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Abstract
We present a new method to model the induced velocities generated by a rotor. A spectral Galerkin method

is applied to the incompressible non linear Euler equations, and filters are added to improve stability, while

maintaining the accuracy of the scheme. We then compare it to other induced velocity models with satisfying

results, while underlying some further work.

1. INTRODUCTION
For rotary wings aircraft, the induced velocities by

the rotors have significant impacts on the rotor

blades themselves and on the aerodynamics of the

other rotorcraft elements by interferences (e.g. the

tail components: horizontal and vertical stabilizers,

tail rotor etc.). Therefore, the modelling of the whole

rotor induced velocity field (on and off the rotor) with

a unified dynamic model scalable to each simulation

application from presizing to flight dynamics is a cru-

cial topic. In this paper we present the development

of a new induced velocity model for rotors, with an

actuator disk. This model is inspired by the work of

Peters and Huang [1], but takes a quite different path

in order to offer a model build on less restrictive

assumptions. This model requires neither the lin-

earization of the momentum conservation equation,

nor the assumption of a velocity potential and re-

spect the continuity equation in all the domain. Thus

it provides the values of the induced velocities at all

points on and around the rotor in a homogeneous

way.

Modelling the induced velocities of an actuator

disk has been a subject of study for more than 50

years, with, among others, Amer [2]. One of the main

contributor to this subject is D. Peters which has de-

veloped several models, beginning with the Pitt and
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Peters model [3], to the recent model presented in

[1]. Other models have been developed using dif-

ferent approaches, like Conway [4] who provided

an analytic study of the actuator disk, or more nu-

merical like Le Chuiton [5] who coupled an actua-

tor disk model to a finite element method, or [6]

who compared various actuator disk representations

also with a finite element method. However none of

those approaches takes full advantages of the effi-

ciency of a spectral method as Peters’method, which

can be a severe drawback for numerous applications,

as demonstrated by Peters in [7].

For this new method, the incompressible nonlin-

ear Euler equations are dealt with a spectral ap-

proach highly inspired by the work of Lopez, Mar-

ques and Shen [8]. However several modifications

have to be made in order to fit their method to our

application. The various modifications are required

by the fact that, in our application, viscosity is neg-

ligible, which tends to prevent its natural damping

effect on the equations, and by the fact that we deal

with a severely truncated open domain. Otherwise

the same steps are taken to solve the equations: we

approximate the velocity and pressure by families

of Legendre’s polynomials which respect the chosen

boundary conditions, and solve explicitly the veloc-

ity coefficients (inflow states), with a second order

pressure projection scheme allowing to maintain

the continuity equation. Furthermore the nonlinear

terms are treated explicitly, and approximated by

Gauss-Legendre-Lobatto quadrature.

First we will underline the motivation for this new

method, then the algorithm will be presented. After

a presentation of the way the rotor is accounted for,

we will present the approximation chosen and the

various filters used. Two types of filters are used: on

the input of the model, in order to reduce the effect

of the Gibbs phenomenon due to the discontinuity

of our blade airloads inputs, and on the states, in

order to maintain the stability of the scheme, which

is threaten by the high order terms developed by
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the nonlinear terms. Finally we present examples

of results of transition flight and descending flight

in order to demonstrate the capabilities of the new

model.

2. MOTIVATION
The aim of this new model is to keep the advantages

present in Peters and Huang model while surpassing

drawbacks due to some limiting assumptions. One

of the major strength of the finite states formula-

tion is its capacity of adaptation to all applications

through the choice of the number of coefficients in

the approximation (inflow states). Indeed its finite

states formulation allows to adapt to the need of

each practical application with a trade-off between

the speed of the computation and its accuracy in

the fineness of the inflow field description. For ex-

ample, it can be used for real-time flight dynamics

simulation and conception loops for the predesign

of rotorcraft thanks to its computational efficiency

with a reasonable number of inflow states tailored

to needs of these applications. With a higher trunca-

tion, it tends to provide a description of the induced

field close to the ones given by more costly mod-

els such as free wake models. Moreover, this finite

states approach is more suited for application re-

quiring clear defined states such as aeroelasticity

(e.g. Floquet method) and any application requiring

linearization, identification. It does however have a

few drawbacks, that this new model aims to surpass.

