted in Ref. 17 indicates that this is sufficient
to obtain relatively converged results. The time step is At =
T/12 wheres T is the period: this yields twelve elements in the
circumferential direction per each wake spiral {there are seven
elemonts in the radial directions becanse that is the number of
elements on the blade in.the spanwise direction).

Before discussing the numerical results, it should be noted
that as shown in details in Ref., 1, the analysis yields an
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anomalons behaviour for the last few spirais, This is caused by
the fact that the wzke is truncated {(the following spirals would
have a restraining effect on the last spiral: in their absence
the last spiral tends to move outward). This behavionr is
presented in Figure 1 which shows the vertical displacement of
the last vortex Jine as a function of the azimuth angle at the
last time step consideread hore (that is, at time step 50): the
three lines correspond to the three—, five~, and seven—spiral
models respectively. It may be seen that the first two spirals
are very close for all three cases {whereas the first three
spirals are in good agreement for the five~ and seven—spiral
models)., (As mentioned in Section 3, the reason no far—wake
model was introduced is becsuse such s model does not exist for
arbitrary motion althouvgh the far-wake model introduced in Ref.
25 and 26 for the hover case could have been wsed here in order
to improve these spocific results). An apalysis of the
convergence of the iteration for the seven—spiral case is shown
in Figure 2 which indicates that the 1ift distribution appesrs to
be converged: mno appreciable changes occur between time steps 40
and 50, The converged five— and seven—spiral results sare
compated in Figure 3. We believe that the fact that the five-
and seven—spiral models are irn good agreement on the sectiom1lift
distribution implies that only the first one or two spirals have
a strong impact on the section 1ift distribution.

Next, the results obtained with the seven-spiral wake are
compared against existing data in Figures 4, 5 and 6., Figuore 4
shows & cross section of the wake (first two spirals omly) at 90°
behind the trailing edge, Also shown in Figure 4 are the
location of the tip vortex and of the vortex sheet as predicted
by Landgrebe’s generalized waks model., Note that Landgrebe's
model comes from the experimental data and therefore the tip
vortex is oot necessarily the location of the last vortex, but
rather the 'center of mass’ of the rolled-up portion of the
vortex sheet, Taking thisx into account, we do conmsider this
comparison to be very satisfactory especially if one considers
the l1ow number of elements used to describe the blade and its
wake: much stronger roll-mp is expected if a higher number of
elements is used. (It may be worth noting that Landgrebe model
is only an approximate interpolation of the experimental dats.)
The results shown in Figure 5 (in which the radial logation of
the last vortex as & function of the azimuth 6 is compared to the
radial location of the tip vortex in Landgrebe’s model) show
similar good agreement. Finally, Figure 6 shows 8 comparison of
our results with those of Rao and Schatzle’ » whose results for a
four-bladed rotor are in excellent sgreement with the
exporimental results of Bartsch®®, Agsain, we comsider that the
agreement is satisfactory if one considers the low number of
elements nsed in the analysis and that Rac and Schatzle’ results
are obtained with & prescribed wake, (It may be worth noting
that our resuits are in excellent agreement with their results
for classical-wake analysis, see Ref, 17.)
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Sy Concluﬁing-ﬂenarks

From the numerical results presented in Section 4, one may
conclude that the algorithm is capable of reprodmcing the correct
trend in wake rollop and pressure distribantion. The discrepancy
between our results and the existing ones may be due to either
the physical approximation (i.e., inviscid flow) or numerical
approximation. An analysis of convergence is needed in order to
discriminate between the two,

The main accomplishment however, is that the numerical
results indicate that the algorithm appears to bhe free of
numerical instabilities, even though no ad-hoc assumption (such
as prescribed radial contractior) has been used. More precisely
we believe that the behaviour of the last few spirals of ths wake
is due to the truacation of the wake and should not be thought of
as a numerical instability in the classical sense: in such 2 case
the vortex line would depart from a smooth~behavior spiral with a
disturbance that oscillates and grows in space and time such as
that reported by Summa®, All of our results are very smooth: an
illustrative example of such smooth behavior, is presented in
Ref. 1. We believe that this is the first time that such an
accomplishment has been reported.

Although the validation has been obtained only for & rotor
in hover, the formulation is quite general (the main limitations
being irrotationability and incompressibility) and applicable, in
particular, to & rotor in forward flight.