After a study of Peters and Huang model, as well

as its predecessors, it became apparent that the bulk

of the advantages of this model comes from the use

of a spectral Galerkin method, while the drawbacks

take their origins in the restrictive assumptions taken

in order to apply the Galerkin method to the Euler

equations.

Thus, the main part of the development of the pro-

posed new model has been accomplished by remov-

ing some assumptions taken by Peters and Huang,

in order to avoid the latter drawbacks they would

generate, while still applying a Galerkin method to

the equations.

We here list the assumptions taken in our new

model which are also taken by Peters and Huang

model, then the ones taken only by Peters and

Huang model and their consequences on the repre-

sentation of the induced velocity field.

From the Navier-Stokes equations, the only addi-

tional assumptions are the incompressibility and the

negligible viscosity of the rotor flow. One can jus-

tify both assumptions by limiting the validity of the

model to high Reynolds number and to the lowMach

number of the induced velocity. Thus with those

two assumptions the Navier-Stokes equations are

reduced to the incompressible Euler equations. The

Peters and Huang model makes a series of extra as-

sumptions. First they linearize the non linear terms.

This has a number of consequences. Firstly, it im-

plies the introduction of two static parameters, V∞
and χ, the module of the freestream velocity and
the wake skew angle. Secondly, it considers that the

induced velocities will be negligible compared to the

freestream velocity, which makes the hover case a

limiting case. Finally, it makes the evolution of the

velocities in the wake unnatural when modifying the

wake angle, by making the streamtube of induced

velocities moves as a block. Another assumption of

their approach is the velocity potential assumption.

Although this might be justified above the rotor, one

can not consider the flow below the rotor as irrota-

tional. This create an asymmetry in the treatment of

the upstream and downstream part of the domain,

leading to the introduction of a peculiar case for all

velocities below the rotor, and making all the de-

scend cases difficult to represent. Finally, the Peters

and Huang model is formulated in the frequency do-

main. This allows to solve the equations only once in

order to obtain the whole time history of the induced

velocity. However, in practical applications, the in-

duced velocity models are always linked to a blade

element model allowing to provide inputs (mainly in

the form of rotor airloads). Therefore, a time domain

formulation of the model would be better appreci-

ated. Adapting the frequency formulation to a time

formulation can be done, but generates new prob-

lems. Indeed, while solving for the velocities below

the rotor, Peters and Huang model heavily relies on

the frequency formulation. This leads to the need

to access values of the velocities at various times,

depending on where one wants the velocities, and

also at times that are not yet computed, in some

cases.

In the following sections a short insight of the new

proposed method for solving the incompressible

Euler equations in the presence of a rotor will be

given, as well as some examples.

3. METHODOLOGY
3.1. Domain
Although the ellipsoidal coordinate system used by

Peters et al. is perfectly suited to represent the air-

flow through a rotor, and could be a way to improve

the current model, its inherent singularities are caus-

ing convergence problems, notably at the edge of

the disk. In order to avoid them, the cylindrical coor-

dinate systemwas chosen. It also presents a singular-

ity on the axis, but its regularisation has been studied
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in numerous papers (see Ref [8, 9, 10]). Therefore the

computational domain is defined as a cylinder Ω of
aspect ratio Λ with a rotor at its center, as presented
in Fig 1. It can be described as follows:

(1) Ω = {0 6 r 6 R, 0 6 θ < 2π,−
H

2
6 z 6

H

2
}

with R its radius, and H its height, and therefore

Λ = H
R .