Additional work is recommended in the following arens:

1. Convergence analysis: it is expected that a stronger
rolli-up would be obtained by using a larger number of
elements in the radial direction {this in tnran would
affect the section—-lift distributiom),

2. Y¥Yake truncation: it is recommended that some
intermediate— and far—wake model be introdunced for
the purpose of reducing the number of wake spirals
(and hence the CPU time). However, as mentioned sbove,
such models should be based on first principles rather
than on empirical data, if the objective is the use of
the methodology for calculeting generszlized wakes.

3. Validation: continue the velidation of the formulation
by applying it to additional hover cases and then to
forward flight cases.
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Compressihle Flows

LIP

The integral formulation of Section 2 is extended here to
the case of compressible flows. The frame of reference is
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assumed to have arbitrary motion. The surface is assumed to be
moving with respesct to the frame of reference in order to
accommodate structural deformations as well as wake roll-up.
However, for the sake of simplicity, such motion is assumed to be
small. The general case is considered in Refs. 29 and 30, The
formulation is an extension of that introduced in Ref, 31 for
acoustics, :

The equation for the velocity potential in a frame of
reference Z,t connected with the undisturbed air is given by

v’y_f;'f-?-"a,t A.1

where Y contains all the nonlinear terms. The bouwndary
conditions are the same as those for incompressible flows. In
order to simplify the derivation of the Green's theorem for z
frame of refersance havimg arbitrary motion, it is convenient to
extend the problem to the whole space by introducing the function
‘?* E@w where B is given by Eq. 2.9 so that

‘-?' ¢ inside ¢
= Q0 outside o A2

Note that ¢ is defined in the whole space and satisfies the
equation

vz‘;; 1 z‘f by
a; a<’ /t

Q

E_(Efffq-a('fg

— )
a.: év @t a9t ' @<t A.3

Ex + gradgegrad E + diviggrad E) -
The presence of the grad E and 3E/dt terms introduce source
layers which act only on the surface o (which is not to be
considersd £s a boundary of the domein of validity of the
equation which is the infinite space), The only boundary is at
infinity where we specify c;;ﬂ 0. Equation A,1 subject to boundary
condition on og is equivalent to Equation A.3 in the sense that
if a function satisfies Eq. A3, it also satisfies Eq. Al withk
its boundary conditions. The solution to Eq. A.3 is

P (Za,ta) - ﬂﬂsava: A4

where G(Z,t) = - G(ty——8)/dnp (with p = |E-E,] and @ = p/ay) is
the well known Green's Fumction for the wave operator.

For the sake of clarity, consider first the case of 2 non-
lifting rotor in rigid body motion. Introducing a coordinate
system X,t rigidly connected with the rotor, ome obtains (see Ref,



1 for details)
1 aq
~4nE = 4 - L]
nE y'f @[ru 7 T do

1 1 1 3
+ V. 0@[“?5]’: do + "’3®£- -E VS}T do
Ty &, ry ot

12

1 1
T [,u‘? Vel do + Hj Byt As

In Bqg. A5, [ 1o indicates evaluation at retarded time t=T, with
T such  that T - te + |E(x,T) - &(ZTu,tu)| /8y = 0. Equation A.5
is the desired integral representation., In the limit, as P,
approeches the surfazce o, one obtains an integral equetion for
¢ The numericel solution of such an equation is similar to
that given in Section 3,

Next consider the case of rotor/fuselage configuration in
which both the rotor and the fnselage move in arbitrary but
rigid-body motions. Also for simplicity, assume that the wake
romains where it is generated: this is a reasonable sssumption
when {in a frame of reference connected with the undisturbed air)
the velocity of the fluid is small compared to that of the rotor
fuselage configurations (this assumption is removed in the
analysis of Ref, 30), Hence the surface o can be broken inmnto
three surfaces: the surface of the rotor, o,., the surface of the
fuselage o, and the surface of the wake, o,. For each of these
surfaces there oxists a frame of reference which is rigidly
connected with the surface. In this case (see Ref, 1), one
obtains an expression similar to Eq. A.25 with each integral
roplaced with the sum of three integrals over o, o¢ and oy
respectively.

If the motion of the surfaces with respect to 'their frame
of reference’ is small, Bq. A5 is still valid but such motion
‘shows up’ in the boundary comditions for 3y /dn., The case of
completely arbitrary motion is discussed in Ref. 30: the
derivation of the equations is quite complex but the final
results are slightly more complex than the ones presented here.
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