Furthermore, in order to use Legendre polynomi-

als, the r and z coordinates are rescaled in [−1; 1]
with:

x =
2r

R
− 1(2)

z =
2z

H
(3)

We will also use r = x+1
2 .

x y

z

Observation
Plane

Computational
Domain

Rotor

Figure 1: Representation of the computational do-

main

3.2. Assumptions and equations
The Navier-Stokes equations governing the flow are

considered under the following assumptions. The air-

flow is considered to be incompressible and the vis-

cosity to be negligible, because of the high Reynolds

numbers of our applications. The boundary condi-

tions will be detailed in section 3.4. Therefore the

following general form of the incompressible Euler

equations are dealt with:

∂−→v
∂t

+
−→
∇(−→v ) · −→v =

−→
∇p

∇ · −→v = 0

(4)

We set u+ = u + iv and u− = u − iv following
Ref [8]. This gives the final form of the equations, in

the cylindrical system, shown in equation 5 (see next

page).

Finally, one can already account for the Fourier

series expansion in azimuth in order to distinguish

between the different orders, for a given time step

k :

u+k (x, θ, z) =

Nθ∑
m=−Nθ

u+k,m(x, z)e imθ(6)

u−k (x, θ, z) =

Nθ∑
m=−Nθ

u−k,m(x, z)e imθ(7)

wk(x, θ, z) =

Nθ∑
m=−Nθ

wk,m(x, z)e imθ(8)

pk(x, θ, z) =

Nθ∑
m=−Nθ

pk,m(x, z)e imθ(9)

3.3. Time discretization
Following the development made in Ref. [11, 8], a

second order projection scheme is used. For the

reader’s convenience, we expose here the general

principles of the time discretization scheme.

The first step of the scheme, at time step k and
for a given orderm, is:

(10)

1

2δt

(
3
−→
ṽ k+1,m − 4−−→vk,m +−→v k−1,m

)
=

−
−→
∇pk,m − 2

−→
N k,m +

−→
N k−1,m

where
−→
ṽ k+1,m is an estimation of the velocity at

time step k + 1. The non linear terms are treated
explicitly by using a simple backward scheme with

their known values at time step k ,
−→
N k,m and k − 1,

−→
N k−1,m.
This thus gives:

(11)

3

2δt
(−→v k+1,m −

−→
ṽ k+1,m) = −

−→
∇(pk+1,m − pk,m)

Using the continuity equation one can find the

value of the pressure term pk+1:

(12) −
3

2δt
∇ · (
−→
ṽ k+1,m) = −∆(pk+1,m − pk,m)

And thus compute the value of the velocity at k+1
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(5)

∂u+

∂t
+
u+ + u−

2

∂u+

∂r
+
u+ − u−

2i r

(
∂u+
∂θ

+ iu+

)
+ w

∂u+

∂z
=

∂p

∂r

∂u−

∂t
+
u+ + u−

2

∂u−

∂r
+
u+ − u−

2i r

(
∂u−
∂θ
− iu−

)
+ w

∂u−

∂z
=

∂p

r∂θ

∂w

∂t
+
u+ + u−

2

∂w

∂r
+
u+ − u−

2i

∂w

r∂θ
+ w

∂w

∂z
=

∂p

∂z
∂

r∂r

(
r
u+ + u−

2

)
+

∂

r∂θ

(
u+ − u−

2i

)
+
∂w

∂z
= 0

with equation 11:

(13)
−→v k+1,m =

−→
ṽ k+1,m −

2δt
3

−→
∇(pk+1,m − pk,m)

It can be noticed that the use of the continuity

equation ensure that the velocity has no divergence

in the whole domain (thus ensuring the respect of

the continuity equation both above and below the

rotor), and that the explicit treatment of the non

linear terms will highly simplify their integration to

the Galerkin method.

3.4. Boundary conditions
The boundary conditions imposed are of two types.

On the boundaries of the cylindrical domain, open

boundary conditions are chosen. Two different pos-

sibilities for those boundary conditions have been

tested. The first is a boundary condition developed

by Dong in Ref. [12]. It allows vortices to leave the

domain without causing divergence, by compensat-

ing the energy with a pressure term. The second one

is merely a Neumann boundary condition on the

pressure which allows to maintain stability. The Neu-

mann boundary condition was finally retain for its

ease of implementation in the context of a spectral

method.

On the axis, regularity boundary conditions, called

pole conditions, must be imposed in order to have a

valid solution. Asmentioned by Lopez et al. in Ref. [8],

one can distinguish two sets of pole conditions to be

imposed on the axis: the essential pole conditions,

that are the minimal requirement for the velocity to

be regular, and the natural pole conditions that en-

sure analicity in the cartesian coordinates system. In

the current version of the model, only the essential

pole conditions are accounted for. Although the is-

sue is still under investigation, not accounting for the

natural pole conditions leads to irregularities on the

axis in the high advance ratio cases, which is prob-

ably due to the hyperbolic nature of our equations.

One way to solve this issue would be to account

for all the pole conditions following the method pre-

sented in Ref. [10].

The chosen boundary conditions in x = ±1 (x =
−1 on the axis and x = 1 at the edge of the domain)
depend on the azimuthal order because of the pole

conditions. Therefore we have, form = 0:

∂u+k,0
∂x

∣∣∣
x=±1

= 0 and u+k,0(x = −1) = 0(14)

∂wk,0
∂x

∣∣∣
x=±1

= 0(15)

∂pk,0
∂x

∣∣∣
x=±1

= 0(16)

Form = 1:

∂u+k,1
∂x

∣∣∣
x=±1

= 0 and u+k,1(x = −1) = 0(17)

∂u−k,1
∂x

∣∣∣
x=±1

= 0(18)

∂wk,1
∂x

∣∣∣
x=±1

= 0 and wk,1(x = −1) = 0(19)

∂pk,1
∂x

∣∣∣
x=±1

= 0 and pk,1(x = −1) = 0(20)

Form > 1:

∂u+k,m
∂x

∣∣∣
x=±1

= 0 and u+k,m(x = −1) = 0(21)

∂u−k,m
∂x

∣∣∣
x=±1

= 0 and u−k,m(x = −1) = 0(22)

∂wk,m
∂x

∣∣∣
x=±1

= 0 and wk,m(x = −1) = 0(23)

∂pk,m
∂x

∣∣∣
x=±1

= 0 and pk,m(x = −1) = 0(24)
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And finally the boundary conditions in z , for allm:

∂−→v k,m
∂z

∣∣∣
z=±1

= 0(25)

∂pk,m
∂z

∣∣∣
z=±1

= 0(26)

3.5. Spectral Method
In order to solve the equations at each time step, a

spectral Galerkinmethod is applied on the equations.

This allows the same advantages as the ones of the

Huang and Peters model to be maintained. How-

ever, we follow Lopez, Marques and Shen (Ref. [8])

for the choice of the approximation space, contrived

by the chosen boundary conditions. Because of the

essential pole conditions imposed on the axis, the

description of the velocity depends on the azimuthal

order considered. Nevertheless, there will always

be Nr and Nz elements for the radial and axial de-
scriptions respectively. Furthermore, the time index,

noted k previously, has been dropped for the sake
of clarity.

Form = 0:

u+0 (x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

û+,n0,j κn(x)γj(z)(27)

u−0 (x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

û−,n0,j κn(x)γj(z)(28)

w0(x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

ŵn0,jγn(x)γj(z)(29)

p0(x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

p̂n0,jγn(x)γj(z)(30)

Form = 1:

u+1 (x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

û+,n1,j κn(x)γj(z)(31)

u−1 (x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

û−,n1,j γn(x)γj(z)(32)

w1(x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

ŵn1,jκn(x)γj(z)(33)

p1(x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

p̂n1,jκn(x)γj(z)(34)

Form > 1:

u+m(x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

û+,nm,j κn(x)γj(z)(35)

u−m(x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

û−,nm,j κn(x)γj(z)(36)

wm(x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

ŵnm,jκn(x)γj(z)(37)

pm(x, z) =

Nj−1∑
j=0

Nr−1∑
n=0

p̂nm,jκn(x)γj(z)(38)

The definition of the polynomials chosen can be

found ∀n ∈ N in equation 39 (see next page). We
use Ln to represent the n

th
Legendre polynomial.

They ensure the boundary conditions thanks to

the following properties, ∀n ∈ N:

∂γn
∂x

(±1) = 0(40)

κn(−1) = 0 and
∂κn
∂x

(±1) = 0(41)

Finally, applying the same method as described

in Ref. [13, 8], one can solve efficiently for the co-

efficients and reconstruct an approximation of the

velocity as precise as necessary by choosing the or-

der of the approximations Nr , Nz and Nθ.

3.6. Non linear terms
The convection terms in the momentum conserva-

tion equation are not linearized in the proposed ap-

proach, but dealt with a Gauss-Legendre-Lobatto

quadrature. As mentioned, this avoids the descrip-

tion of the rotor airflow by rectilinear streamlines

and a wake skew angle, making the airflow move

rigidly with the variations of the wake angle. The new

model allows to account for the rotor wake deforma-

tion during transition and maneuvering flights, thus

preventing the need of special additional treatment

for wake distortion.

However these non-linear terms are causing some

issues. They can contribute to the divergence of the

algorithm and to some irregularities. Indeed, the

most obvious examples being the orthoradial deriva-

tive terms that are divided by r . Those terms imply
a loss of regularity on the axis, unless the velocity

respects some pole conditions. The study of a full

satisfactory treatment of these non-linear terms is

on-going although satisfying results are already ob-

tained as will be shown in section 5. Therefore their
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(39)

γn(x) = Ln(x)−
n(n + 1)

(n + 2)(n + 3)
Ln+2(x)

κn(x) = −
n2 + 5n + 6

n + 1
Ln(x)−

2n3 + 17n2 + 45n + 36

(2n + 5)(n + 1)
Ln+1(x) + nLn+2(x) +

2n2 + 7n + 6

2n + 5
Ln+3

detailed treatment will not be exposed in this paper.

4. APPLICATION TO A ROTOR
4.1. Definition of the rotor
There are numerous ways to model a rotor in a flow.

Our point of view will be to see it as an actuator

disk, changing the point of view Peters et al. had

in numerous models (Ref. [14, 15, 16]), where the

effect of the rotor was seen as a discontinuity of

pressure across the rotor. Seeing the actuator disk

as a discontinuity of pressure has for consequences

to cut the domain and to impose the effect of the

rotor as a pressure boundary condition. This is an

issue, since the velocity boundary conditions at the

cut of the domain, i.e. in the plane of the rotor and

on the rotor itself, are unknown. Furthermore, in the

cylindrical coordinate system such a discontinuity

is not embedded in the coordinates, as it is in the

ellipsoidal coordinates system, and would be entirely

artificial. This led us to search for a better alternative.

A good review of the various actuator disk mod-

els in use can be found in Ref. [5] by Le Chuitton.

In his paper, one can see that a good alternative

used in computational fluid dynamics is to see the

actuator disk effect as source terms which can be

readily added to the momentum conservation equa-

tion. Furthermore, seeing the effect of the rotor as

well-placed density forces has several advantages:

it allows for a direct transcription of what is known

in the blade model (i.e. the forces on the blades),

and allows a less constrained form of input than if

expressed under the form of a pressure gradient

(calculated from the rotor lift distribution). Further-

more, this point of view allows to take into account

more than one rotor in the domain, by simply adding

more sources, which could be of interest, notably in

the case of co-axial rotors. Finally, the description

of those forces can be as precise as wanted, in the

same manner as with a pressure discontinuity.

There is however one drawback to this vision of

the rotor when used within a spectral method: this

description will lead to discontinuities, or at least

high gradients, that will generate Gibbs phenomena.

Indeed, considering the rotor as infinitely thin com-

pared to the domain size will lead to a sharp function

for the representation of the forces applied by the

rotor. We will address this concern in the next sec-

tion.

4.2. Stability and accuracy
Because of the hyperbolic nature of the incompress-

ible Euler equations, and the sharp nature of our

inputs, the numerical stability of the algorithm is not

guaranteed. The question of the long time stability of

those equations has no obvious answer (see Ref. [17]

for addressing this issue and a comparison with the

Navier-Stokes equations stability), and Gibbs phe-

nomena can easily contaminate the results of a sim-

ulation. However, several methods have been de-

veloped in order to deal with this inconveniences.

Among the most efficient and accurate ones, filters

are the easiest to integrate to a spectral method.

They have been thoroughly defined in Ref. [18], and

proposed in Ref. [19] as a solution for stability issues

of spectral methods. Furthermore, the application of

filters in Legendre spectral method has been studied

with encouraging results most notably in Ref. [20].

In our application two types of filters are used,

one for accuracy and one for stability.

4.2.1. Filtering for accuracy
The inputs of this algorithm are the projection of the

aerodynamic forces generated by the rotor blades

on the chosen approximation space. Because of the

rotor geometry, the representation of the forces is

concentrated on a small part of the domain, even

more so with an actuator disk.

As underlined previously, filtering the inputs is

not a necessity, but might highly improve the conver-

gence rate of the algorithm. Themain problem in the

representation of the inputs are their sharp shapes.

This will lead to the apparition of the well-known

Gibbs phenomenon, even if the input is not strictly

discontinuous. The phenomenon will appear both in

the axial direction (due to the thin rotor) and in the

radial direction (due to the rapid transition from on

the disk to off the disk at the blade tip).

The literature on the treatment of the Gibbs phe-

nomenon is extensive and contains numerous vari-

ous solutions. We have here taken the party to filter

the inputs in order to mitigate the effect of the spu-

rious modes. Furthermore, instead of considering
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an infinitely thin rotor, we have considered an arbi-

trary thickness and smoothed the application of the

forces with a gaussian function.

Those choices led us to favour the stability far

from the discontinuity at the cost of the accuracyon

the disk, by choosing a Lanczos filter σL of the form:

(42) σL(η) =
sin(πη)

πη

where η is a variable in [0, 1] representing the
order of the coefficients considered.

This filter significantly dampens the impact of the

Gibbs phenomenon on the inputs of the algorithm.

As can be seen on Fig. 2, the filtered inputs present

far less artifacts than the unfiltered one, while repre-

senting accurately the input. It is to be noticed that

this is at the cost of the accuracy of the represen-

tation around x = 0, where the value of the input
is not reach, and the support of the function is too

large. However the overall pointwise accuracy of the

filtered approximations is significantly better. The

Lanczos filter is a good compromise between signifi-

cantly damping the oscillations and being accurate.

4.2.2. Filtering for stability
In order to maintain stability, a filter has to be ap-

plied on the coefficients of the velocity at each time

step. As mentioned in Ref. [21], the impact of such

an approach will imply a much stronger cumulative

effect of the filter than the one of the filter applied

only once. Furthermore, the effect of a filter may be

interpreted as adding some viscosity to the equa-

tions as mentioned in Ref. [20]. However, Ref. [20]

does also show that the filter (under certain require-

ments) does not alter the converged solution. This

led us to choose for an adaptable filter, allowing us

tomodulate between the damping introduced by the

filter and the limitation of the divergent behaviour of

the equations, while still being able to give satisfying

solutions.

This leads to the following choice of filter for this

application, often found in the literature:

(43) σp(η) = exp
(
−αη2p

)
Where p is an integer defining the order of the fil-

ter and α = −log(ε) (where ε is the machine zero).

4.3. Efficiency
There are two main steps in the algorithm. First com-

pute the non linear terms coefficients from the previ-

ous step with a Legendre-Gauss-Lobatto quadrature,

then compute the new velocity coefficients for the

current time, with the time scheme presented above.

One of the first strategies used in order to improve

the efficiency of the algorithm is the use of thematrix

decomposition method as described in Ref. [13]. This

allows to separate the axial and radial coefficients

in order to only deal with matrices of size Nr ∗ Nr
and Nz ∗Nz rather than (Nr +Nz) ∗ (Nr +Nz). This
allows a great improvement for all matrices multi-

plications and inversions. A second strategy would

be the parallelisation of the algorithm. Indeed, the

computation of the non linear terms could highly

benefit from such an improvement, and, in the sec-

ond step, since all azimuthal orders are independent,

they could be processed in parallel.

A final aspect of this spectral method is the fact

that the inputs given by the rotor have to be adapted

for the model. This has the consequence of demand-

ing additional computational effort at each time step

due to the translation of the spatial data into spectral

ones. This could be reduced by the use of a spectral

blade element model, but to the knowledge of the

authors, no such models exist yet.

5. RESULTS
In this section examples of results are presented.

First we compare the new model to the Huang and

Peters model which has been our reference dur-

ing the process of developing this new model. In a

second time, the capabilities of the new model are

illustrated on two cases that demonstrate its inter-

est compared to the Huang and Peters model. Fi-

nally the model is compared with a prescribed wake

model in the case of a two bladed rotor.

5.1. Comparisons to Huang and Peters Model
The comparisons between the results given by the

Huang and Peters model and those obtained with

the proposed model are not straightforward. The

main struggle in order to compare the two models

accurately is to be able to generate inputs having

the same effect. To do so, we use a classical input

for the Huang and Peters model, which represents

an axisymmetric pressure discontinuity of circular

shape. Then a similar force density on the disk is

reproduced, adjusting the intensity in order to find a

similar axial induced velocity on the disk. The results

are compared in a steady state, which means simply

taking ω = 0 in Huang and Peters model, while
we have to run a simulation and to wait for it to

stabilize in the case of the new model. Without the

mass flow parameter extension, Huang and Peters

model behaves as if the free stream velocity was

much higher than the induced velocity, therefore
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Figure 2: Comparison of Fejer and Lanczos filters on the polynomial approximation of a gaussian function by

the γn polynomials on [0, 1] with 60 elements

the comparison is done by using a consequent free

stream velocity.

A summary of the conditions used for both model

can be found in Table 1. The nomenclature used in

this table is the same as the one found in Ref [1,

14]. It is also interesting to notice that, although the

number of elements used in our case is one order

of magnitude higher than the one used in the case

of Huang and Peters model, the size of the matrices

is smaller.

On Fig. 3 and Fig. 4, one can see that both models

predict the same order of magnitude of both the

axial and radial induced velocities. The main differ-

ences occur at the edge of the disk that are caused

by the differences between both visions of the ro-

tor. Furthermore, only an axial force density is ap-

plied, while the discontinuity of pressure does also

act in the other directions. This could explain the

differences between the two models on the radial

velocity.

5.2. Extreme flight conditions
In this section we present results obtained for flight

conditions that are not in the validity domain of the

Huang and Peters model. The first example of such

conditions is the high descending rate case. Here the

fact that the velocity potential assumption is taken

invalidates the possibility of having part of the wake

on both side of the rotor. Figure 5 shows the velocity

field around a uniformly loaded rotor added to the

free stream. It shows that the new proposed model

was able to reproduce the wake above the rotor as

would be expected in such a case.

5.3. Transition flight
One issue that the Huang and Peters model encoun-

ters is its difficulties to render smoothly the varia-

tions of the wake during the transition from one

flight condition to another. This is mainly due to the

linearization of the equations. The rotor wake dis-

tortion during maneuvering flight has however an

important impact on the accurate prediction of the

flight dynamics of an helicopter, most notably on the
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Huang and Peters Model New Model

Inputs as pressure

discontinuity
τ10 Force density sources

√
1− (x + 1)2 for

x ∈ [−1, 0]

Number of elements

modd = 20,

meven = 10,

Total: 157

Number of elements

Nr = 50, Nj = 50,

Nθ = 1,

Total: 2500

Conditions ω = 0, χ = 0 Conditions
V∞ = 0.5, Λ = 5,

δt = 2E − 3

Filter order p = 20

Table 1: Input data for comparison with Huang and Peters model
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(a) Axial velocity given by Peters and Huang’s model
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0.5

1

1.5
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(b) Axial velocity given by the present model

Figure 3: Comparison of the axial velocity between Peters and Huang’s model and the present model for a

τ10 load, as presented in [1]. The green dashed line is taken 2R above the rotor, the red continuous one on

the disk, and the blue dotted one 2R below the disk

off-axis response, as shown in Ref [22]. Zhao, Prasad

and Peters have in particular worked on modelling a

curved wake using several stream tubes, in Ref. [23],

in order to capture this effect. Here the capabilities

of the new model are demonstrated on a theoret-

ical case of transition between hover and forward

flight. A uniform load is applied to the rotor in hover

conditions. Once the wake has developed in the do-

main, a constant forward velocity is instantaneously

applied to the rotor. Figure 6 represents the evolu-

tion of the wake in those conditions. This underlines

the benefits of taking no assumptions on the shape

of the rotor wake and streamlines. Yet, one can see

on Fig 6 (f) that the velocities leaving the domain

on the right of the domain generate non physical

velocities at the left of the domain. This is due to the

low number of states used to describe the azimuthal

coordinate which leads to a Gibbs phenomenon on

the border of the domain.

5.4. Comparison with a prescribed wakemodel
In order to compare the results of this new model

with a prescribed wake model, we have coupled it

with a blade element model. An isolated blade of the

7AD rotor is used, rotating at Ω = 1020 rpm, and
ascending at V∞ = 5.0m/s .
Figure 8 shows the comparison between the ax-

ial induced velocity given by both model. It shows

a good agreement, both in the shape of the distri-

bution and in its amplitude, with the exception of

the very tip of the blade, which has a less precise

representation because of the high gradients it ex-

perienced, which are more difficult to represent. As
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(a) Radial velocity given by Peters and Huang’s model
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(b) Radial velocity given by the present model

Figure 4: Comparison of the radial velocity between Peters and Huang’s model and the present model for a

τ10 load, as presented in [1]. The green dashed line is taken 2R above the rotor, the red continuous one on

the disk, and the blue dotted one 2R below the disk

a consequence the force distribution on the blade is

also well represented, as can be seen on Fig. 7. How-

ever, the radial and the orthoradial component of

the velocity are not as well described. Figure 9 shows

a decent agreement of the tendencies of the radial

velocity, although the amplitude does not match,

but Fig. 10 shows a great difference between both

models. This might be explained by the fact that the

forces that the new model take into account are,

here, only the axial forces, and it therefore lack the

representation that a circulation source term could

give. Further investigations are needed to properly

understand and explain this discrepancy.

6. CONCLUSIONS
This paper presents a new model of rotor induced

velocities based on the incompressible Euler equa-

tions with no further assumptions. The capacities of

this new model have been illustrated on several test

cases and compared to the Huang and Peters model

[14], as well as with a prescribed wake model.

Its main advantages are that the rotor induced

flow field is described as a whole in a homogeneous

way, (thus without requiring the blending of several

different models through the use of transition fac-

tors); that there is no potential flow assumption, the

fundamental conservation laws governing the air-

flow are respected intrinsically, for example the con-

tinuity equation is embedded into the model pro-

viding a natural respect of the radial contraction of

the rotor wake; that there is no linearization of the

convection terms in the momentum conservation

equation, therefore the shape of the rotor wake and

streamlines is free and varies dynamically with the

flight conditions and inputs allowing the model to

captures the wake transition and distortion.

Although it is not deprived of flaws which can be

solved by further developments, it is thought that

this new model is a significant step towards a gener-

ation of fast, accurate and versatile models of rotor

induced velocities.
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Figure 5: Induced velocity and free stream velocity in the case of a descending rotor.

The red line represents the rotor, and the blue lines represent the streamlines emanating from the rotor

disk plane with the new proposed model.
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(d) t = 4000δt
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(f) t = 6000δt

Figure 6: Evolution of the induced velocities in the y = 0 plane, with Nr = 30 , Nj = 30 and Nθ = 20.
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Figure 7: Comparison of the lift generated between

the new model

and a prescribed wake model (AMB)
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Figure 8: Comparison of the axial induced velocity

between the new model

and a prescribed wake model (AMB)
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Figure 9: Comparison of the radial induced velocity

between the new model

and a prescribed wake model (AMB)
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Figure 10: Comparison of the orthoradial induced

velocity between the new model

and a prescribed wake model (AMB)
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